EP0165119B1 - Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes - Google Patents

Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes Download PDF

Info

Publication number
EP0165119B1
EP0165119B1 EP85400897A EP85400897A EP0165119B1 EP 0165119 B1 EP0165119 B1 EP 0165119B1 EP 85400897 A EP85400897 A EP 85400897A EP 85400897 A EP85400897 A EP 85400897A EP 0165119 B1 EP0165119 B1 EP 0165119B1
Authority
EP
European Patent Office
Prior art keywords
dynode
stage
bars
distance
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400897A
Other languages
English (en)
French (fr)
Other versions
EP0165119A1 (de
Inventor
Kei-Ichi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpifrance Financement SA
Original Assignee
Agence National de Valorisation de la Recherche ANVAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence National de Valorisation de la Recherche ANVAR filed Critical Agence National de Valorisation de la Recherche ANVAR
Priority to AT85400897T priority Critical patent/ATE48338T1/de
Publication of EP0165119A1 publication Critical patent/EP0165119A1/de
Application granted granted Critical
Publication of EP0165119B1 publication Critical patent/EP0165119B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the invention relates to electron multiplier devices, more particularly photomultiplier tubes.
  • French Patent 7836148 published under No. 2445018, describes an electron multiplier tube capable of "localization".
  • the center of the distribution of secondary electrons on the exit anode corresponds, to a certain extent, to the position of the point of impact of the radiation to be amplified on the entry window of the tube.
  • the word "radiation” is taken here in the broad sense, since it can be photons as well as electrons or other charged particles, capable of causing the extraction of secondary electrons.
  • the electron multiplier previously described gives complete satisfaction, in particular in terms of the spatial resolution that it makes it possible to obtain; but for this it uses the superposition of a magnetic field on the accelerating electric field which the device naturally comprises.
  • the means necessary to obtain this magnetic field tend to complicate the structure of the electron multiplier device, at the same time as increasing the cost. In addition, by their own size, they also tend to reduce the space available for the multiplication of electrons, as well as the width of the input window of the device and / or the access thereof.
  • the present invention comes to solve the problem consisting in producing an electron multiplier device, capable of localization, which operates without an added magnetic field, while making it possible to achieve comparable localization properties. or almost that of the previously known electric and magnetic field device.
  • the proposed electron multiplier device includes, in certain respects, a structural relationship with the prior device making use of a magnetic field: in both cases, each dynode stage has two successive planes, arranged to intercept the trajectories electronic like a chicane. But it is important to immediately notice that, in spite of this structural relationship, the operation is not at all the same in the two cases, because the electronic trajectories obtained by using jointly an electric field and a magnetic field are totally different from those that one obtains with an 'electric field alone. In the latter case, the location is essentially defined by the lateral path of the secondary electrons due to the transverse component of the initial velocity.
  • the present invention has made it possible to solve, using an appropriate geometric structure of dynodes, the problem of finding a compromise between gain and spatial resolution, which involve this parameter in opposite directions. This therefore constitutes a first element of the invention.
  • the distance (Z I ) between two consecutive dynode stages (D l -D 2 ), several times greater than the width of the bars is chosen, as a function of the electric field, so that the secondary electrons coming from the upstream stage (D I ) strike a limited number of bars of the downstream stage (D 2 ) in a concentrated distribution, and the distance (Z o ) between the two successive planes of each dynode stage is substantially equal to a quarter the distance (Z l ) between stages of dynodes, and chosen, as a function of the electric field prevailing between these two planes, to avoid the recapture of a secondary electron by this stage of dynode.
  • the slats which are prismatic or cylindrical, have a cross section which projects from the side of the entry window, with two flanks capable of secondary emission and which present themselves in a substantially symmetrical manner relative to the general direction of the electric field; the distance between stages of dynodes is chosen so that the secondary electrons coming from the upstream stage strike in a substantially balanced way the flanks of lamellae of the downstream stage which have symmetrical inclinations, which makes it possible to avoid a systematic drift of the localisation.
  • the cross section of the strips is substantially in the form of an isosceles triangle, where the two equal angles are between 40 ° and 70 ° approximately. It can of course be a curvilinear triangle, or whose sides are deformed in another way, taking into account the machining tolerances applicable to the scale of the lamellae.
  • the secondary electrons coming from a side of a lamella of an upstream stage mostly strike only two lamellae neighboring the first plane of the next downstream stage, and a lamella of the second plan of the same downstream floor.
  • the distance between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons thus coming from the upstream stage, in order to avoid a shift in the spatial location due to the inclination of the sides.
  • All the lamellae of the tube can be parallel, but the localization properties can also be improved by orienting them in different directions along the different stages of dynodes, in a regular manner.
  • the easiest way is to make the slats of a dynode stage perpendicular to those of the previous stage.
  • the invention also allows good detection for an isolated photo-electron (or an isolated incident charged particle). To this end, it is expected that the electrical voltage prevailing between the two planes of the same stage of dynodes is at most equal to about 50 volts, at least for the first stages of dynodes.
  • means are provided for adjusting the supply of the electrodes, in order to optimize the spatial resolution of the electron multiplier device.
  • the latter may include a cathode or a photocathode near the first dynode.
  • a conventional anode comprises, as anode, a divided anode with multiple connections, an electroluminescent surface, a resistive anode or any equivalent means allowing the use of the location property.
  • the incident signal is delivered by photons, which we know can excite the dynodes of an electron multiplier, either directly or through a photocathode.
  • the present invention may have applications other than photonics, because, more generally, it may be the electrons themselves, or other types of charged particles, which define the input signal of an electron multiplier tube. .
  • the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIGS. 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIG. 2 also shows the generally circular shape of the support structure SP which supports the dynodes; this structure is provided with insulating columns such as CP.
  • FIG. 3 illustrates the electrical diagram associated with the photomultiplier, the TPM enclosure of which is recalled in dashed lines. It is better to see that each dynode stage such as D I comprises, according to the invention, two levels or planes of electrodes such as D 11 and D 12 , placed one after the other along the axis F electric field of the tube, and perpendicular to this axis.
  • the proximity photocathode PPC is connected to a voltage - HT by the electrical connection E l .
  • the electrical connection E 2 is connected to ground.
  • a voltage divider network with resistors is mounted between line E 2 and line E 1 in order to provide each of the dynode planes with an appropriate electrical voltage.
  • the high supply voltage defines the potential difference, therefore the electric field, between the different dynode planes.
  • the resistors are adjusted so that this electric field is made as uniform as possible.
  • a resistance R is provided, between the first plane of each dynode (for example the plane D 21 of the dynode D 2 ), and the last plane of the dynode previous (in space the plane D 12 of the dynode D 1 ).
  • a lower resistance R 2 is provided between the two planes of each stage of dynodes (for example between the planes D 21 and D 22 of the dynode D 2 ).
  • the addition of capacities may possibly be required at certain points of this series resistive network, in particular on the top floors.
  • the anodes A n are connected to ground by individual resistors.
  • FIG. 4 illustrates on a larger scale two stages of consecutive dynodes, which are supposed to be stages D l and D 2 .
  • the stage D l comprises two planes D11 and D 12 of dynode elements.
  • the stage D 2 also includes two planes D 21 and D 22 of dynode elements.
  • the dynode elements are prismatic or cylindrical lamellae, parallel to each other, and of course coplanar within the same plane of dynodes.
  • These lamellae are suitably treated to have the property of secondary electronic emission, on their faces oriented towards the side of the FE entry window, that is to say for any arrival in the direction P of a photon or a charged particle such as an electron.
  • This direction P is parallel or slightly inclined to the general direction of the axis F, along which the electric field inside the tube is established approximately.
  • the base B adjacent to the two equal angles of the isosceles triangle, is perpendicular to the general direction F. It is turned downstream.
  • the two equal sides L and R of the isosceles triangle are made capable of secondary electronic emission, and it is observed that they face symmetrically with the general direction of incidence P.
  • the angle a is advantageously understood between 40 and 70 ° approximately.
  • the lamellae have a cross section in an isosceles right triangle.
  • the "apparent width" of the slats can be defined as the overall width that they present, perpendicular to the direction F. This width is here equal to the base B of the isosceles right triangle, which measures approximately 0.5 mm in this example . A spacing of 0.5 mm is also provided between the adjacent vertices (of angle a) of two strips of the same plane of dynodes.
  • the lamellae of the second plane of a dynode stage for example the plane D 12 of the stage D 1 , are interspersed with those of the preceding plane, here D 11 . Therefore, the set of dynode elements of the two planes of the same dynode stage appears as an obstacle, or a baffle, for the (electronic) trajectories parallel to the direction F.
  • Z o the distance between two planes of dynodes D 11 and D 12 of the same stage, distance taken in the direction F.
  • Z 1 the distance taken in the same way between two stages of consecutive dynodes, that is to say for example between the first plane D 11 of the stage D I and the first plane 21 of the stage D 2 .
  • Z 1 is approximately equal to four times Z 0 .
  • N denotes the normal to this right flank, at the starting point of its electrons.
  • This emission angle is of course limited to the useful secondary electrons, that is to say those which are not recaptured by the same plane of lamellae. It has been observed that the initial energy must be greater than about 5 electron volts, and that the initial emission angle must be less than 45 °, that is to say that the useful secondary electrons are included in a cone whose angular opening is 45 ° compared to normal.
  • trajectories T 1min and T 1max corresponding respectively to 5 electron-volts and 15 electron-volts. These trajectories practically strike only the two strips D 211 of the dynode stage along D 2 . The trajectory with energies close to these extreme values hits the same lamellae. On the other hand, part of the intermediate energy trajectories pass between the lamellas D 211 and D 212 , to strike, in a substantially symmetrical manner, the two sides of the lamella D 222 , which is part of the second plane D 22 of the floor of dynode D 2 .
  • edge effects produced on the electric field by the tips of the lamellas D 212 and D m would in fact allow the effective capture of the secondary electron at the level of the dynode D 2 , as a result of which it can then emit secondary electrons again, as the other trajectories arriving on the dynode D 2 will have done .
  • the resolution obtained is approximately 12 mm in the X direction transverse to the large dimension of the lamellae, and approximately 10 mm in the Y direction parallel to the large dimension of the slats. In fact, the same resolution is obtained in these two directions X and Y, although the structure of a given plane of lamellae is not at all isotropic.
  • the optimal spatial resolution can be easily obtained by adjusting the high voltage, which acts globally on the electric field, or even by a finer action on the electric field at the level of each of the stages and the dynode planes.
  • the photomultiplier thus obtained has a very large sensitive surface, for a sensitivity which can become comparable to that of the prior device. Indeed, an improved spatial resolution can be further obtained by reducing the dimension 8 of the dynode strips, and by acting in a corresponding manner on the electric field and the vertical (or longitudinal) dimensions of the device.
  • Such resolution characteristics are sufficient for a large part of the applications. They are particularly suitable for applications such as X-ray or y-ray imaging.
  • the spatial resolution obtained after calculation of the barycenter is at best of the order of 4 mm.
  • the spatial resolution is dominated by the resolution of the detector, approximately 50 mm, which is too small compared to the size of the spot of the scintillation beams which is approximately twice the thickness of the crystal. , or 20 mm.

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Claims (13)

1. Elektronenvervielfachervorrichtung mit einer Vakuumröhre worin angeordnet ist:
- ein Eingangsfenster (FE),
- eine Folge von parallelen Flachelektroden mit parallelen, zusammengeschalteten Gitterstäben zur Emission von Sekundärelektronen, wobei jede Dynodenstufe (D1, ...) zwei aufeinander folgende Ebenen (D11, D12,...) aufweist, um nach Art einer Schikane die Elektronenbahnen zu unterbrechen und die Gitterstäbe im Querschnitt eine Breite von höchstens gleich 0,5 mm haben,
- eine Anode, um die Stärke der Sekundärelektronenlawine zu erfassen und
- mit den Dynodenstufen (D1-D10) verbundene Mittel (E1, Ei, Ra-R3) zum Aufbau eines elektrischen Beschleunigungsfeldes zwischen ihnen, dessen Hauptrichtung senkrecht zu den Elektroden liegt, dadurch gekennzeichnet, dass der Abstand (ZI) zwischen zwei aufeinanderfolgenden Dynodenstufen (DI, D2) in Abhängigkeit des elektrischen Feldes um ein Mehrfaches grösser als die Breite der Gitterstäbe gewählt ist, derart, dass die von der stromaufwärtigen Stufe (D1) kommenden Sekundärelektronen in konzentrierter Form auf eine entsprechende Anzahl von Gitterstäben der stromabwärtigen Stufe (D2) auftreffen und dass der Abstand (Zo) der beiden aufeinanderfolgenden Ebenen jeder Dynodenstufe im wesentlichen gleich einem Viertel des Abstandes (ZI) der Dynodenstufen ist und in Abhängigkeit des zwischen den beiden Ebenen wirkenden elektrischen Feldes gewählt ist, um ein Wiedereinfangen von Sekundärelektronen durch diese Dynodenstufe zu vermeiden.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die prismatischen oder zylindrischen Gitterstäbe einen geraden Abschnitt aufweisen, der auf der Seite des Eintrittsfensters hervorragt und zwei Seitenflächen (L, R) zur Sekundäremission aufweisen, die symmetrisch in Bezug zur Hauptrichtung (F) des elektrischen Feldes liegen und dass der Abstand (ZI) zwischen Dynodenstufen derart gewählt ist, dass die Sekundärelektronen der stromaufwärtigen Stufe (D,) im wesentlichen gleich verteilt auf die Seitenflächen der Gitterstäbe der stromabwärtigen Stufe auftreffen, welche eine symmetrische Neigung aufweisen (D211R, D212L, D222R, L).
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der gerade Abschnitt Gitterstäbe im wesentlichen in Form eines gleichschenkligen Dreiecks vorliegt, dessen beide gleichen Winkel etwa zwischen 40° und 70° liegen.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Abstand (Z,) zwischen aufeinanderfolgenden Dynodenstufen derart gewählt ist, dass die Symmetrie der Lawine von der stromaufwärtigen Stufe kommenden Sekundärelektronen auf der stromabwärtigen Stufe leicht aus dem Gleichgewicht gebracht ist, um eine räumliche Verschiebung durch die Neigung der Seitenflächen zu vermeiden.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die scheinbare Breite der Gitterstäbe höchstens gleich ungefähr 0,5 mm ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mittlere Feldstärke mindestens gleich ungefähr 500 V/cm ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die effektiv gemittelte Anfangsenergie der Sekundärelektronen wenigstens gleich ca. 5 Elektronen-Volt ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die effektiv gemittelte Anfangsenergie der Sekundärelektronen auf einige zehn Elektronen-Volt begrenzt ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gitterstäbe wenigstens zwei aufeinanderfolgender Dynodenstufen in unterschiedliche, vorzugsweise zueinander senkrechte Richtungen gewandt liegen.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens bei den ersten Stufen die zwischen zwei Ebenen derselben Dynodenstufe herrschende elektrische Spannung höchstens gleich ungefähr 50 V ist, wodurch eine gute Erfassung eines isolierten Photoelektrons möglich wird.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet, durch Mittel zur Einstellung der Elektronenzufuhr, um das Auflösungsvermögen zu optimieren.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie in der Nähe der ersten Dynode eine Kathode oder Photokathode (PPC) aufweist.
13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie als Anode (An) eine geteilte Anode mit Vielfachanschlüssen, eine elektrisch selbstleuchtende Oberfläche und eine Widerstandsanode aufweist.
EP85400897A 1984-05-09 1985-05-07 Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes Expired EP0165119B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400897T ATE48338T1 (de) 1984-05-09 1985-05-07 Elektronenvervielfachervorrichtung mit lokalisierung des elektrischen feldes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407142 1984-05-09
FR8407142A FR2566175B1 (fr) 1984-05-09 1984-05-09 Dispositif multiplicateur d'electrons, a localisation par le champ electrique

Publications (2)

Publication Number Publication Date
EP0165119A1 EP0165119A1 (de) 1985-12-18
EP0165119B1 true EP0165119B1 (de) 1989-11-29

Family

ID=9303797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400897A Expired EP0165119B1 (de) 1984-05-09 1985-05-07 Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes

Country Status (6)

Country Link
US (1) US4914351A (de)
EP (1) EP0165119B1 (de)
JP (1) JPS6182646A (de)
AT (1) ATE48338T1 (de)
DE (1) DE3574522D1 (de)
FR (1) FR2566175B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592523A1 (fr) * 1985-12-31 1987-07-03 Hyperelec Sa Element multiplicateur a haute efficacite de collection dispositif multiplicateur comportant cet element multiplicateur, application a un tube photomultiplicateur et procede de realisation
FR2634062A1 (fr) * 1988-07-05 1990-01-12 Radiotechnique Compelec Dynode du type " a feuilles ", multiplicateur d'electrons et tube photomultiplicateur comportant de telles dynodes
JP3056771B2 (ja) * 1990-08-15 2000-06-26 浜松ホトニクス株式会社 電子増倍管
EP0917802A4 (de) * 1996-08-05 1999-11-17 Culkin Joseph B System zur bildverstärkung und videoanzeige
US5886465A (en) * 1996-09-26 1999-03-23 Hamamatsu Photonics K.K. Photomultiplier tube with multi-layer anode and final stage dynode
JP2005011592A (ja) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk 電子増倍管
JP4819437B2 (ja) * 2005-08-12 2011-11-24 浜松ホトニクス株式会社 光電子増倍管
JP4849521B2 (ja) * 2006-02-28 2012-01-11 浜松ホトニクス株式会社 光電子増倍管および放射線検出装置
JP5284635B2 (ja) * 2007-12-21 2013-09-11 浜松ホトニクス株式会社 電子増倍管

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579017A (en) * 1968-06-17 1971-05-18 Scient Research Instr Corp Harp electron multiplier
FR2445018A1 (fr) * 1978-12-22 1980-07-18 Anvar Tube multiplicateur d'electrons a champ magnetique axial
US4649268A (en) * 1984-03-09 1987-03-10 Siemens Gammasonics, Inc. Imaging dynodes arrangement

Also Published As

Publication number Publication date
EP0165119A1 (de) 1985-12-18
DE3574522D1 (de) 1990-01-04
ATE48338T1 (de) 1989-12-15
FR2566175B1 (fr) 1986-10-10
JPH0421303B2 (de) 1992-04-09
JPS6182646A (ja) 1986-04-26
FR2566175A1 (fr) 1985-12-20
US4914351A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
EP0742954B1 (de) Detektor für ionisierende strahlung mit mikro-proportionalzählrohren
EP0165119B1 (de) Elektronenvervielfachervorrichtung mit Lokalisierung des elektrischen Feldes
FR2739941A1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
EP2583298B1 (de) Elektronvervielfachender detektor mit einer hochdotierten nanodiamantschicht
WO1998057349A1 (fr) Tube a rayons x comportant une source d'electrons a micropointes et des moyens de guidage magnetique
EP0230818A1 (de) Fotokathode mit eingebauter Verstärkung
EP0851512A1 (de) Halbleiterstrahlungsdetektor mit hohem Widerstand für ionisierende Strahlung
EP1155341A1 (de) Zwei dimensionaler detektor für ionisierende strahlung and verfahren zur herstellung
EP0045704B1 (de) Strahlungsdetektor
CA2887442C (fr) Photocathode semi-transparente a taux d'absorption ameliore
EP0044239B1 (de) Bildverstärkerröhre mit Mikrokanälen und solch eine Röhre enthaltende Bildaufnahmeeinheit
EP3912183B1 (de) Elementarteilchendetektor
EP0125962B1 (de) Röntgenbildverstärker und dessen Anwendung bei rechnergestützter Röntgenaufnahmetechnik
EP0013235B1 (de) Elektronenvervielfachungsvorrichtung mit axialem magnetischem Feld
WO2007003723A2 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP1343194A1 (de) Strahlungsdetektoren und autoradiographische Abbildungsvorrichtungen mit solcher Detektoren
EP2483909B1 (de) Strahlungsdetektoren und autoradiografische bildgebungsvorrichtungen mit derartigen detektoren
FR2875331A1 (fr) Tube multiplicateur d'electrons a plusieurs voies
FR2494906A1 (fr) Tube photodetecteur a multiplication d'electrons utilisable dans un lecteur video couleur
WO2000030150A1 (fr) Detecteur de localisation de photons, a remplissage gazeux
FR2955427A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit et a structure simplifiee
WO2004112080A2 (fr) Tube photomultiplicateur a plusieurs voies a encombrement reduit
FR2955426A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit
CH603007A5 (en) Flat video cathode tube
CH448282A (fr) Détecteur de neutrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860129

17Q First examination report despatched

Effective date: 19870408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891129

Ref country code: AT

Effective date: 19891129

REF Corresponds to:

Ref document number: 48338

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3574522

Country of ref document: DE

Date of ref document: 19900104

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
26N No opposition filed
BERE Be: lapsed

Owner name: AGENCE NATIONALE DE VALORISATION DE LA RECHERCHE

Effective date: 19900531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930514

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930714

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930723

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940507

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST