EP0165166B1 - Procédé de traitement de minerais complexes de manganèse tels que les nodules marins - Google Patents

Procédé de traitement de minerais complexes de manganèse tels que les nodules marins Download PDF

Info

Publication number
EP0165166B1
EP0165166B1 EP85401080A EP85401080A EP0165166B1 EP 0165166 B1 EP0165166 B1 EP 0165166B1 EP 85401080 A EP85401080 A EP 85401080A EP 85401080 A EP85401080 A EP 85401080A EP 0165166 B1 EP0165166 B1 EP 0165166B1
Authority
EP
European Patent Office
Prior art keywords
ore
pulp
process according
manganese
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401080A
Other languages
German (de)
English (en)
Other versions
EP0165166A1 (fr
Inventor
Odile Pinto
Henri Scoazec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0165166A1 publication Critical patent/EP0165166A1/fr
Application granted granted Critical
Publication of EP0165166B1 publication Critical patent/EP0165166B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0054Treating ocean floor nodules by wet processes leaching processes
    • C22B47/0063Treating ocean floor nodules by wet processes leaching processes with acids or salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/04Manganese marine modules

Definitions

  • the present invention relates to a process for the treatment of complex manganese ores such as the manganiferous modules of the deep seabed.
  • Manganese nodules from the deep sea contain significant amounts of manganese and iron, minor amounts of nickel, cobalt and copper, and small amounts of other elements.
  • Nickel, copper and cobalt are high value metals which it is interesting to extract from these nodules with good yields since the known reserves of these metals decrease significantly.
  • cobalt is particularly difficult to extract by conventional processes with good yields without simultaneously obtaining significant solubilization of manganese.
  • manganese is a recoverable metal, it is not always desirable to recover all of the manganese present in the treated nodules.
  • Another aim is to create a new improved process for extracting cobalt, which process can also provide recovery of the nickel and copper elements with excellent yields.
  • Another aim is to create a new process allowing the selective extraction of cobalt, nickel and copper in sulfuric medium with good yields without dissolving the iron.
  • Another goal is to create a new process for extracting cobalt in sulfuric medium in addition to nickel and copper with good yields, without dissolving the manganese.
  • Another aim is to create a new process making it possible to extract cobalt, nickel, copper with good yields without dissolving the iron, without dissolving the manganese, without involving attack conditions as severe as a sulfuric attack in an autoclave at 250 ° C.
  • the present invention relates to a process for the treatment of complex manganese ores such as manganiferous nodules from the deep seabed, which overcomes this drawback.
  • the manganous ions used in the solution of manganous sulphate obtained in step e) are used in the solubilization of nickel, copper and cobalt, in conditions where these Mn 2 ions + should not be able to act as reducing agent for Mn0 2 and where the medium does not contain a reducing agent for manganese dioxide.
  • the manganous ions, in sulfuric medium allow the extraction of cobalt with good yields and improve the yields of nickel and copper, under operating conditions where sulfuric acid alone gives poor yields , especially in cobalt. It is assumed that in this case, it is a complex equilibrium involving an oxidation-reduction mechanism between, on the one hand, the cobalt in solution and the manganese of the ore or nodule and, on the other hand , cobalt adsorbed or trapped in the manganese of the ore or nodules and manganese in solution. Adding Mn 2+ ions to the sulfuric attack solution makes it possible to enrich this solution and thus to shift the balance in favor of the solubilization of the cobalt.
  • the yields of nickel and copper are favorably influenced, probably thanks to phenomena of ion exchanges existing in the presence of manganous ions.
  • the second part of the crushed ore is enriched with manganese before subjecting it to the treatment for dissolving nickel, copper and cobalt.
  • the second part of the ground ore is brought into contact with a manganous sulfate solution in order to fix on this ground ore at least a part of the manganese of this solution and thus to enrich the ground ore in manganese.
  • the manganous sulfate solution is saturated with HA.
  • the saturated H 2 S solution obtained at the end of step i) of treatment of the preceding batch is used as the manganous sulphate solution.
  • the manganous sulfate solution used to enrich the second part of the crushed ore coming from the second batch of ore with manganese consists of the solution obtained after recovery. nickel, copper and cobalt at the end of step i) of processing the first batch of ore.
  • step i) the nickel, copper and cobalt are generally separated from the liquid phase by precipitation of the corresponding sulfides by means of H 2 S and after separation of these precipitates, the end of treatment is obtained.
  • a solution of manganous sulfate saturated with H 2 S which can be reused for the treatment of the next batch of ore.
  • This manganous sulphate solution has a manganous sulphate content much lower than that which must be used for carrying out step g). Also, it would have been necessary to concentrate it in order to be able to use it in step g), but the concentration by evaporation is excluded because of the energy cost which it imposes.
  • this method implements an oxidation-reduction mechanism allowing the manganous ions to be concentrated in the form of Mn 2 0 3 by reaction with the manganese dioxide present in the complex manganese ore, then a mechanism of disproportionation of Mn 2 0 3 into Mn 2+ by passage through an acid medium during step g) of treatment for solubilization with sulfuric acid.
  • the manganous ions are oxidized by the manganous oxide Mn0 2 of the complex ore or of the nodules to Mn 2 0 3 according to the following reaction scheme:
  • a manganiferous nodule generally contains 29% of manganese essentially in the state of MnO 2 , the oxidation of a solution of manganous sulfate at pH 6 to 7 can be considered.
  • a saturation threshold of the manganese nodule which is a function of the concentration of manganous ions and of the pulp ratio, that is to say the ratio of the mass of solution to the mass of ground nodules.
  • step g) of treatment of the second pulp with hot sulfuric acid part of the manganous ions previously fixed on the nodules is resolubilized by disproportionation of Mn 2 0 3 into Mn 2+ and MnO 2 .
  • the presence of certain ions can totally or partially inhibit this disproportionation reaction and the solubilization yields obtained do not allow not to re-dissolve the total quantity of manganous ions fixed above, whatever the temperature and the quantity of sulfuric acid used in this step.
  • this mode of recycling makes it possible to reuse part of the manganous sulphate evacuated following step i) and to obtain following step h) a solid phase enriched in manganese from which it will be possible to recover the desired amount of manganese.
  • the second part is subjected ore crushed in a washing step with sulfuric acid at room temperature to remove most of the alkaline elements and alkaline earth elements, the solid phase is separated from the washing liquid phase and said second pulp is prepared for from the solid phase thus separated.
  • step d) of preparing a manganous sulphate solution is carried out by reacting the first pulp with an appropriate mineral or organic reducing agent such as SO 2 , H 2 S, carbohydrates and alcohols.
  • an appropriate mineral or organic reducing agent such as SO 2 , H 2 S, carbohydrates and alcohols.
  • this step is carried out by reacting the first pulp with sulfur dioxide.
  • this step can also be carried out by reacting the first pulp with sulfuric acid in the presence of an organic reducing agent consisting, for example, of a carbohydrate such as sucrose, other saccharides such as monosaccharides, oligosaccharides and polysaccharides, an alcohol, a polyalcohol, or even urea.
  • an organic reducing agent consisting, for example, of a carbohydrate such as sucrose, other saccharides such as monosaccharides, oligosaccharides and polysaccharides, an alcohol, a polyalcohol, or even urea.
  • the organic reducing agent is used to reduce the manganese from the oxidation state (IV) to the oxidation state (II).
  • manganese can be solubilized, which requires the consumption of sulfate ions and therefore the consumption of sulfuric acid.
  • the pH of the pulp increases, and, depending on the quantity of sulfuric acid initially present and the quantity of organic agent added to the pulp, the pH of the solution can be increased until the pH necessary for precipitation, in the form of iron hydroxide, of the solubilized iron from the ore. However, if this increase is significant, precipitation of the dissolved copper from the ore is also obtained.
  • quantities of sulfuric acid and organic reducing agent are used such that the precipitation pH of iron is reached (substantially 2) without reaching the precipitation pH of copper (approximately 4 to 5).
  • a powerful organic reducing agent is preferably used, for example an organic reducing agent having several reducing functions such as saccharides and polyalcohols.
  • sucrose is used.
  • the amounts of sucrose generally used are less than 500 kg per tonne of ore or nodules treated and, advantageously 200 to 400 kg per tonne of ore or nodules treated.
  • the amount of sulfuric acid used is preferably from 700 to 850 kg per tonne of ore or nodules treated if it is desired to dissolve nickel, copper, cobalt and manganese with a yield reaching practically 100%; otherwise, smaller amounts can be used.
  • the best results are obtained when 327 kg of sucrose and 750 to 800 kg of sulfuric acid are used per tonne of ore or nodules. It is specified that the solubilization of manganese alone requires 500 to 550 kg of sulfuric acid. There are therefore 200 to 250 kg of acid remaining for the other elements.
  • the reducing agent consists of methyl alcohol or ethyl alcohol
  • advantageously 100 to 700 kg of alcohol are used per tonne of ore treated and 700 to 850 kg of sulfuric acid per tonne of ore treaty.
  • a manganous sulphate solution also containing nickel, copper and cobalt present in the treated ore is obtained.
  • This solution can be used directly for step g) which consists in subjecting the second pulp to a treatment for dissolving nickel, copper and cobalt by reaction with sulfuric acid.
  • the manganiferous nodules are separated into two parts, a first part (at 3) which will be subjected to attack by SO 2 to dissolve the manganese and a second part (at 5) which will be subjected to the nickel solubilization treatment, copper and cobalt with H 2 SO 4 . Since the grinding is carried out in an aqueous medium, the first part is in the form of pulp and the pulp ratio is adjusted to the desired value by addition of water.
  • the pulp ratio is defined by the ratio of the mass of freshwater or seawater to the mass of ground nodules, and it should be such that the pulp behaves like a fluid, but preferably as low as possible so as to process minimum volumes of pulp.
  • this first pulp a pulp ratio ranging from 2 to 5 is used.
  • the first pulp is then reacted with sulfur dioxide (in 9) to obtain a manganous sulfate solution, which also leads to the solubilization of the nickel, copper and cobalt present in this first pulp.
  • This reaction is carried out at room temperature by injecting the desired quantity of sulfur dioxide into the pulp, for example by bubbling, while maintaining regular agitation of the pulp.
  • the quantity of sulfur dioxide injected is calculated by taking into account the stoichiometry of the reaction for the sulphation of manganese dioxide by sulfur dioxide so as to dissolve practically all of the manganese. Generally, a yield of 95% is obtained.
  • the solid phase is then separated (at 11) from the liquid phase, the solid phase is subjected to washing (at 13) by recycling (at 24) the washing water in the reduction step with SO z ; the residual solid phase which constitutes the waste rock is rejected (in 15); it generally contains around 5% of the manganese present in the nodules of the first pulp.
  • the second part 5 of the ground nodules which is also in the form of pulp, constitutes the second pulp. It is firstly enriched with manganese in a three-stage installation 6 in which it is brought into countercurrent contact with a manganous sulfate solution saturated with H 2 S arriving at 8. During this treatment, the solution aqueous depletes in manganese and enriches in alkaline and alkaline earth elements from the ground nodules. This solution is removed at 10. Following this treatment, the second pulp of ground nodules is subjected to the treatment for dissolving nickel, copper and cobalt carried out in the autoclave 17.
  • the pulp ratio must be such that the pulp behaves like a fluid, but preferably as low as possible, so as to treat minimum volumes of pulp. However, too low a pulp ratio limits the copper extraction yield. Generally, a pulp ratio ranging from 2 to 5 is used, and preferably a pulp ratio equal to 2 or 3.
  • the solubilization treatment of nickel, copper and cobalt is then carried out by reacting (at 17) this second pulp with sulfuric acid and the manganous sulphate solution from 11 obtained by treatment of the first pulp with SO 2 .
  • the amounts of manganese sulfate used for this reaction can vary over a wide range. However, above a certain threshold, the use of larger amounts does not improve the results obtained with regard to the extraction of cobalt.
  • the quantity of manganous sulphate present in solution during this treatment is from 50 to 400 kg per tonne of crushed ore, and preferably from 50 to 250 kg per tonne of crushed ore.
  • the amount of H 2 SO 4 is generally 150 to 500 kg per tonne of crushed ore, and preferably 300 to 500 kg per tonne of crushed ore. It can optionally be introduced so as to continuously maintain a low acid pH, since this is favorable to the non-solubilization of iron.
  • the hot solubilization treatment is carried out in an autoclave at medium or high pressure, for example under a pressure of 7 to 40 bars, and it is carried out at temperatures of 100 to 250 ° C., preferably from 150 to 200 ° C, and better still 180 ° C.
  • the autoclave is preheated to 100 ° C. with live steam, then the whole is heated to the desired final temperature with live steam so as to reach the pulp ratio favorable for good attack. This temperature is then maintained for the desired duration which is generally from 1 to 8 h, which makes it possible to obtain a satisfactory solubilization of the nickel, copper and cobalt.
  • the second pulp leaving the autoclave is then subjected to a separation (in 19) in order to obtain (in 21) a liquid phase containing mainly nickel, copper and cobalt.
  • the solid phase is then subjected to washing with water (at 22), the washing water being able to be recycled (at 23) completely or partly in the autoclave for the treatment of solubilization of copper, nickel and cobalt with sulfuric acid.
  • the washed solid phase 24 is then rejected in the form of waste rock which constitutes the manganiferous residues having a higher manganese content than the starting ore.
  • nickel, copper and cobalt can be recovered by various treatments. Generally, this is achieved by precipitation of the corresponding sulfides at 25.
  • a precipitation of the copper sulfide CuS is carried out using H 2 S, then the pH of the residual solution is adjusted using calcium carbonate to then precipitate the nickel and cobalt sulphides by the action of H 2 S. After the separation of the precipitates, the solution obtained which contains manganous sulphate is recycied (at 8) at the stage of preparation of the second pulp.
  • the quantities of crushed nodules distributed respectively in the first part and the second part of the crushed ore are chosen so as to have the desired quantity of manganous sulfate for the solubilization treatment stage.
  • nickel, copper and cobalt performed on the second pulp.
  • This quantity which is generally 50 to 250 kg of manganous sulphate in solution per tonne of crushed ore, is provided, on the one hand, by the solution for treating the first pulp with SO 2 , and by the manganous ions which iron in sulfuric solution and which come from the manganese enrichment of the ore used to prepare the second pulp.
  • the ore is generally divided into a first part which represents 10 to 15% by weight of the treated ore, the second part representing from 85 to 90% of the treated ore.
  • a tonne of ground nodules is treated, distributed as follows: 121 kg for the first part of nodules and 879 kg for the second part, which corresponds to manganese contents of 35 , 1 kg for the first part and 255 kg for the second part.
  • the yield is 95% and 33.3 kg of manganese go into solution.
  • the enrichment of the ore with the recycled manganous sulphate solution leads to a manganese content of 309 kg.
  • the solid phase recovered (at 24) has a manganese content of 35%, which corresponds to 288.3 kg of manganese.
  • the desired amount of manganese can be recovered from this solid phase, in the form of ferro or silicomanganese, by direct conventional pyrometallurgical treatments, after a pelletizing step.
  • a pulp can be prepared from the solid phase and subjected to reduction by an appropriate reducing agent such as SO 2 , H 2 S, a carbohydrate or an alcohol.
  • an appropriate reducing agent such as SO 2 , H 2 S, a carbohydrate or an alcohol.
  • this pulp can be reacted with sulfuric acid in the presence of an organic reducing agent such as a carbohydrate or an alcohol.
  • This example illustrates the fixation of the manganese present in a solution of manganous sulphate on ground nodules.
  • the ground nodules are brought into contact with the MnSO 4 solution against the current to obtain self-regulation of the pH by the basicity of the nodule.
  • the oxidation of the nodules by Mn 2+ releases an acidity equivalent to the quantity of sulfuric acid necessary for the neutralization of the alkali and alkaline earth metals present in the nodules.
  • This countercurrent contacting is carried out in three stages with a manganous sulphate solution containing 25 g -1 of manganese, a pulp ratio equal to 3 and a residence time of one hour in each stage.
  • a manganous sulphate solution containing 25 g -1 of manganese, a pulp ratio equal to 3 and a residence time of one hour in each stage.
  • the manganese fixing yield is 71%.
  • the manganese nodule content is then 32.6% and the Mn concentration of the outgoing solution is 7 gl -1 .
  • the disproportionation yield of manganese fixed on the nodules is studied, during the reaction with sulfuric acid, in an autoclave, at different temperatures, for 2 h, using different quantities of sulfuric acid and a ratio of pulp equal to 2.
  • step g) of dissolving the nickel, copper and cobalt on the second pulp were used to carry out step g) of dissolving the nickel, copper and cobalt on the second pulp.
  • the manganous sulphate introduced into the autoclave was partly produced by reduction of the first pulp by means of SO 2 and for the other part by re-solution in the autoclave of the fraction of manganese carried by the nodules enriched with manganese of the second pulp.
  • step d) of preparation of a manganous sulfate solution by treatment of the ground ore with sulfuric acid in the presence of sucrose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

  • La présente invention a pour objet un procédé de traitement de minerais complexes de manganèse tels que les modules manganifères des grands fonds marins.
  • De façon plus précise, elle concerne un procédé permettant d'extraire avec de bons rendements le nickel, le cuivre et le cobalt présents dans les nodules manganifères et de régler à la valeur voulue la quantité de manganèse extraite des nodules traités.
  • Les nodules manganifères des grands fonds marins contiennent des quantités importantes de manganèse et de fer, des quantités mineures de nickel, de cobalt et de cuivre, et de faibles quantités d'autres éléments. Le nickel, le cuivre et le cobalt sont des métaux de grande valeur qu'il est intéressant d'extraire de ces nodules avec de bons rendements étant donné que les réserves connues de ces métaux diminuent significativement.
  • Parmi ceux-ci, le cobalt est particulièrement difficile à extraire par les procédés classiques avec de bons rendements sans que l'on obtienne simultanément une solubilisation importante du manganèse.
  • En effet, selon le procédé décrit dans le brevet français 2.156.079, on obtient une solubilisation simultanée du manganèse, du nickel, du cuivre et du cobalt en soumettant les nodules à une étape de réduction par l'anhydride sulfureux à chaud et à une étape de lixiviation par l'acide sulfurique à froid.
  • De même, dans le brevet américain 3.169.856 qui décrit un procédé comprenant lui aussi deux étapes, dont une première étape de réduction par l'anhydride sulfureux à froid pour solubiliser le manganèse, le nickel et le cuivre et une seconde étape de lixiviation de la phase solide restante par un acide pour récupérer le cobalt, il est impossible de régler la quantité de manganèse mise en solution et d'avoir de bons rendements en cobalt.
  • Or, bien que le manganèse soit un métal valorisable, il n'est pas toujours souhaitable de récupérer la totalité du manganèse présent dans les nodules traités.
  • Dans cet esprit, de nombreuses études proposent une récupération sélective du nickèl et du cuivre, par attaque sulfurique à des températures inférieures à 100° C. On précise que conformément à ce qui a été dit précédemment, le cobalt n'est que peu extrait par ce procédé. Pour pallier cet inconvénient, d'autres études ont été menées et semblent démontrer qu'en milieu sulfurique, l'attaque en autoclave à haute pression et haute température (205° C) reste la seule méthode de solubilisation sélective du nickel, du cuivre et du cobalt avec de bons rendements.
  • Par conséquent, parmi les buts de cette invention se trouve celui de créer un nouveau procédé perfectionné pour extraire des valeurs métalliques précieuses à partir de minerais complexes ou de nodules de manganèse ou de tout autre minerai contenant par exemple une matrice d'oxyde de manganèse.
  • Un autre but est de créer un nouveau procédé perfectionné pour extraire le cobalt, lequel procédé peut apporter en plus une récupération des éléments nickel et cuivre avec d'excellents rendements.
  • Un autre but est de créer un nouveau procédé permettant d'extraire sélectivement le cobalt, le nickel et le cuivre en milieu sulfurique avec de bons rendements sans solubiliser le fer.
  • Un autre but est de créer un nouveau procédé permettant d'extraire en milieu sulfurique le cobalt en plus du nickel et du cuivre avec de bons rendements, sans solubiliser le manganèse.
  • Un autre but est de créer un nouveau procédé permettant d'extraire le cobalt, le nickel, le cuivre avec de bons rendements sans solubiliser le fer, sans solubiliser le manganèse, sans faire intervenir des conditions d'attaque aussi sévères qu'une attaque sulfurique en autoclave à 250° C.
  • Il a été mis en évidence dans le brevet français n° 2 098 454 que la présence d'ions manganeux dans une solution de lixiviation ammoniacale permettait une solubilisation efficace du nickel et du cuivre. Il est mentionné également que la présence d'ions manganeux facilite la récupération du cobalt et du mobybdène. Il est supposé qu'en milieu ammoniacal, le dioxyde de manganèse est réduit par les ions manganeux.
  • Dans un autre brevet français FR-A-2 156 079 qui a pour but la solubilisation du nickel, du cuivre, du cobalt et du manganèse contenus dans des nodules, il est indiqué que lors d'une attaque réductrice des nodules par S02, la présence de sulfate manganeux a un effet favorable sur les rendements en nickel, cuivre et cobalt.
  • Cependant, dans ce dernier cas, il y a réduction du manganèse des nodules avec solubilisation dudit manganèse, ce qui constitue un inconvénient, car on recherche justement des procédés permettant de ne pas solubiliser le manganèse.
  • La présente invention a pour objet un procédé de traitement de minerais complexes de manganèse tels que des nodules manganifères des grands fonds marins, qui pallie cet inconvénient.
  • Le procédé, selon l'invention, de traitement d'un minerai complexe de manganèse tel que des nodules manganifères, comprend les étapes suivantes :
    • a) broyer le minerai,
    • b) séparer le minerai broyé en une première partie et une seconde partie,
    • c) préparer une première pulpe à partir de la première partie du minerai broyé,
    • d) faire réagir la première pulpe avec un agent réducteur pour obtenir une solution de sulfate manganeux,
    • e) séparer la phase liquide, constituée par la solution de sulfate manganeux ainsi obtenue, de la phase solide de la première pulpe ainsi traitée,
    • f) préparer une seconde pulpe à partir de la seconde partie du minerai broyé,
    • g) soumettre la seconde pulpe à un traitement de solubilisation du nickel, du cuivre et du cobalt en la faisant réagir à chaud avec de l'acide sulfurique et la solution de sulfate manganeux obtenue dans l'étape e),
    • h) séparer la phase liquide et la phase solide de la seconde pulpe ainsi traitée, et
    • i) récupérer le nickel, le cuivre et le cobalt de la phase liquide séparée dans l'étape h).
  • Dans la présente invention, on utilise dans l'étape g) de solubilisation du nickel, du cuivre et du cobalt, les ions manganeux provenant de la solution de sulfate manganeux obtenu dans l'étape e), dans des conditrions où ces ions Mn2+ ne devraient par pouvoir agir comme réducteur de Mn02 et où le milieu ne comporte pas de réducteur du dioxyde de manganèse.
  • Il est démontré dans l'invention que les ions manganeux, en milieu sulfurique, permettent l'extraction du cobalt avec de bons rendements et améliorent les rendements en nickel et en cuivre, dans des conditions opératoires où l'acide sulfurique seul donne des rendements médiocres, notamment en cobalt. On suppose que dans ce cas, il s'agit d'un équilibre complexe faisant intervenir un mécanisme d'oxydo-réduction entre, d'une part, le cobalt en solution et le manganèse du minérai ou du nodule et, d'autre part, le cobalt adsorbé ou piégé dans le manganèse du minerai ou des nodules et le manganèse en solution. Le fait d'ajouter des ions Mn2+ dans la solution d'attaque sulfurique permet d'enrichir cette solution et de déplacer ainsi l'équilibre en faveur de la solubilisation du cobalt.
  • De même, les rendements en nickel et en cuivre sont favorablement influencés, probablement grâce à des phénomènes d'échanges d'ions existant en présente d'ions manganeux.
  • Selon un mode préféré de mise en oeuvre du procédé de l'invention, on enrichit en manganèse la seconde partie du minerai broyé avant de soumettre celle-ci au traitement de solubilisation du nickel, du cuivre et du cobalt.
  • Dans ce but, on met la seconde partie du minerai broyé en contact avec une solution de sulfate manganeux afin de fixer sur ce minerai broyé au moins une partie du manganèse de cette solution et d'enrichir ainsi le minerai broyé en manganèse.
  • Avantageusement, la solution de sulfate manganeux est saturée en HA.
  • Aussi, de préférence, lorsque l'on traite successivement plusieurs lots de minerai, on utilise comme solution de sulfate manganeux, la solution saturée H2S obtenue à la fin de l'étape i) de traitement du lot précédent. Ainsi, lorsque l'on traite successivement un premier lot et un deuxième lot de minerai broyé, la solution de sulfate manganeux utilisée pour enrichir en manganèse la seconde partie du minerai broyé provenant du deuxième lot de minerai, est constituée par la solution obtenue après récupération du nickel, du cuivre et du cobalt, à la fin de l'étape i) de traitement du premier lot de minerai.
  • En effet, lors de l'étape i), on sépare généralement le nickel, le cuivre et le cobalt de la phase liquide par précipitation des sulfures correspondants au moyen de H2S et après séparation de ces précipités, on obtient en fin de traitement une solution de sulfate manganeux saturée en H2S qui peut être réutilisée pour le traitement du lot de minerai suivant.
  • Cette solution de sulfate manganeux a une teneur en sulfate manganeux très inférieure à celle que l'on doit utiliser pour la réalisation de l'étape g). Aussi, il aurait été nécessaire de la concentrer pour pouvoir l'utiliser dans l'étape g), mais la concentration par évaporation est exclue en raison du coût énergétique qu'elle impose.
  • Selon l'invention, on a mis au point une autre méthode de recyclage de la solution de sulfate manganeux obtenue en fin de traitement. Cette méthode met en oeuvre un mécanisme d'oxydoréduction permettant de concentrer les ions manganeux sous forme de Mn203 par réaction avec le dioxyde de manganèse présent dans le minerai complexe de manganèse, puis un mécanisme de dismutation de Mn203 en Mn2+ par passage en milieu acide lors de l'étape g) de traitement de solubilisation par l'acide sulfurique.
  • En effet, pour des valeurs de pH de l'ordre de 6 à 7, les ions manganeux sont oxydés par l'oxyde manganeux Mn02 du minerai complexe ou des nodules en Mn203 selon le schéma réactionnel suivant :
    Figure imgb0001
  • Sachant qu'un nodule manganifère contient généralement 29 % de manganèse essentiellement à l'état de Mn02, l'oxydation d'une solution de sulfate manganeux à des pH de 6 à 7 peut être envisagée. Cependant, il existe un seuil de saturation du nodule en manganèse, qui est fonction de la concentration en ions manganeux et du rapport de pulpe, c'est-à-dire du rapport de la masse de solution à la masse de nodules broyés.
  • Lors de l'étape suivante g), de traitement de la seconde pulpe par l'acide sulfurique à chaud, on resolubilise une partie des ions manganeux précédemment fixés sur les nodules par dismutation de Mn203 en Mn2+ et MnO2. Cependant, la présence de certains ions peut inhiber totalement ou partiellement cette réaction de dismutation et les rendements de solubilisation obtenus ne permettent pas de remettre en solution la quantité totale d'ions manganeux fixés précédemment, quelles que soient la température et la quantité d'acide sulfurique utilisées dans cette étape.
  • Néanmoins, ce mode de recyclage permet de réutiliser une partie du sulfate manganeux évacué à la suite de l'étape i) et d'obtenir à la suite de l'étape h) une phase solide enrichie en manganèse à partir de laquelle on pourra récupérer la quantité souhaitée de manganèse.
  • Selon une variante de mise en oeuvre du procédé de l'invention, qui est utilisable dans le cas où la solution de sulfate manganeux obtenue en fin de traitement n'est pas recyclée au stade de production de la seconde pulpe, on soumet la seconde partie du minerai broyé à une étape de lavage par l'acide sulfurique à la température ambiante pour éliminer la majeure partie des éléments alcalins et des éléments alcalinoterreux, on sépare la phase solide de la phase liquide de lavage et l'on prépare ladite seconde pulpe à partir de la phase solide ainsi séparée.
  • Lorsque l'on effectue un recyclage de la solution de sulfate manganeux, la réalisation de cette étape préliminaire de lavage à l'acide sulfurique n'est pas nécessaire, car on élimine la majeure partie des éléments alcalins et des éléments alcalinoterreux lors de la mise en contact du minerai broyé avec la solution de sulfate manganeux.
  • Selon l'invention, on réalise l'étape d) de préparation d'une solution de sulfate manganeux en faisant réagir la première pulpe avec un agent réducteur minéral ou organique approprié tel que S02, H2S, les hydrates de carbone et les alcools.
  • De préférence, on réalise cette étape en faisant réagir la première pulpe avec de l'anhydride sulfureux.
  • Cependant, on peut aussi réaliser cette étape en faisant réagir la première pulpe avec de l'acide sulfurique en présence d'un agent réducteur organique constitué, par exemple, par un hydrate de carbone comme le saccharose, d'autres saccharides comme les monosaccharides, les oligosaccharides et les polysaccharides, un alcool, un polyalcool, ou encore de l'urée.
  • Dans ce cas, on utilise l'agent réducteur organique pour réduire le manganèse de l'état d'oxydation (IV) à l'état d'oxydation (II). Ainsi, on peut solubiliser le manganèse, ce qui nécessite la consommation d'ions sulfate et par conséquent la consommation d'acide sulfurique. De ce fait, le pH de la pulpe augmente, et, selon la quantité d'acide sulfurique présente initialement et la quantité d'agent organique ajoutée à la pulpe, on peut augmenter le pH de la solution jusqu'à atteindre le pH nécessaire à la précipitation, sous la forme d'hydroxyde de fer, du fer solubilisé provenant du minerai. Cependant, si cette augmentation est importante, on obtient également une précipitation du cuivre solubilisé provenant du minerai.
  • Aussi, on utilise de préférence, des quantités d'acide sulfurique et d'agent réducteur organique telles que l'on atteint de pH de précipitation du fer (sensiblement 2) sans atteindre le pH de précipitation du cuivre (sensiblement 4 à 5).
  • Pour obtenir la totalité de la précipitation du fer présent dans les nodules, on utilise de préférence un agent réducteur organique puissant, par exemple un agent réducteur organique possédant plusieurs fonctions réductrices comme les saccharides et les polyalcools.
  • De préférence, on utilise du saccharose.
  • Dans ce cas, les quantités de saccharose généralement utilisées sont inférieures à 500 kg par tonne de minerai ou de nodules traités et, avantageusement de 200 à 400 kg par tonne de minerai ou de nodules traités. La quantité d'acide sulfurique utilisée est de préférence de 700 à 850 kg par tonne de minerai ou de nodules traités si l'on veut dissoudre le nickel, le cuivre, le cobalt et le manganèse avec un rendement atteignant pratiquement 100 % ; sinon on peut utiliser des quantités plus faibles. Les meilleurs résultats sont obtenus lorsque l'on utilise 327 kg de saccharose et 750 à 800 kg d'acide sulfurique par tonne de minerai ou de nodules. On précise que la solubilisation du manganèse nécessite à elle seule 500 à 550 kg d'acide sulfurique. Il reste donc 200 à 250 kg d'acide pour les autres éléments.
  • Lorsque l'agent réducteur est constitué par de l'alcool méthylique ou de l'alcool éthylique, on utilise avantageusement de 100 à 700 kg d'alcool par tonne de minerai traité et de 700 à 850 kg d'acide sulfurique par tonne de minerai traité.
  • A la fin de cette étape, on obtient donc une solution de sulfate manganeux contenant également le nickel, le cuivre et le cobalt présents dans le minerai traité. Cette solution peut être utilisée directement pour l'étape g) qui consiste à soumettre la seconde pulpe à un traitement de solubilisation du nickel, du cuivre et du cobalt par réaction avec de l'acide sulfurique.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit donnée bien entendu à titre illustratif et non limitatif en référence au dessin annexé qui est un diagramme illustrant la mise en oeuvre du procédé de l'invention pour le traitement de nodules manganifères.
  • Comme représenté sur ce diagramme, on commence par broyer (en 1) les nodules manganifères à une granulométrie appropriée par exemple de 750 wm. On précise que cette taille de grains n'est pas critique, car le procédé s'applique aussi bien à des granulométries inférieures qu'à des granulométries supérieures, les variations de granulométrie n'ayant pas une influence prépondérante sur le rendement d'extraction des métaux. Après broyage, on sépare les nodules en deux parties, une première partie (en 3) qui sera soumise à l'attaque par S02 pour solubiliser le manganèse et une seconde partie (en 5) qui sera soumise au traitement de solubilisation du nickel, du cuivre et du cobalt par H2SO4. Etant donné que le broyage est réalisé en milieu aqueux, la première partie se trouve sous la forme de pulpe et on règle à la valeur voulue le rapport de pulpe par addition d'eau.
  • Le rapport de pulpe est défini par le rapport de la masse d'eau douce ou d'eau de mer à la masse de nodules broyés, et il doit être tel que la pulpe se comporte comme un fluide, mais de préférence aussi faible que possible de façon à traiter des volumes minimaux de pulpe.
  • Généralement, pour cette première pulpe, on utilise un rapport de pulpe allant de 2 à 5.
  • On fait alors réagir la première pulpe avec de l'anhydride sulfureux (en 9) pour obtenir une solution de sulfate manganeux, ce qui conduit également à la solubilisation du nickel, du cuivre et du cobalt présents dans cette première pulpe. Cette réaction est effectuée à la température ambiante en injectant dans la pulpe la quantité voulue d'anhydride sulfureux, par exemple par bullage, tout en maintenant une agitation régulière de la pulpe. La quantité d'anhydride sulfureux injecté est calculée en tenant compte de la stoechiométrie de la réaction de sulfatation du bioxyde de manganèse par l'anhydride sulfureux de façon à dissoudre pratiquement la totalité du manganèse. Généralement, on obtient un rendement de 95 %. On sépare alors (en 11) la phase solide de la phase liquide, on soumet la phase solide à un lavage (en 13) en recyclant (en 24) les eaux de lavage à l'étape de réduction par SOz ; la phase solide résiduelle qui constitue les stériles est rejetée (en 15) ; elle contient généralement environ 5 % du manganèse présent dans les nodules de la première pulpe.
  • La seconde partie 5 des nodules broyés qui est également sous la forme de pulpe, constitue la seconde pulpe. Elle est tout d'abord enrichie en manganèse dans une installation à trois étages 6 dans laquelle elle est mise en contact à contre-courant avec une solution de sulfate manganeux saturé en H2S arrivant en 8. Au cours de ce traitement, la solution aqueuse s'appauvrit en manganèse et s'enrichit en éléments alcalins et alcalinoterreux provenant des nodules broyés. Cette solution est évacuée en 10. A la suite de ce traitement, la seconde pulpe de nodules broyés est soumise au traitement de solubilisation du nickel, du cuivre et du cobalt réalisé dans l'autoclave 17.
  • Comme dans le cas du traitement par S02, le rapport de pulpe doit être tel que la pulpe se comporte comme un fluide, mais de préférence aussi faible que possible, de façon à traiter des volumes minimaux de pulpe. Toutefois, un rapport de pulpe trop faible limite le rendement d'extraction en cuivre. Généralement, on utilise un rapport de pulpe allant de 2 à 5 et, de préférence un rapport de pulpe égal à 2 ou 3.
  • On réalise alors le traitement de solubilisation du nickel, du cuivre et du cobalt en faisant réagir (en 17) cette seconde pulpe avec de l'acide sulfurique et la solution de sulfate manganeux provenant de 11 obtenue par traitement de la première pulpe par S02.
  • Les quantités de sulfate manganeux utilisées pour cette réaction peuvent varier dans un large intervalle. Toutefois, à partir d'un certain seuil, l'utilisation de quantités plus importantes n'améliore pas les résultats obtenus en ce qui concerne l'extraction du cobalt.
  • Généralement, la quantité de sulfate manganeux présente en solution lors de ce traitement est de 50 à 400 kg par tonne de minerai broyé, et de préférence de 50 à 250 kg par tonne de minerai broyé. La quantité de H2SO4 est généralement de 150 à 500 kg par tonne de minerai broyé, et de préférence de 300 à 500 kg par tonne de minerai broyé. Elle peut être éventuellement introduite de façon à maintenir en continu un pH peu acide, car ceci est favorable à la non solubilisation du fer.
  • De préférence, on réalise le traitement de solubilisation à chaud dans un autoclave à moyenne ou haute pression, par exemple sous une pression de 7 à 40 bars, et on opère à des températures de 100 à 250°C, de préférence de 150 à 200°C, et mieux encore de 180°C. Généralement, on préchauffe l'autoclave à 100°C par de la vapeur vive, puis on chauffe l'ensemble à la température finale désirée par de la vapeur vive de façon à atteindre le rapport de pulpe favorable à une bonne attaque. On maintient ensuite cette température pendant la durée désirée qui est généralement de 1 à 8 h, ce qui permet d'obtenir une solubilisation satisfaisante du nickel, du cuivre et du cobalt. On soumet ensuite la seconde pulpe sortant de l'autoclave à une séparation (en 19) afin d'obtenir (en 21) une phase liquide contenant surtout du nickel, du cuivre et du cobalt. On soumet alors la phase solide à un lavage par de l'eau (en 22), l'eau de lavage pouvant être recyclée (en 23) totalement ou en partie dans l'autoclave pour le traitement de solubilisation du cuivre, du nickel et du cobalt par l'acide sulfurique. La phase solide 24 lavée est rejetée ensuite sous la forme de stériles qui constituent les résidus manganifères ayant une teneur en manganèse plus importante que le minerai de départ. A partir de la phase liquide séparée (en 21) on peut récupérer, par différents traitements, le nickel, le cuivre et le cobalt. Généralement, ceci est réalisé par précipitation des sulfures correspondants en 25. Tout d'abord, on réalise une précipitation du sulfure de cuivre CuS au moyen de H2S, puis on ajuste le pH de la solution résiduelle au moyen de carbonate de calcium pour précipiter ensuite les sulfures de nickel et cobalt par action de H2S. Après la séparation des précipités, la solution obtenue qui contient du sulfate manganeux est recyciée (en 8) au stade de préparation de la seconde pulpe.
  • Pour la mise en oeuvre du procédé de l'invention, les quantités de nodules broyés réparties respectivement dans la première partie et la seconde partie du minerai broyé sont choisies de façon à avoir la quantité voulue de sulfate manganeux pour l'étape du traitement de solubilisation du nickel, du cuivre et du cobalt effectuée sur la seconde pulpe. Cette quantité, qui est généralement de 50 à 250 kg de sulfate manganeux en solution par tonne de minerai broyé, est apportée, d'une part, par la solution de traitement de la première pulpe par S02, et par les ions manganeux qui repassent en solution sulfurique et qui proviennent de l'enrichissement en manganèse du minerai utilisé pour préparer la seconde pulpe.
  • Pour obtenir la quantité voulue de sulfate manganeux, on divise généralement le minerai en une première partie qui représente 10 à 15 % en poids du minerai traité, la deuxième partie représentant de 85 à 90 % du minerai traité.
  • Dans l'exemple de réalisation donné sur la figure, on traite une tonne de nodules broyés répartis de la façon suivante : 121 kg pour la première partie de nodules et 879 kg pour la deuxième partie, ce qui correspond à des teneurs en manganèse de 35,1 kg pour la première partie et de 255 kg pour la seconde partie. Lors du traitement de la première pulpe par S02, le rendement est de 95 % et 33,3 kg de manganèse passent en solution. Pour la préparation de la seconde pulpe, l'enrichissement du minerai par la solution de sulfate manganeux recyclé conduit à une teneur en manganèse de 309 kg. Lors du traitement de solubilisation par l'acide sulfurique, 7 % du manganèse fixé sur le minerai de la seconde pulpe repasse en solution et l'on réalise ainsi le traitement de solubilisation par H2SO4 en utilisant 55 kg de manganèse, soit 150 kg de sulfate manganeux.
  • A la suite de cette étape, la phase solide récupérée (en 24) a une teneur en manganèse de 35 %, ce qui correspond à 288,3 kg de manganèse.
  • On peut récupérer la quantité voulue de manganèse à partir de cette phase solide, sous forme de ferro ou silicomanganèse, par des traitements pyrométallurgiques classiques directs, après une étape de boulettage.
  • On peut également envisager de fabriquer du manganèse métallique pur ou du MnO2 pur en passant par l'intermédiaire d'une solubilisation, par exemple en soumettant à une réduction une partie ou la totalité de la phase solide récupérée.
  • Dans ce but, on peut préparer une pulpe à partir de la phase solide et la soumettre à une réduction par un agent réducteur approprié tel que S02, H2S, un hydrate de carbone ou un alcool.
  • On peut en particulier faire réagir cette pulpe avec de l'acide sulfurique en présence d'un agent réducteur organique tel qu'un hydrate de carbone ou un alcool.
  • Les exemples suivants sont donnés à titre non limitatif pour illustrer le procédé de l'invention.
  • Exemple 1
  • Cet exemple illustre la fixation du manganèse présent dans une solution de sulfate manganeux sur des nodules broyés.
  • Dans cet exemple, on réalise la mise en contact de nodules broyés avec la solution de MnS04 à contre-courant pour obtenir une autorégulation du pH par la basicité du nodule. En effet, l'oxydation des nodules par Mn2+ libère une acidité équivalente à la quantité d'acide sulfurique nécessaire pour la neutralisation des métaux alcalins et alcalinoterreux présents dans les nodules.
  • De plus, le fait d'opérer à contre-courant permet d'obtenir une épuration maximale en manganèse de la solution et un enrichissement maximal en manganèse du nodule.
  • On réalise cette mise en contact à contre-courant dans trois étages avec une solution de sulfate manganeux contenant 25 g.l-1 de manganèse, un rapport de pulpe égal à 3 et un temps de séjour d'une heure dans chaque étage. Les résultats obtenus sont donnés dans le tableau 1 annexé.
  • Dans ces conditions, le rendement de fixation du manganèse est de 71 %. La teneur du nodule en manganèse est alors de 32,6 % et la concentration en Mn de la solution sortante est de 7 g.l-1.
  • Toutefois, si l'on opère avec une solution de sulfate manganeux contenant 25 g.l.1 de manganèse saturée en HS comme c'est le cas de la solution récupérée à la fin du traitement des nodules, après la précipitation par H2S, le rendement de fixation est de 84 %. La teneur en manganèse du nodule est alors de 33,2 % et la concentration en manganèse de la solution sortante de 5,5 g.1-1.
  • Si l'on utilise dans les mêmes conditions une installation comportant quatre étages avec un rapport de pulpe de 3 et une teneur en manganèse de la solution de sulfate manganeux de 25 g/l-1 ou 15 g.l.1 saturée en H2S, on peut obtenir un rendement de fixation du manganèse qui varie de 82 à 96 %.
  • Exemple 2
  • Dans cet exemple, on étudie le rendement de dismutation du manganèse fixé sur les nodules, lors de la réaction avec l'acide sulfurique, en autoclave, à différentes températures, pendant 2 h, en utilisant différentes quantités d'acide sulfurique et un rapport de pulpe égal à 2.
  • Les résultats obtenus et les conditions de la réaction sont donnés dans le tableau 2 annexé.
  • Au vu de ce tableau, on constate que la température et la teneur en acide sulfurique de la solution n'ont pratiquement aucune incidence sur le rendement de solubilisation et que dans tous les cas on ne peut resolubiliser la totalité des ions manganeux fixés sur les nodules.
  • Exemples 3 à 26
  • Dans ces exemples, on a utilisé différentes conditions de traitement pour réaliser l'étape g) de solubilisation du nickel, du cuivre et du cobalt sur la seconde pulpe.
  • Dans tous les cas, le sulfate manganeux introduit dans l'autoclave a été produit pour une partie par réduction de la première pulpe au moyen de S02 et pour l'autre partie par remise en solution dans l'autoclave de la fraction de manganèse portée par les nodules enrichis en manganèse de la seconde pulpe.
  • Après la réaction de solubilisation, on sépare par décantation la phase solide et la phase liquide de la pulpe et on détermine les teneurs en nickel, en fer, en cuivre, en cobalt et en manganèse de la phase liquide. Les résultats obtenus sont donnés dans le tableau 3 joint. Dans ce tableau, les chiffres entre parenthèses représentent les résultats obtenus dans les mêmes conditions, mais en l'absence de sulfate manganeux. Au vu de ces résultats, on constate que la présence de sulfate manganeux permet d'améliorer de façon importante le rendement d'extraction en cobalt, et qu'elle joue également sur les rendements d'extraction en fer, en nickel et en cuivre.
  • Exemple 27
  • Cet exemple illustre la réalisation de l'étape d) de préparation d'une solution de sulfate manganeux par traitement du minerai broyé avec de l'acide sulfurique en présence de saccharose.
  • Après avoir broyé une tonne de nodules à une granulométrie de l'ordre de 750 wm, on les mélange à de l'eau douce pour former une pulpe ayant un rapport de pulpe (masse d'eau douce/masse de nodules broyés) égal à 4. On ajoute à cette pulpe 750 kg d'acide sulfurique et 327 kg de saccharose, puis on soumet la pulpe à une agitation. Au bout de deux heures, on sépare la phase solide de la phase liquide et on détermine les quantités de manganèse, de fer, de nickel et de cobalt présentes dans la phase liquide.
  • Les résultats obtenus sont les suivants :
    • - rendement d'extraction en Mn : 90 %,
    • - rendement d'extraction en Fe : 3 %,
    • - rendement d'extraction en Ni : 92 %,
    • - rendement d'extraction en Cu : 90 %,
    • - rendement d'extraction en Co : 80 %.

    (Voir tableaux pages suivantes)
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009

Claims (15)

1. Procédé de traitement d'un minerai complexe de manganèse, caractérisé en ce qu'il comprend les étapes suivantes :
a) - broyer le minerai,
b) - séparer le minerai broyé en une première partie et une seconde partie,
c) - préparer une première pulpe à partir de la première partie du minerai broyé,
d) - faire réagir la première pulpe avec un agent réducteur pour obtenir une solution de sulfate manganeux,
e) - séparer la phase liquide, constituée par la solution de sulfate manganeux ainsi obtenue, de la phase solide de la première pulpe ainsi traitée,
f) - préparer une seconde pulpe à partir de la seconde partie du minerai broyé,
g) - soumettre la seconde pulpe à un traitement de solubilisation du nickel, du cuivre et du cobalt en la faisant réagir à chaud avec de l'acide sulfurique et la solution de sulfate manganeux obtenue dans l'étape e),
h) - séparer la phase liquide et la phase solide de la seconde pulpe ainsi traitée, et
i) - récupérer le nickel, le cuivre et le cobalt de la phase liquide séparée dans l'étape h).
2. Procédé selon la revendication 1, caractérisé en ce que l'on met la seconde partie du minerai broyé en contact avec une solution de sulfate manganeux afin de fixer sur ce minerai broyé au moins une partie du manganèse de cette solution et d'enrichir ainsi le minerai broyé en manganèse.
3. Procédé selon la revendication 1, caractérisé en ce que, dans l'étape i), on récupère le nickel, le cuivre et le cobalt par précipitation des sulfures correspondants, au moyen de H2S.
4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que l'on traite successivement un premier lot et un deuxième lot de minerai broyé, et en ce que la solution de sulfate manganeux utilisée pour enrichir en manganèse la seconde partie du minerai broyé provenant du deuxième lot de minerai est constituée par la solution obtenue, après récupération du nickel, du cuivre et du cobalt, à la fin de l'étape i) de traitement du premier lot de minerai.
5. Procédé selon la revendication 1, caractérisé en ce que l'on soumet la seconde partie du minerai broyé à une étape de lavage.par l'acide sulfurique à la température ambiante pour éliminer la majeure partie des éléments alcalins et des éléments alcalinoterreux, en ce que l'on sépare la phase solide de la phase liquide de lavage et en ce que l'on prépare ladite seconde pulpe à partir de la phase solide ainsi séparée.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la quantité de sulfate manganeux présente en solution dans l'étape g) est de 50 à 250 kg de MnS04 par tonne de minerai soumis au traitement de solubilisation.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on réalise le traitement de solubilisation de l'étape g) à une température allant de 150 à 200 °C.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la quantité d'acide sulfurique utilisée dans l'étape g) est de 300 à 500 kg d'acide sulfurique par tonne de minerai soumis au traitement de solubilisation.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la première partie du minerai broyé représente 10 à 15 % en poids du minerai traité.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'agent réducteur utilisé dans l'étape d) est de l'anhydride sulfureux.
11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que, dans l'étape d), on fait réagir la première pulpe avec de l'acide sulfurique en présence d'un agent réducteur organique.
12. Procédé selon la revendication 11, caractérisé en ce que l'agent réducteur organique est un hydrate de carbone ou un alcool.
13. Procédé selon la revendication 12, caractérisé en ce que l'hydrate de carbone est le saccharose.
14. Procédé selon la revendication 13, caractérisé en ce que la quantité de saccharose utilisée est de 200 à 400 kg par tonne de minerai soumis au traitement.
15. Procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la quantité d'acide sulfurique utilisée est de 700 à 850 kg par tonne de minerai soumis au traitement.
EP85401080A 1984-06-07 1985-05-31 Procédé de traitement de minerais complexes de manganèse tels que les nodules marins Expired EP0165166B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8408924 1984-06-07
FR8408924A FR2565600B1 (fr) 1984-06-07 1984-06-07 Procede de traitement de minerais complexes de manganese tels que les nodules marins

Publications (2)

Publication Number Publication Date
EP0165166A1 EP0165166A1 (fr) 1985-12-18
EP0165166B1 true EP0165166B1 (fr) 1988-03-02

Family

ID=9304803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401080A Expired EP0165166B1 (fr) 1984-06-07 1985-05-31 Procédé de traitement de minerais complexes de manganèse tels que les nodules marins

Country Status (6)

Country Link
US (1) US4620964A (fr)
EP (1) EP0165166B1 (fr)
JP (1) JPS613848A (fr)
CA (1) CA1245458A (fr)
DE (1) DE3561748D1 (fr)
FR (1) FR2565600B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612173B1 (fr) * 1987-03-10 1991-04-19 Japan Metals & Chem Co Ltd Procede de preparation de composes de manganese de haute purete
KR100225477B1 (ko) * 1997-07-10 1999-10-15 이경운 망간단괴를 이용한 폐수중의 중금속 흡착,제거방법
RU2261923C1 (ru) * 2004-05-31 2005-10-10 Всероссийский научно-исследовательский институт минерального сырья им. Н.М. Федоровского (ВИМС) Способ переработки кобальтоносных железомарганцевых корковых образований
DE202008006167U1 (de) 2008-05-06 2008-07-17 Terex-Demag Gmbh Seitlich abgespannter Gittermast
CN105565387A (zh) * 2016-03-17 2016-05-11 仇颖莹 一种利用高炉灰制备饲料级硫酸锰的方法
CN111807598B (zh) * 2020-06-18 2022-03-11 西南科技大学 一种电场协同磷尾矿无害化处理电解锰渣渗滤液的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450870A (en) * 1945-09-20 1948-10-12 Chatham Chemical Company Process of making manganous sulfate
US2539823A (en) * 1949-11-22 1951-01-30 Lunsford Long W Manganese ore treatment
US3018234A (en) * 1959-02-09 1962-01-23 Peter S Litt Process for treating a manganese containing ore for the recovery of manganese values therefrom
US3085875A (en) * 1960-01-04 1963-04-16 Howe Sound Co Treatment of manganese ores
US3169856A (en) * 1962-05-22 1965-02-16 John L Mero Process for separation of nickel from cobalt in ocean floor manganiferous ore deposits
US3723095A (en) * 1970-07-16 1973-03-27 Kennecott Copper Corp Extraction of copper and nickel from manganese nodules
DE2150785C2 (de) * 1971-10-12 1973-07-12 Preussag Ag Verfahren zur Gewinnung eines Manganoxidkonzentrats,von metallischem Kupfer,Nickel und Kobalt aus Manganerzen
US3810827A (en) * 1972-05-08 1974-05-14 Deepsea Ventures Inc Method for separating metal values from ocean floor nodule ore
US3923615A (en) * 1972-07-17 1975-12-02 Deepsea Ventures Inc Winning of metal values from ore utilizing recycled acid leaching agent
FR2262699B1 (fr) * 1974-02-28 1976-12-10 Commissariat Energie Atomique
CA1077725A (fr) * 1975-02-27 1980-05-20 Kohur N. Subramanian Procede pour obtenir des valeurs de metaux par filtration de modules marins bruts
CA1043576A (fr) * 1975-06-10 1978-12-05 Inco Limited Lessivage en deux etapes de minerai de limonite et de nodules marins
CA1036829A (fr) * 1975-07-30 1978-08-22 Kohur N. Subramanian Lessivage en deux phases de modules marins a l'aide d'acide sulfurique
FR2492844A1 (fr) * 1980-10-29 1982-04-30 Pechiney Ugine Kuhlmann Valorisation de cuivre, nickel et cobalt par traitement de minerais oxydes a matrice manganifere
FR2533587A1 (fr) * 1982-09-27 1984-03-30 Commissariat Energie Atomique Procede de traitement de minerais complexes de manganese, en particulier de nodules manganiferes

Also Published As

Publication number Publication date
DE3561748D1 (en) 1988-04-07
US4620964A (en) 1986-11-04
JPS613848A (ja) 1986-01-09
EP0165166A1 (fr) 1985-12-18
JPH0585623B2 (fr) 1993-12-08
FR2565600B1 (fr) 1992-08-14
CA1245458A (fr) 1988-11-29
FR2565600A1 (fr) 1985-12-13

Similar Documents

Publication Publication Date Title
RS66937B1 (sr) Postupak recikliranja baterija
FR2717188A1 (fr) Procédé de récupération de métaux de valeur d'un catalyseur usagé.
CA3058314C (fr) Procede de recuperation de lithium
EP2059618A1 (fr) Procede de traitement hydrometallurgique d'un minerai de nickel et de cobalt lateritique, et procede de preparation de concentres intermediaires ou de produits commerciaux de nickel et/ou de cobalt l'utilisant
FR2616157A1 (fr) Procede d'extraction et de purification du gallium des liqueurs bayer
KR20230100733A (ko) 금속 술페이트를 결정화하기 위한 처리 방법
FR2476136A1 (fr) Procede de traitement des mattes sulfurees
EP0001537B1 (fr) Procédé de traitement de solutions contenant des carbonate, sulfate, éventuellement hydroxyde de sodium ou potassium, ainsi que l'un au moins des métaux vanadium, uranium, molybdène
EP0165166B1 (fr) Procédé de traitement de minerais complexes de manganèse tels que les nodules marins
FR2948946A1 (fr) Procede de lixiviation de cobalt a partir de minerais de cobalt oxydes
FR2843315A1 (fr) Procipitation selective du manganese a partir de solutions acides contenant du magnesium et de l'aluminium.
JP2024508733A (ja) 金属の回収
CA1160459A (fr) Procede de valorisation de l'uranium a partir d'un minerai uranifere contenant de l'arsenic
CA1209344A (fr) Procede d'epuration selective de l'arsenic au cours de l'attaque oxydante par une liqueur carbonatee d'un minerai uranifere en contenant
CN116043032A (zh) 硫化镍钴处理方法
FR2533587A1 (fr) Procede de traitement de minerais complexes de manganese, en particulier de nodules manganiferes
FR2632657A1 (fr) Procede de traitement d'un minerai uranifere en limitant les pertes de reactifs
CA1174859A (fr) Procede de recuperation de l'uranium sous forme de peroxyde a partir d'une solution d'attaque sulfurique de minerai uranifere
AU782112B2 (en) Solvent extraction of impurity metals from a valuable metal sulphate solution
TW202425395A (zh) 回收電子廢棄物以回收鋰
WO1987002068A1 (fr) Procede de separation et de recuperation de metaux dans des melanges de sulfures metalliques tels que les minerais de plomb
FR3101890A1 (fr) Procede de separation selective du manganese
EA045218B1 (ru) Способ переработки аккумуляторов
FR2484989A1 (fr) Procede de separation selective de l'uranium et du molybdene contenus dans un solvant amine
FR2495641A1 (fr) Procede de recuperation du cuivre a partir des scories arsenicales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19860520

17Q First examination report despatched

Effective date: 19870313

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 3561748

Country of ref document: DE

Date of ref document: 19880407

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920508

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920526

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201