EP0165119B1 - Electron multiplier device with electric field localisation - Google Patents

Electron multiplier device with electric field localisation Download PDF

Info

Publication number
EP0165119B1
EP0165119B1 EP85400897A EP85400897A EP0165119B1 EP 0165119 B1 EP0165119 B1 EP 0165119B1 EP 85400897 A EP85400897 A EP 85400897A EP 85400897 A EP85400897 A EP 85400897A EP 0165119 B1 EP0165119 B1 EP 0165119B1
Authority
EP
European Patent Office
Prior art keywords
dynode
stage
bars
distance
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85400897A
Other languages
German (de)
French (fr)
Other versions
EP0165119A1 (en
Inventor
Kei-Ichi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpifrance Financement SA
Original Assignee
Agence National de Valorisation de la Recherche ANVAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence National de Valorisation de la Recherche ANVAR filed Critical Agence National de Valorisation de la Recherche ANVAR
Priority to AT85400897T priority Critical patent/ATE48338T1/en
Publication of EP0165119A1 publication Critical patent/EP0165119A1/en
Application granted granted Critical
Publication of EP0165119B1 publication Critical patent/EP0165119B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the invention relates to electron multiplier devices, more particularly photomultiplier tubes.
  • French Patent 7836148 published under No. 2445018, describes an electron multiplier tube capable of "localization".
  • the center of the distribution of secondary electrons on the exit anode corresponds, to a certain extent, to the position of the point of impact of the radiation to be amplified on the entry window of the tube.
  • the word "radiation” is taken here in the broad sense, since it can be photons as well as electrons or other charged particles, capable of causing the extraction of secondary electrons.
  • the electron multiplier previously described gives complete satisfaction, in particular in terms of the spatial resolution that it makes it possible to obtain; but for this it uses the superposition of a magnetic field on the accelerating electric field which the device naturally comprises.
  • the means necessary to obtain this magnetic field tend to complicate the structure of the electron multiplier device, at the same time as increasing the cost. In addition, by their own size, they also tend to reduce the space available for the multiplication of electrons, as well as the width of the input window of the device and / or the access thereof.
  • the present invention comes to solve the problem consisting in producing an electron multiplier device, capable of localization, which operates without an added magnetic field, while making it possible to achieve comparable localization properties. or almost that of the previously known electric and magnetic field device.
  • the proposed electron multiplier device includes, in certain respects, a structural relationship with the prior device making use of a magnetic field: in both cases, each dynode stage has two successive planes, arranged to intercept the trajectories electronic like a chicane. But it is important to immediately notice that, in spite of this structural relationship, the operation is not at all the same in the two cases, because the electronic trajectories obtained by using jointly an electric field and a magnetic field are totally different from those that one obtains with an 'electric field alone. In the latter case, the location is essentially defined by the lateral path of the secondary electrons due to the transverse component of the initial velocity.
  • the present invention has made it possible to solve, using an appropriate geometric structure of dynodes, the problem of finding a compromise between gain and spatial resolution, which involve this parameter in opposite directions. This therefore constitutes a first element of the invention.
  • the distance (Z I ) between two consecutive dynode stages (D l -D 2 ), several times greater than the width of the bars is chosen, as a function of the electric field, so that the secondary electrons coming from the upstream stage (D I ) strike a limited number of bars of the downstream stage (D 2 ) in a concentrated distribution, and the distance (Z o ) between the two successive planes of each dynode stage is substantially equal to a quarter the distance (Z l ) between stages of dynodes, and chosen, as a function of the electric field prevailing between these two planes, to avoid the recapture of a secondary electron by this stage of dynode.
  • the slats which are prismatic or cylindrical, have a cross section which projects from the side of the entry window, with two flanks capable of secondary emission and which present themselves in a substantially symmetrical manner relative to the general direction of the electric field; the distance between stages of dynodes is chosen so that the secondary electrons coming from the upstream stage strike in a substantially balanced way the flanks of lamellae of the downstream stage which have symmetrical inclinations, which makes it possible to avoid a systematic drift of the localisation.
  • the cross section of the strips is substantially in the form of an isosceles triangle, where the two equal angles are between 40 ° and 70 ° approximately. It can of course be a curvilinear triangle, or whose sides are deformed in another way, taking into account the machining tolerances applicable to the scale of the lamellae.
  • the secondary electrons coming from a side of a lamella of an upstream stage mostly strike only two lamellae neighboring the first plane of the next downstream stage, and a lamella of the second plan of the same downstream floor.
  • the distance between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons thus coming from the upstream stage, in order to avoid a shift in the spatial location due to the inclination of the sides.
  • All the lamellae of the tube can be parallel, but the localization properties can also be improved by orienting them in different directions along the different stages of dynodes, in a regular manner.
  • the easiest way is to make the slats of a dynode stage perpendicular to those of the previous stage.
  • the invention also allows good detection for an isolated photo-electron (or an isolated incident charged particle). To this end, it is expected that the electrical voltage prevailing between the two planes of the same stage of dynodes is at most equal to about 50 volts, at least for the first stages of dynodes.
  • means are provided for adjusting the supply of the electrodes, in order to optimize the spatial resolution of the electron multiplier device.
  • the latter may include a cathode or a photocathode near the first dynode.
  • a conventional anode comprises, as anode, a divided anode with multiple connections, an electroluminescent surface, a resistive anode or any equivalent means allowing the use of the location property.
  • the incident signal is delivered by photons, which we know can excite the dynodes of an electron multiplier, either directly or through a photocathode.
  • the present invention may have applications other than photonics, because, more generally, it may be the electrons themselves, or other types of charged particles, which define the input signal of an electron multiplier tube. .
  • the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIGS. 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIG. 2 also shows the generally circular shape of the support structure SP which supports the dynodes; this structure is provided with insulating columns such as CP.
  • FIG. 3 illustrates the electrical diagram associated with the photomultiplier, the TPM enclosure of which is recalled in dashed lines. It is better to see that each dynode stage such as D I comprises, according to the invention, two levels or planes of electrodes such as D 11 and D 12 , placed one after the other along the axis F electric field of the tube, and perpendicular to this axis.
  • the proximity photocathode PPC is connected to a voltage - HT by the electrical connection E l .
  • the electrical connection E 2 is connected to ground.
  • a voltage divider network with resistors is mounted between line E 2 and line E 1 in order to provide each of the dynode planes with an appropriate electrical voltage.
  • the high supply voltage defines the potential difference, therefore the electric field, between the different dynode planes.
  • the resistors are adjusted so that this electric field is made as uniform as possible.
  • a resistance R is provided, between the first plane of each dynode (for example the plane D 21 of the dynode D 2 ), and the last plane of the dynode previous (in space the plane D 12 of the dynode D 1 ).
  • a lower resistance R 2 is provided between the two planes of each stage of dynodes (for example between the planes D 21 and D 22 of the dynode D 2 ).
  • the addition of capacities may possibly be required at certain points of this series resistive network, in particular on the top floors.
  • the anodes A n are connected to ground by individual resistors.
  • FIG. 4 illustrates on a larger scale two stages of consecutive dynodes, which are supposed to be stages D l and D 2 .
  • the stage D l comprises two planes D11 and D 12 of dynode elements.
  • the stage D 2 also includes two planes D 21 and D 22 of dynode elements.
  • the dynode elements are prismatic or cylindrical lamellae, parallel to each other, and of course coplanar within the same plane of dynodes.
  • These lamellae are suitably treated to have the property of secondary electronic emission, on their faces oriented towards the side of the FE entry window, that is to say for any arrival in the direction P of a photon or a charged particle such as an electron.
  • This direction P is parallel or slightly inclined to the general direction of the axis F, along which the electric field inside the tube is established approximately.
  • the base B adjacent to the two equal angles of the isosceles triangle, is perpendicular to the general direction F. It is turned downstream.
  • the two equal sides L and R of the isosceles triangle are made capable of secondary electronic emission, and it is observed that they face symmetrically with the general direction of incidence P.
  • the angle a is advantageously understood between 40 and 70 ° approximately.
  • the lamellae have a cross section in an isosceles right triangle.
  • the "apparent width" of the slats can be defined as the overall width that they present, perpendicular to the direction F. This width is here equal to the base B of the isosceles right triangle, which measures approximately 0.5 mm in this example . A spacing of 0.5 mm is also provided between the adjacent vertices (of angle a) of two strips of the same plane of dynodes.
  • the lamellae of the second plane of a dynode stage for example the plane D 12 of the stage D 1 , are interspersed with those of the preceding plane, here D 11 . Therefore, the set of dynode elements of the two planes of the same dynode stage appears as an obstacle, or a baffle, for the (electronic) trajectories parallel to the direction F.
  • Z o the distance between two planes of dynodes D 11 and D 12 of the same stage, distance taken in the direction F.
  • Z 1 the distance taken in the same way between two stages of consecutive dynodes, that is to say for example between the first plane D 11 of the stage D I and the first plane 21 of the stage D 2 .
  • Z 1 is approximately equal to four times Z 0 .
  • N denotes the normal to this right flank, at the starting point of its electrons.
  • This emission angle is of course limited to the useful secondary electrons, that is to say those which are not recaptured by the same plane of lamellae. It has been observed that the initial energy must be greater than about 5 electron volts, and that the initial emission angle must be less than 45 °, that is to say that the useful secondary electrons are included in a cone whose angular opening is 45 ° compared to normal.
  • trajectories T 1min and T 1max corresponding respectively to 5 electron-volts and 15 electron-volts. These trajectories practically strike only the two strips D 211 of the dynode stage along D 2 . The trajectory with energies close to these extreme values hits the same lamellae. On the other hand, part of the intermediate energy trajectories pass between the lamellas D 211 and D 212 , to strike, in a substantially symmetrical manner, the two sides of the lamella D 222 , which is part of the second plane D 22 of the floor of dynode D 2 .
  • edge effects produced on the electric field by the tips of the lamellas D 212 and D m would in fact allow the effective capture of the secondary electron at the level of the dynode D 2 , as a result of which it can then emit secondary electrons again, as the other trajectories arriving on the dynode D 2 will have done .
  • the resolution obtained is approximately 12 mm in the X direction transverse to the large dimension of the lamellae, and approximately 10 mm in the Y direction parallel to the large dimension of the slats. In fact, the same resolution is obtained in these two directions X and Y, although the structure of a given plane of lamellae is not at all isotropic.
  • the optimal spatial resolution can be easily obtained by adjusting the high voltage, which acts globally on the electric field, or even by a finer action on the electric field at the level of each of the stages and the dynode planes.
  • the photomultiplier thus obtained has a very large sensitive surface, for a sensitivity which can become comparable to that of the prior device. Indeed, an improved spatial resolution can be further obtained by reducing the dimension 8 of the dynode strips, and by acting in a corresponding manner on the electric field and the vertical (or longitudinal) dimensions of the device.
  • Such resolution characteristics are sufficient for a large part of the applications. They are particularly suitable for applications such as X-ray or y-ray imaging.
  • the spatial resolution obtained after calculation of the barycenter is at best of the order of 4 mm.
  • the spatial resolution is dominated by the resolution of the detector, approximately 50 mm, which is too small compared to the size of the spot of the scintillation beams which is approximately twice the thickness of the crystal. , or 20 mm.

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

1. An electron multiplier device comprising, in a vacuum tube : - an entrance window (FE), - a succession of plane, parallel electrodes comprising small interconnected parallel bars, capable of secondary electrical emission, each dynode stage (D1 ...) comprising two successive planes (D11 , D12 ...) adapted to intercept the electrical trajectories in the manner of a baffle, the width of the bars, in cross-section, being at most equal to 0.5 mm, - an anode capable of localizing the impact of the secondary electrons at its level, and - means (E1 , Ei , R0 -R3 ) connected to these dynode stages (D1 -D10 ) in order to establish between them an electron accelerating electric field, the general direction of which is perpendicular to the electrodes, characterised in that the distance (Z1 ) between two consecutive dynode stages (D1 -D2 ), which is several times greater than the width of the bars, is selected, depending on the electrical field, in such a manner that the secondary electrons originating from the upstream stage (D1 ), in a concentrated distribution, a restricted number of bars of the downstream stage (D2 ), and in that the distance (Z0 ) between the two successive planes of each dynode stage is substantially equal to a quarter of the distance (Z1 ) between dynode stages and is selected, depending on the electrical field prevailing between these two planes, to avoid the recapture of a secondary electron by this dynode stage.

Description

L'invention concerne les dispositifs multiplicateurs d'électrons, plus particulièrement les tubes photomultiplicateurs.The invention relates to electron multiplier devices, more particularly photomultiplier tubes.

Le Brevet français 7836148, publié sous le N° 2445018, décrit un tube multiplicateur d'électrons capable de «localisation». Dans un tel tube, le centre de la distribution des électrons secondaires sur l'anode de sortie correspond, dans une certaine mesure, à la position du point d'impact du rayonnement à amplifier sur la fenêtre d'entrée du tube. Le mot «rayonnement» est pris ici au sens large, puisqu'il peut s'agir aussi bien de photons que d'électrons ou d'autres particules chargées, capables de provoquer l'extraction d'électrons secondaires. Le multiplicateur d'électrons antérieurement décrit donne entière satisfaction, en particulier au plan de la résolution spatiale qu'il permet d'obtenir; mais il utilise pour cela la superposition d'un champ magnétique au champ électrique accélérateur que comporte naturellement le dispositif. Les moyens nécessaires à l'obtention de ce champ magnétique tendent à compliquer la strucutre du dispositif multiplicateur d'électrons, en même temps qu'à en augmenter le coût. De plus, par leur encombrement propre, ils tendent aussi à réduire la place disponible pour la multiplication d'électrons, ainsi que la largeur de la fenêtre d'entrée du dispositif et/ou l'accès de celle-ci.French Patent 7836148, published under No. 2445018, describes an electron multiplier tube capable of "localization". In such a tube, the center of the distribution of secondary electrons on the exit anode corresponds, to a certain extent, to the position of the point of impact of the radiation to be amplified on the entry window of the tube. The word "radiation" is taken here in the broad sense, since it can be photons as well as electrons or other charged particles, capable of causing the extraction of secondary electrons. The electron multiplier previously described gives complete satisfaction, in particular in terms of the spatial resolution that it makes it possible to obtain; but for this it uses the superposition of a magnetic field on the accelerating electric field which the device naturally comprises. The means necessary to obtain this magnetic field tend to complicate the structure of the electron multiplier device, at the same time as increasing the cost. In addition, by their own size, they also tend to reduce the space available for the multiplication of electrons, as well as the width of the input window of the device and / or the access thereof.

Ainsi qu'on le verra plus loin, la présente invention vient résoudre le problème consistant à réaliser un dispositif multiplicateur d'électrons, capable de localisation, qui fonctionne sans champ magnétique surajouté, tout en permettant d'at- teindre des propriétés de localisation comparables ou presque à celles du dispositif à champs électrique et magnétique antérieurement connu.As will be seen below, the present invention comes to solve the problem consisting in producing an electron multiplier device, capable of localization, which operates without an added magnetic field, while making it possible to achieve comparable localization properties. or almost that of the previously known electric and magnetic field device.

Le dispositif multiplicateur d'électrons comporte, dans un tube à vide:

  • - une fenêtre d'entrée (FE),
  • - une succession d'électrodes planes, parallèles, comprenant des barreaux parallèles interconnec- tés, capables d'émission électronique secondaire, chaque étage de dynode (D,...) comportant deux plans successifs (D11, D12...), agencés pour intercepter les trajectoires électroniques à la façon d'une chicane, la largeur des barreaux en section droite étant au plus égale a 0,5 mm,
  • - une anode capable de localiser l'impact des électrons secondaires à son niveau, et
  • - des moyens (El, E;, R0-R3) connectés à ces étages de dynodes (D1-D10) afin d'établir entre eux un champ électrique accélérateur d'électrons, dont la direction générale est perpendiculaire aux électrodes.
The electron multiplier device comprises, in a vacuum tube:
  • - an entry window (FE),
  • - a succession of planar, parallel electrodes, comprising interconnected parallel bars, capable of secondary electronic emission, each dynode stage (D, ...) comprising two successive planes (D 11 , D 12 ...) , arranged to intercept the electronic trajectories in the manner of a baffle, the width of the bars in cross section being at most equal to 0.5 mm,
  • - an anode capable of locating the impact of secondary electrons at its level, and
  • - means (E l, E;, R 0 -R 3) connected to these dynode stages (D 1 -D 10) in order to establish between them an electron accelerating electric field, the general direction is perpendicular to the electrodes.

Par ailleurs, le dispositif multiplicateur d'électrons proposé comporte, à certains égards, une parenté structurelle avec le dispositif antérieur faisant usage d'un champ magnétique: dans les deux cas, chaque étage de dynode comporte deux plans successifs, agencés pour intercepter les trajectoires électroniques à la façon d'une chicane. Mais il importe de remarquer immédiatement que, malgré cette parenté structurelle, le fonctionnement n'est pas du tout le même dans les deux cas, car les trajectoires électroniques obtenues en utilisant conjointement un champ électrique et un champ magnétique sont totalement différentes de celles qu'on obtient avec un' champ électrique seul. Dans ce dernier cas, la localisation est définie essentiellement par le parcours latéral des électrons secondaires dû à la composante transversale de la vitesse initiale. La présente invention a permis de résoudre, à l'aide d'une structure géométrique appropriée de dynodes, le problème de trouver un compromis entre le gain et la résolution spatiale, qui font intervenir ce paramètre dans des sens opposés. Ceci constitue donc un premier élément de l'invention.In addition, the proposed electron multiplier device includes, in certain respects, a structural relationship with the prior device making use of a magnetic field: in both cases, each dynode stage has two successive planes, arranged to intercept the trajectories electronic like a chicane. But it is important to immediately notice that, in spite of this structural relationship, the operation is not at all the same in the two cases, because the electronic trajectories obtained by using jointly an electric field and a magnetic field are totally different from those that one obtains with an 'electric field alone. In the latter case, the location is essentially defined by the lateral path of the secondary electrons due to the transverse component of the initial velocity. The present invention has made it possible to solve, using an appropriate geometric structure of dynodes, the problem of finding a compromise between gain and spatial resolution, which involve this parameter in opposite directions. This therefore constitutes a first element of the invention.

Selon l'invention, la distance (ZI) entre deux étages de dynode consécutifs (Dl-D2), plusieurs fois supérieure à la largeur des barreaux est choisie, en fonction du champ électrique, de sorte que les électrons secondaires provenant de l'étage amont (DI) frappent selon une distribution concentrée un nombre restreint de barreaux de l'étage aval (D2), et la distance (Zo) entre les deux plans successifs de chaque étage de dynode est sensiblement égale au quart de la distance (Zl) entre étages de dynodes, et choisie, en fonction du champ électrique régnant entre ces deux plans, pour éviter la recapture d'un électron secondaire par cet étage de dynode.According to the invention, the distance (Z I ) between two consecutive dynode stages (D l -D 2 ), several times greater than the width of the bars is chosen, as a function of the electric field, so that the secondary electrons coming from the upstream stage (D I ) strike a limited number of bars of the downstream stage (D 2 ) in a concentrated distribution, and the distance (Z o ) between the two successive planes of each dynode stage is substantially equal to a quarter the distance (Z l ) between stages of dynodes, and chosen, as a function of the electric field prevailing between these two planes, to avoid the recapture of a secondary electron by this stage of dynode.

Selon une autre caractéristique de l'invention, les lamelles, qui sont prismatiques ou cylindriques, ont une section droite qui fait saillie du côté de la fenêtre d'entrée, avec deux flancs capables d'émission secondaire et qui se présentent de façon sensiblement symétrique par rapport à la direction générale du champ électrique; la distance entre étages de dynodes est choisie de sorte que les électrons secondaires provenant de l'étage amont frappent de manière sensiblement équilibrée les flancs de lamelles de l'étage aval qui ont des inclinaisons symétriques, ce qui permet d'éviter une dérive systématique de la localisation.According to another characteristic of the invention, the slats, which are prismatic or cylindrical, have a cross section which projects from the side of the entry window, with two flanks capable of secondary emission and which present themselves in a substantially symmetrical manner relative to the general direction of the electric field; the distance between stages of dynodes is chosen so that the secondary electrons coming from the upstream stage strike in a substantially balanced way the flanks of lamellae of the downstream stage which have symmetrical inclinations, which makes it possible to avoid a systematic drift of the localisation.

Dans un mode de réalisation particulier, que l'on préfère actuellement, la section droite des lamelles est sensiblement en forme de triangle isocèle, où les deux angles égaux valent entre 40° et 70° environ. Il peut s'agir bien entendu d'un triangle curviligne, ou dont les côtés sont déformés d'une autre manière, compte tenu des tolérances d'usinage applicables à l'échelle des lamelles.In a particular embodiment, which is currently preferred, the cross section of the strips is substantially in the form of an isosceles triangle, where the two equal angles are between 40 ° and 70 ° approximately. It can of course be a curvilinear triangle, or whose sides are deformed in another way, taking into account the machining tolerances applicable to the scale of the lamellae.

Selon une autre caractéristique particulière de l'invention, les électrons secondaires provenant d'un flanc d'une lamelle d'un étage amont ne frappent en majorité que deux lamelles voisines du premier plan de l'étage aval suivant, et une lamelle du second plan de ce même étage aval.According to another particular characteristic of the invention, the secondary electrons coming from a side of a lamella of an upstream stage mostly strike only two lamellae neighboring the first plane of the next downstream stage, and a lamella of the second plan of the same downstream floor.

Avantageusement, la distance entre étages de dynodes consécutifs est choisie pour déséquilibrer légèrement la symétrie d'impact, sur l'étage aval, des électrons secondaires provenant ainsi de l'étage amont, afin d'éviter un décalage de la localisation spatiale dû à l'inclinaison des flancs.Advantageously, the distance between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons thus coming from the upstream stage, in order to avoid a shift in the spatial location due to the inclination of the sides.

Bien que ces paramètres puissent dépendre de la réalisation particulière concernée, il est actuellement considéré que:

  • - la distance entre étages de dynodes consécutifs doit être de l'ordre de huit à dix fois la largeur apparente des lamelles;
  • - la distance entre les deux plans d'un même étage de dynode doit être de l'ordre du quart de la distance entre deux étages de dynodes consécutifs;
  • - la largeur apparente (sensiblement la largeur hors tout) des lamelles doit être au plus égale à environ 0,5 mm;
  • - le champ électrique moyen à l'intérieur du tube électronqiue doit être au moins égal à environ 500 volts/centimètres;
  • - l'énergie initiale des électrons secondaires effectivement émis est, de préférence, au moins égale à 5 électrons-volt environ, et peut aller jusqu'à quelques dizaines d'électrons-volt.
Although these parameters may depend on the particular embodiment concerned, it is currently considered that:
  • - the distance between stages of consecutive dynodes must be of the order of eight to ten times the apparent width of the strips;
  • - the distance between the two planes of the same dynode stage must be of the order of a quarter of the distance between two consecutive dynode stages;
  • - the apparent width (appreciably the overall width) of the slats must be at most equal to approximately 0.5 mm;
  • - the average electric field inside the electron tube must be at least equal to around 500 volts / centimeters;
  • - The initial energy of the secondary electrons actually emitted is preferably at least equal to about 5 electron volts, and can range up to a few tens of electron volts.

Toutes les lamelles du tube peuvent être parallèles, mais on peut aussi améliorer les propriétés de localisation en les orientant dans des directions différentes le long des différents étages de dynodes, d'une manière régulière. Le plus simple est de rendre alors les lamelles d'un étage de dynode perpendiculaires à celles de l'étage précédent.All the lamellae of the tube can be parallel, but the localization properties can also be improved by orienting them in different directions along the different stages of dynodes, in a regular manner. The easiest way is to make the slats of a dynode stage perpendicular to those of the previous stage.

L'invention permet également une bonne détection pour un photo-électron isolé (ou une particule chargée incidente isolée). A cet effet, il est prévu que la tension électrique régnant entre les deux plans d'un même étage de dynodes soit au plus égale à environ 50 volts, tout du moins pour les premiers étages de dynodes.The invention also allows good detection for an isolated photo-electron (or an isolated incident charged particle). To this end, it is expected that the electrical voltage prevailing between the two planes of the same stage of dynodes is at most equal to about 50 volts, at least for the first stages of dynodes.

Selon une autre caractéristique encore de l'invention, on prévoit des moyens pour ajuster l'alimentation des électrodes, afin d'optimiser la résolution spatiale du dispositif multiplicateur d'électrons.According to yet another characteristic of the invention, means are provided for adjusting the supply of the electrodes, in order to optimize the spatial resolution of the electron multiplier device.

Suivant les applications, ce dernier peut comprendre une cathode ou une photocathode à proximité de la première dynode.Depending on the applications, the latter may include a cathode or a photocathode near the first dynode.

Bien qu'une anode classique suffise en certains cas, il comprend en principe, comme anode, une anode divisée à connexions multiples, une surface électroluminescente, une anode résistive ou tout moyen équivalent permettant d'utiliser la propriété de localisation.Although a conventional anode is sufficient in certain cases, it in principle comprises, as anode, a divided anode with multiple connections, an electroluminescent surface, a resistive anode or any equivalent means allowing the use of the location property.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels:

  • la figure 1 est une vue en coupe verticale d'un photomultiplicateur selon l'invention;
  • la figure 2 est une vue en coupe horizontale du photomultiplicateur de la figure 1 ;
  • la figure 3 est un schéma électrique illustrant l'interconnexion des électrodes du même photomultiplicateur;
  • la figure 4 est un schéma partiel de deux étages de dynodes consécutifs du photomultiplicateur des figures 1 et 2; et
  • la figure 5 est un diagramme tendant à permettre une interprétation de la résolution spatiale dans la direction X perpendiculaire à grande dimension des lamelles.
Other characteristics and advantages of the invention will appear on examining the detailed description below, and the appended drawings, in which:
  • Figure 1 is a vertical sectional view of a photomultiplier according to the invention;
  • Figure 2 is a horizontal sectional view of the photomultiplier of Figure 1;
  • FIG. 3 is an electrical diagram illustrating the interconnection of the electrodes of the same photomultiplier;
  • Figure 4 is a partial diagram of two stages of consecutive dynodes of the photomultiplier of Figures 1 and 2; and
  • FIG. 5 is a diagram tending to allow an interpretation of the spatial resolution in the direction X perpendicular to large dimension of the lamellae.

Dans la présente invention, la géométrie des principaux constituants du tube multiplicateur d'électrons est importante. En conséquence, les dessins sont à considérer comme incorporés à la présente description, pour contribuer, le cas échéant, à compléter celle-ci, ainsi qu'à définir l'invention.In the present invention, the geometry of the main constituents of the electron multiplier tube is important. Consequently, the drawings are to be considered as incorporated into the present description, to contribute, where appropriate, to supplement it, as well as to define the invention.

La description détaillée ci-après s'intéresse à un tube photomultiplicateur. Dans un tel tube, le signal incident est délivré par des photons, dont on sait qu'ils peuvent exciter les dynodes d'un multiplicateur d'électrons, soit directement, soit par l'intermédiaire d'une photocathode. Mais la présente invention peut avoir des applications autres que photoniques, car, plus généralement, ce peuvent être les électrons eux-mêmes, ou d'autres types de particules chargées, qui définissent le signal d'entrée d'un tube multiplicateur d'électrons.The detailed description below is concerned with a photomultiplier tube. In such a tube, the incident signal is delivered by photons, which we know can excite the dynodes of an electron multiplier, either directly or through a photocathode. However, the present invention may have applications other than photonics, because, more generally, it may be the electrons themselves, or other types of charged particles, which define the input signal of an electron multiplier tube. .

Sur les figures 1 et 2, le tube photomultiplicateur comporte une enceinte à vide TPM, qui loge ses constituants principaux. La figure 1 montre que cette enceinte possède en partie supérieure une fenêtre d'entrée plane FE. Juste derrière cette fenêtre est placée une photocathode de proximité notée PPC. Au-dessous de celle-ci (figure 1), se trouvent prévus dix étages de dynodes Dl à Dlo. Ces derniers sont suivis, plus bas encore, d'une anode divisée en «mosaïque». Cette anode comporte un grand nombre d'éléments tels que A, et A;, respectivement reliés à des connexions électriques de sortie individuelles EA, et EAi. Dans leur ensemble, les éléments d'anode sont notés An. Enfin, d'autres connexions électriques telles que El et El permettent de porter les électrodes internes du photomultiplicateur aux potentiels convenables pour son fonctionnement.In FIGS. 1 and 2, the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents. Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC. Below this (figure 1), there are provided ten stages of dynodes D l to D lo . These are followed, further down, by an anode divided into "mosaics". This anode comprises a large number of elements such as A, and A ;, respectively connected to individual electrical output connections EA, and EA i . As a whole, the anode elements are denoted A n . Finally, other electrical connections such as E l and E l make it possible to bring the internal electrodes of the photomultiplier to the potentials suitable for its operation.

La figure 2 montre en plus la forme généralement circulaire de la structure porteuse SP qui soutient les dynodes; cette structure est munie de colonnes isolantes telles que CP.FIG. 2 also shows the generally circular shape of the support structure SP which supports the dynodes; this structure is provided with insulating columns such as CP.

La figure 3 illustre le schéma électrique associé au photomultiplicateur, dont l'enceinte TPM est rappelée en trait tireté. On y voit mieux que chaque étage de dynode tel que DI comporte, selon l'invention, deux niveaux ou plans d'électrodes tels que D11 et D12, placés l'un après l'autre le long de l'axe F de champ électrique du tube, et perpendiculairement à cet axe.FIG. 3 illustrates the electrical diagram associated with the photomultiplier, the TPM enclosure of which is recalled in dashed lines. It is better to see that each dynode stage such as D I comprises, according to the invention, two levels or planes of electrodes such as D 11 and D 12 , placed one after the other along the axis F electric field of the tube, and perpendicular to this axis.

La photocathode de proximité PPC est reliée à une tension - HT par la connexion électrique El. A l'autre extrémité, la connexion électrique E2 est reliée à la masse. Un réseau diviseur de tension à résistances est monté entre la ligne E2 et la ligne El afin d'apporter à chacun des plans de dynodes une tension électrique approprié. Par la haute tension d'alimentation, on définit la différence de potentiel, donc le champ électrique, entre les différents plans de dynodes. Les résistances sont ajustées de manière que ce champ électrique soit rendu aussi uniforme que possible.The proximity photocathode PPC is connected to a voltage - HT by the electrical connection E l . At the other end, the electrical connection E 2 is connected to ground. A voltage divider network with resistors is mounted between line E 2 and line E 1 in order to provide each of the dynode planes with an appropriate electrical voltage. The high supply voltage defines the potential difference, therefore the electric field, between the different dynode planes. The resistors are adjusted so that this electric field is made as uniform as possible.

En pratique, en dehors des résistances d'extrémités Ro et R3, on prévoit une résistance R, entre le premier plan de chaque dynode (par exemple le plan D21 de la dynode D2), et le dernier plan de la dynode précédente (en l'espace le plan D12 de la dynode D1). Une résistance R2, plus faible, est prévue entre les deux plans de chaque étage de dynodes (par exemple entre les plans D21 et D22 de la dynode D2). L'adjonction de capacités pourra éventuellement être requise en certains points de ce réseau résistif série, en particulier aux derniers étages. Les anodes An sont connectées à la masse par des résistances individuelles.In practice, apart from the end resistances R o and R 3 , a resistance R is provided, between the first plane of each dynode (for example the plane D 21 of the dynode D 2 ), and the last plane of the dynode previous (in space the plane D 12 of the dynode D 1 ). A lower resistance R 2 is provided between the two planes of each stage of dynodes (for example between the planes D 21 and D 22 of the dynode D 2 ). The addition of capacities may possibly be required at certain points of this series resistive network, in particular on the top floors. The anodes A n are connected to ground by individual resistors.

La figure 4 illustre à plus grande échelle deux étages de dynodes consécutifs, qui sont supposés être les étages Dl et D2. Comme précédemment indiqué, l'étage Dl comprend deux plans D11 et D12 d'éléments de dynodes. L'étage D2 comprend lui aussi deux plans D21 et D22 d'éléments de dynodes.FIG. 4 illustrates on a larger scale two stages of consecutive dynodes, which are supposed to be stages D l and D 2 . As previously indicated, the stage D l comprises two planes D11 and D 12 of dynode elements. The stage D 2 also includes two planes D 21 and D 22 of dynode elements.

Individuellement, les élements de dynodes sont des lamelles prismatiques ou cylindriques, parallèles entre elles, et bien entendu coplanaires à l'intérieur d'un même plan de dynodes. Ces lamelles sont convenablement traitées pour posséder la propriété d'émission électronique secondaire, sur leurs faces orientées du côté de la fenêtre d'entrée FE, c'est-à-dire pour toute arrivée dans la direction P d'un photon ou d'une particule chargée telle qu'un électron. Cette direction P est parallèle ou faiblement inclinée sur la direction générale de l'axe F, selon lequel s'établit approximativement le champ électrique à l'intérieur du tube.Individually, the dynode elements are prismatic or cylindrical lamellae, parallel to each other, and of course coplanar within the same plane of dynodes. These lamellae are suitably treated to have the property of secondary electronic emission, on their faces oriented towards the side of the FE entry window, that is to say for any arrival in the direction P of a photon or a charged particle such as an electron. This direction P is parallel or slightly inclined to the general direction of the axis F, along which the electric field inside the tube is established approximately.

Il est actuellement considéré comme préférable d'utiliser des éléments de dynodes dont la section droite est en forme de triangle isocèle. La base B, adjacente aux deux angles égaux du triangle isocèle, est perpendiculaire à la direction générale F. Elle est tournée vers l'aval. Les deux côtés égaux L et R du triangle isocèle sont rendus capables d'émission électronique secondaire, et l'on observe qu'ils font face symétriquement à la direction générale d'incidence P. Pour sa part, l'angle a est avantageusement compris entre 40 et 70° environ. Dans l'exemple illustré, les lamelles ont une section droite en triangle rectangle isocèle.It is currently considered preferable to use elements of dynodes whose cross section is in the form of an isosceles triangle. The base B, adjacent to the two equal angles of the isosceles triangle, is perpendicular to the general direction F. It is turned downstream. The two equal sides L and R of the isosceles triangle are made capable of secondary electronic emission, and it is observed that they face symmetrically with the general direction of incidence P. For its part, the angle a is advantageously understood between 40 and 70 ° approximately. In the example illustrated, the lamellae have a cross section in an isosceles right triangle.

La «largeur apparente» des lamelles peut être définie comme la largeur hors tout qu'elles présentent, perpendiculairement à la direction F. Cette largeur est ici égale à la base B du triangle rectangle isocèle, qui mesure environ 0,5 mm dans cet exemple. Un espacement de 0,5 mm est également prévu entre les sommets adjacents (d'angle a) de deux lamelles d'un même plan de dynodes. Enfin, les lamelles du second plan d'un étage de dynode, par exemple le plan D12 de l'étage D1, sont intercalées avec celles du plan précédent, ici D11. De ce fait, l'ensemble des éléments de dynodes des deux plans d'un même étage de dynode apparaît comme un obstacle, ou une chicane, pour les trajectoires (électroniques) parallèles à la direction F.The "apparent width" of the slats can be defined as the overall width that they present, perpendicular to the direction F. This width is here equal to the base B of the isosceles right triangle, which measures approximately 0.5 mm in this example . A spacing of 0.5 mm is also provided between the adjacent vertices (of angle a) of two strips of the same plane of dynodes. Finally, the lamellae of the second plane of a dynode stage, for example the plane D 12 of the stage D 1 , are interspersed with those of the preceding plane, here D 11 . Therefore, the set of dynode elements of the two planes of the same dynode stage appears as an obstacle, or a baffle, for the (electronic) trajectories parallel to the direction F.

Par ailleurs, on note Zo la distance entre deux plans de dynodes D11 et D12 d'un même étage, distance prise selon la direction F. On note Z1 la distance prise de la même manière entre deux étages de dynodes consécutifs, c'est-à-dire par exemple entre le premier plan D11 de l'étage DI et le premier plan 21 de l'étage D2. De préférence, Z1 est à peu près égal à quatre fois Z0.Furthermore, we denote by Z o the distance between two planes of dynodes D 11 and D 12 of the same stage, distance taken in the direction F. We denote by Z 1 the distance taken in the same way between two stages of consecutive dynodes, that is to say for example between the first plane D 11 of the stage D I and the first plane 21 of the stage D 2 . Preferably, Z 1 is approximately equal to four times Z 0 .

Dans un mode de réalisation particulier, on prend Z0 = 1 mm, et Z1 = 4 mm, si bien que la distance entre deux étages de dynodes est de l'ordre de huit à dix fois la largeur apparente des lamelles formant les éléments de dynodes individuels.In a particular embodiment, we take Z 0 = 1 mm, and Z 1 = 4 mm, so that the distance between two stages of dynodes is of the order of eight to ten times the apparent width of the lamellae forming the elements. individual dynodes.

Sur la figure 4, on considère maintenant les trajectoires des électrons secondaires qui partent du flanc droit de la lamelle D110. N désigne la normale à ce flanc droit, au point de départ de ses électrons.In FIG. 4, we now consider the trajectories of the secondary electrons which leave from the right flank of the lamella D 110 . N denotes the normal to this right flank, at the starting point of its electrons.

Il convient de définir aussi les limites inférieures de l'énergie initiale des émissions secondaires, ainsi que de l'angle d'émission, compté dans le sens trigonométrique par rapport à la normale N. Cet angle d'émission est bien entendu limité aux électrons secondaires utiles, c'est-à-dire ceux qui ne sont pas recapturés par le même plan de lamelles. Il a été observé que l'énergie initiale doit être supérieure à environ 5 électrons-volt, et que l'angle d'émission initial doit être inférieur à 45°, c'est-à-dire que les électrons secondaires utiles sont compris dans un cône dont l'ouverture angulaire est de 45° par rapport à la normale.It is also necessary to define the lower limits of the initial energy of the secondary emissions, as well as of the angle of emission, counted in the trigonometric direction compared to the normal NOT . This emission angle is of course limited to the useful secondary electrons, that is to say those which are not recaptured by the same plane of lamellae. It has been observed that the initial energy must be greater than about 5 electron volts, and that the initial emission angle must be less than 45 °, that is to say that the useful secondary electrons are included in a cone whose angular opening is 45 ° compared to normal.

Il a été également observé que la largeur des lamelles doit alors être au plus égale à 0,5 mm, pour un champ électrique de 500 volts/cm. A cette valeur du champ correspond une tension de 50 volts entre les deux plans D11 et D12 de la dynode D1, puisque Zo = 1 mm.It has also been observed that the width of the slats must then be at most equal to 0.5 mm, for an electric field of 500 volts / cm. This field value corresponds to a voltage of 50 volts between the two planes D 11 and D 12 of the dynode D 1 , since Z o = 1 mm.

Au-delà de cette limite supérieure pour la valeur, une partie importsnte des électrons secondaires émis par la lamelle sera recepturée par la surface émissive d'origine, en raison du fort champ électrique qui règne. Ce qui précède tient compte d'une loi angulaire d'émission des électrons secondaires autour de la normale N qui s'établit en cosinus 0.Beyond this upper limit for the value, an import part of the secondary electrons emitted by the coverslip will be received by the emissive surface of origin, due to the strong electric field which reigns. The above takes into account an angular law of emission of secondary electrons around the normal N which is established in cosine 0.

Par ailleurs, un filtrage en énergie des électrons intervient, du fait de la présence de la lamelle adjacente D111. Il a été observé que l'énergie maximale des électrons secondaires partant effectivement de la lamelle D110 s'établit à quelques dizaines d'électrons-volt, en l'espèce environ 15 électrons-volt.Furthermore, an energy filtering of the electrons occurs, due to the presence of the adjacent lamella D 111 . It has been observed that the maximum energy of the secondary electrons actually leaving the lamella D 110 is established at a few tens of electron volts, in this case about 15 electron volts.

Pour un angle d'émission donné, par exemple =0°, on obtient de la sorte des trajectoires T1min et T1max, correspondant respectivement à 5 électrons-volt et 15 électrons-volt. Ces trajectoires frappent pratiquement seulement les deux lamelles D211 de l'étage de dynode suivant D2. La trajectoire possédant des énergies proches de ces valeurs extrêmes frappe les mêmes lamelles. Par contre, une partie des trajectoires d'énergie intermédiaire passent entre les lamelles D211 et D212, pour venir frapper, de manière sensiblement symétrique, les deux flancs de la lamelle D222, laquelle fait partie du second plan D22 de l'étage de dynode D2. On a représenté en Tmed la trajectoire intermédiaire correspondant à Une énergie d'environ 10 électrons-volt. Une observation attentive montre que l'une des trajectoires Tex passerait entre les lamelles D212 et D222. En fait, il s'agit d'une très petite fraction (en termes de probabilité) des électrons secondaires émis. Un électron secondaire qui se propagerait suivant cette trajectoire serait d'ailleurs capté par l'étage de dynode suivant. De plus, on peut estimer que les effets de bords produits sur le champ électrique par les pointes des lamelles D212 et Dm permettraient en fait la capture effective de l'électron secondaire au niveau de la dynode D2, à la suite de quoi il peut alors émettre à nouveau des électrons secondaires, comme l'auront fait les autres trajectoires arrivant sur la dynode D2.For a given emission angle, for example = 0 °, one thus obtains trajectories T 1min and T 1max , corresponding respectively to 5 electron-volts and 15 electron-volts. These trajectories practically strike only the two strips D 211 of the dynode stage along D 2 . The trajectory with energies close to these extreme values hits the same lamellae. On the other hand, part of the intermediate energy trajectories pass between the lamellas D 211 and D 212 , to strike, in a substantially symmetrical manner, the two sides of the lamella D 222 , which is part of the second plane D 22 of the floor of dynode D 2 . The intermediate trajectory corresponding to an energy of approximately 10 electron volts has been shown in T med . Careful observation shows that one of the trajectories T ex would pass between the lamellas D 212 and D 222 . In fact, it is a very small fraction (in terms of probability) of the secondary electrons emitted. A secondary electron which would propagate along this trajectory would moreover be picked up by the next dynode stage. In addition, it can be estimated that the edge effects produced on the electric field by the tips of the lamellas D 212 and D m would in fact allow the effective capture of the secondary electron at the level of the dynode D 2 , as a result of which it can then emit secondary electrons again, as the other trajectories arriving on the dynode D 2 will have done .

Alors que ce qui précède concerne le premier plan d'un étage de dynodes, il a été observé que le second plan permet aussi une localisation (Figure 4).While the above concerns the first plane of a dynode stage, it has been observed that the second plane also allows localization (Figure 4).

Les conditions de fonctionnement qui viennent d'être décrites ne font intervenir que la projection des trajectoires électroniques sur le plan X-Z. Il a été observé cependant que l'on obtient ainsi un fonctionnement correct, en termes de localisation, non seulement dans la direction X, mais aussi dans la direction Y.The operating conditions which have just been described only involve the projection of the electronic trajectories onto the X-Z plane. It has been observed, however, that a correct functioning is thus obtained, in terms of location, not only in the X direction, but also in the Y direction.

La description ci-dessus montre que:

  • - la distance Z1 entre deux étages de dynodes consécutifs, qui est grande par rapport à la distance Zo entre les deux plans d'un même étage, peut être ajustée en fonction du champ électrique de sorte que les électrons secondaires provenant de l'étage amont D1 frappent selon une distribution concentrée un nombre restreint de lamelles de l'étage aval D2;
  • - de plus, lorsqu'on utilise, comme c'est le cas ici, des lamelles dont la section droite est symétrique autour de l'axe F, il a été observé que la distance ZI peut être choisie de sorte que les électrons secondaires provenant du premier plan de l'étage amont frappent de manière sensiblement équilibrée des flancs des lamelles de l'étage aval qui ont des inclinaisons symétriques. Et ceci s'étend aux électrons secondaires provenant du second plan de l'étage amont.
The above description shows that:
  • - the distance Z 1 between two stages of consecutive dynodes, which is large compared to the distance Z o between the two planes of the same stage, can be adjusted as a function of the electric field so that the secondary electrons coming from the upstream stage D 1 strike in a concentrated distribution a limited number of lamellae of the downstream stage D 2 ;
  • - in addition, when using, as is the case here, lamellae whose cross section is symmetrical around the axis F, it has been observed that the distance Z I can be chosen so that the secondary electrons coming from the foreground of the upstream stage strike in a substantially balanced manner on the sides of the lamellae of the downstream stage which have symmetrical inclinations. And this extends to the secondary electrons coming from the second plane of the upstream stage.

Par ailleurs, il a été constaté que la distribution dans la direction Y parallèle à la grande dimension des lamelles est interprétée par une simple convolution des parcours latéraux des électrons secondaires au niveau de chacun des étages aval.Furthermore, it has been observed that the distribution in the direction Y parallel to the large dimension of the lamellae is interpreted by a simple convolution of the lateral paths of the secondary electrons at each of the downstream stages.

Il est maintenant fait référence à la figure 5.Reference is now made to FIG. 5.

Celle-ci montre la distribution probabiliste binomiale caractérisée par p = q, où et q sont les probabilités qu'un électron secondaire frappe le flanc droit et le flanc gauche, respectivement, de lamelles de l'étage suivant. Les chiffres mis à l'intérieur d'un cercle sont proportionnels à la probabilité de production des électrons secondaires à partir d'un seul électron partant du premier étage de dynode (n = 1), les autres étages étant numérotés de manière croissante sur l'axe vertical orienté vers le bas jusqu'à l'anode. L'axe horizontal correspond à des distances exprimées en unité du parcours latéral moyen des électrons secondaires au niveau de l'étage suivant. Ces distances sont notées X(p).This shows the binomial probabilistic distribution characterized by p = q, where and q are the probabilities that a secondary electron hits the right flank and the left flank, respectively, of lamellas of the next stage. The figures inside a circle are proportional to the probability of the production of secondary electrons from a single electron starting from the first stage of dynode (n = 1), the other stages being numbered in increasing order on l vertical axis pointing down to the anode. The horizontal axis corresponds to distances expressed in units of the average lateral path of the secondary electrons at the level of the next stage. These distances are denoted X (p).

Dans la direction X, il apparaît donc qu'on obtient au niveau de l'anode une distribution très concentrée des électrons secondaires, cette distribution étant pratiquement centrée sur l'axe initial Fo. Le décalage tient principalement à l'inclinaison du flanc de la lamelle qui a donné le premier électron secondaire. Mais on n'observe pas, par la suite, une dérive globale du flux d'électrons secondaires par rapport à l'axe Fo, dérive qui s'amplifierait d'un étage à l'autre (à condition que p = q). Il en résulte finalement un léger décalage latéral, puisque si le nombre cerclé 126 de gauche se trouve bien sur l'axe Fo à la figure 5, le nombre 126 cerclé de droite est légèrement décalé, ce qui correspond à un décalage de la distribution. II a été observé que ce décalage peut être corrigé en faisant varier d'environ 10% les valeurs de p et de q. Ceci peut être obtenu en agissant sur la distance Zl, ainsi que le comprendra l'homme de l'art. Mais cette action joue de la même manière, quelle que soit l'inclinaison de la face ou flanc de lamelle ayant produit l'électron linitial.In the X direction, it therefore appears that a very concentrated distribution of the secondary electrons is obtained at the anode, this distribution being practically centered on the initial axis F o . The offset is mainly due to the inclination of the flank of the lamella which gave the first secondary electron. But we do not observe, thereafter, a global drift of the flow of secondary electrons compared to the axis F o , drift which would amplify from one stage to another (provided that p = q) . This ultimately results in a slight lateral offset, since if the number circled on the left is indeed on the axis F o in Figure 5, the number 126 circled on the right is slightly offset, which corresponds to an offset in the distribution . It has been observed that this offset can be corrected by varying the values of p and q by approximately 10%. This can be obtained by acting on the distance Z l , as will be understood by those skilled in the art. But this action works in the same way, whatever the inclination of the face or flank of the coverslip that produced the initial electron.

Le parcours latéral moyen, p (E, Z) des électrons secondaires joue un rôle essentiel dans ce dispositif. Il s'est avéré en effet que la géométrie de dynodes peut être définie à partir de ce paramètre; par exemple:

  • - la largeur de lamelles 1 est choisie de façon que p (E, Z = 1/2) soit plus grand que 1/2 (pour un gain élevé), mais que p (E, Z = Z1) soit le plus petit possible (pour une bonne localisation).
  • - la distance Z, est également choisie par un compromis entre la résolution, p (E, Z = ZI), et la largeur de la distribution des électrons, qui est également proportionnelle à p, et qui doit être suffisamment grande par rapport à 1 pour éviter la dérive systématique en X.
The mean lateral path, p (E, Z) of the secondary electrons plays an essential role in this device. It turns out that the geometry of dynodes can be defined from this parameter; for example:
  • - the width of the slats 1 is chosen so that p (E, Z = 1/2) is greater than 1/2 (for a high gain), but that p (E, Z = Z 1 ) is the smallest possible (for good localization).
  • - the distance Z, is also chosen by a compromise between the resolution, p (E, Z = Z I ), and the width of the distribution of the electrons, which is also proportional to p, and which must be sufficiently large with respect to 1 to avoid systematic drift in X.

Un dispositif photomultiplicateur constitué comme décrit ci-dessus peu être logé dans un tube constitué comme suit:

  • - hauteur environ 65 mm;
  • - diamètre extérieur 134 mm;
  • - fenêtre d'entrée de diamètre 100 mm, munie d'une photocathode de proximité;
  • - étages de dynode comme décrit plus haut, avec une différence de potentiel d'environ 50 volts entre deux plans d'un même étage de dynode, et une différence de potentiel d'environ 200 volts entre étages de dynodes;
  • - anode divisée en 164 éléments d'environ 7x7 mm2, séparés d'un intervalle d'environ 0,5 mm;
  • - on obtient ainsi un gain de 106 à 107 pour dix étages de dynodes.
A photomultiplier device constituted as described above can be housed in a tube constituted as follows:
  • - height about 65 mm;
  • - outer diameter 134 mm;
  • - 100 mm diameter entry window, equipped with a proximity photocathode;
  • - dynode stages as described above, with a potential difference of approximately 50 volts between two planes of the same dynode stage, and a potential difference of approximately 200 volts between stages of dynodes;
  • - anode divided into 164 elements of approximately 7x7 mm 2 , separated by an interval of approximately 0.5 mm;
  • - This gives a gain of 10 6 to 10 7 for ten stages of dynodes.

A la base, la résolution obtenue est d'environ 12 mm dans la direction X transversale à la grande dimension des lamelles, et d'environ 10 mm dans la direction Y parallèle à la grande dimension des lamelles. On obtient en effet sensiblement la même résolution dans ces deux directions X et Y, bien que la structure d'un plan de lamelles donné ne soit pas du tout isotrope.Basically, the resolution obtained is approximately 12 mm in the X direction transverse to the large dimension of the lamellae, and approximately 10 mm in the Y direction parallel to the large dimension of the slats. In fact, the same resolution is obtained in these two directions X and Y, although the structure of a given plane of lamellae is not at all isotropic.

Pour égaliser encore la résolution en X et en Y, on peut bien entendu croiser alternativement le sens des lamelles dans les étages de dynodes successifs. La résolution spatiale optimale peut être obtenue aisément en ajustant la haute tension, ce qui agit globalement sur le champ électrique, voire même par une action plus fine sur le champ électrique au niveau de chacun des étages et des plans de dynodes.To further equalize the resolution in X and in Y, it is of course possible to alternately cross the direction of the lamellae in the stages of successive dynodes. The optimal spatial resolution can be easily obtained by adjusting the high voltage, which acts globally on the electric field, or even by a finer action on the electric field at the level of each of the stages and the dynode planes.

Le photomultiplicateur ainsi obtenu présente une surface sensible très grande, pour une sensibilité qui peut devenir comparable à celle du dispositif antérieur. En effet, une résolution spatiale améliorée peut être encore obtenue en réduisant la dimension 8 des lamelles de dynodes, et en agissant de manière correspondante sur le champ électrique et les dimensions verticales (ou longitudinales) du dispositif.The photomultiplier thus obtained has a very large sensitive surface, for a sensitivity which can become comparable to that of the prior device. Indeed, an improved spatial resolution can be further obtained by reducing the dimension 8 of the dynode strips, and by acting in a corresponding manner on the electric field and the vertical (or longitudinal) dimensions of the device.

De telles caractéristiques de résolution sont suffisantes pour une grande partie des applications. Elles conviennent particulièrement bien pour des applications comme l'imagerie en rayons X ou en rayons y.Such resolution characteristics are sufficient for a large part of the applications. They are particularly suitable for applications such as X-ray or y-ray imaging.

Par exemple, lorsqu'on effectue une imagerie en rayons y à l'aide d'une caméra du type Anger, constituée par un cristal d'iodure de sodium dont l'épaisseur est de 10 mm, et, comme détecteur, un réseau de photomultiplicateurs 2 pouces (50 mm), couplé directement au cristal, la résolution spatiale obtenue après calcul de barycentre est au mieux de l'ordre de 4 mm. Dans ces conditions, on observe que la résolution spatiale est dominée par la résolution du détecteur, environ 50 mm, ce qui est trop faible par rapport à la taille du spot des faisceaux de scintillation qui est d'environ deux fois l'épaisseur du cristal, soit 20 mm.For example, when performing y-ray imaging using an Anger-type camera, consisting of a sodium iodide crystal with a thickness of 10 mm, and, as a detector, an array of 2 inch (50 mm) photomultipliers, coupled directly to the crystal, the spatial resolution obtained after calculation of the barycenter is at best of the order of 4 mm. Under these conditions, it is observed that the spatial resolution is dominated by the resolution of the detector, approximately 50 mm, which is too small compared to the size of the spot of the scintillation beams which is approximately twice the thickness of the crystal. , or 20 mm.

A ce niveau, même une résolution limitée des détecteurs peut améliorer la résolution finale par un facteur important. En effet, avec une résolution de 10 mm du photodétecteur, on peut at- teindre une résolution finale de 1,6 mm.At this level, even a limited resolution of the detectors can improve the final resolution by an important factor. Indeed, with a resolution of 10 mm from the photodetector, one can reach a final resolution of 1.6 mm.

C'est précisément ce que peut faire le dispositif photomultiplicateur décrit en détail plus haut.This is precisely what the photomultiplier device described in detail above can do.

Il convient enfin de noter par ailleurs les excellentes propriétés obtenues par le multiplicateur d'électrons selon l'invention, en termes de temps de réponse et de linéarité du gain, en plus de la résolution spatiale déjà mentionnée.Finally, it should also be noted the excellent properties obtained by the electron multiplier according to the invention, in terms of response time and gain linearity, in addition to the spatial resolution already mentioned.

Claims (13)

1. An electron multiplier device comprising, in a vacuum tube:
- an entrance window (FE),
- a succession of plane, parallel electrodes comprising small interconnected parallel bars, capable of secondary electrical emission, each dynode stage (DI...) comprising two successive planes (Dn, D12...) adapted to intercept the electrical trajectories in the manner of a baffle, the width of the bars, in cross-section, being at most equal to 0.5 mm,
- an anode capable of localizing the impact of the secondary electrons at its level, and
- means (El, E;, Ro-R3) connected to these dynode stages (D1-D10) in order to establish between them an electron accelerating electric field, the general direction of which is perpendicular to the electrodes, characterised in that the distance (ZI) between two consecutive dynode stages (D1-D2), which is several times greater than the width of the bars, is selected, depending on the electrical field, in such a manner that the secondary electrons originating from the upstream stage (DI), in a concentrated distribution, a restricted number of bars of the downstream stage (D2), and in that the distance (Zo) between the two successive planes of each dynode stage is substantially equal to a quarter of the distance (Zl) between dynode stages and is selected, depending on the electrical field prevailing between these two planes, to avoid the recapture of a secondary electron by this dynode stage.
2. A device according to Claim 1, characterised in that the prismatic or cylindrical bars have a cross-section which projects at the entrance window side, with two flanks (L, R) capable of secondary emission and substantially symmetrical with respect to the general direction (F) of the electrical field, and in that the distance (ZI) between dynode stages is selected in such a manner that the secondary electrons originating from the upstream stage (D,), in a substantially balanced manner, flanks of bars of the downstream stage which have symmetrical inclinations (D211R, D212L, D222R and L).
3. A device according to Claim 2, characterised in that the cross-section of the bars is substantially in the form of an isosceles triangle in which the equal angles are between about 40 and 70°.
4. A device according to either one of Claims 2 and 3, characterised in that the distance (ZI) between consecutive dynode stages is selected to unbalance slightly the symmetry of impact, on the downstream stage, of the secondary electrons originating from the upstream stage, in order to avoid a dislocation of the spatial localization due to the inclination of the flanks.
5. A device according to any one of Claims 1 to 4, characterised in that the visible width of the bars is at most equal to about 0.5 mm.
6. A device according to any one of Claims 1 to 5, characterised in that the average electrical field is at least equal to about 500V/cm.
7. A device according to anyone of the preceding Claims, characterised in that the initial energy of the secondary electrons effectively emitted is at least equal to about 5 electron volts.
8. A device according to Claim 7, characterised in that the initial energy of the secondary electrons effectively emitted is limited to some tens of electron volts.
9. A device according to anyone of the preceding Claims, characterised in that at least two consecutive dynode stages have their bars orientated in different directions, preferably perpendicular.
10. A device according to any one of the preceding Claims, characterised in that the electric potential prevailing between the two planes of one and the same dynode stage is at most equal to about 50 volts, at least for the first stages, which permits a satisfactory detection of an isolated photoelectron.
11. A device according to any one of the preceding Claims, characterised by means for adjusting the feed of the electrodes in order to optimize the resolution.
12. A device according to any one of the preceding Claims, characterised in that it comprises a cathode or photocathode (PPC) close to the first dynode.
13. A device according to any one of the preceding Claims, characterised in that it comprises, as an anode (An), a divided anode with multiple connections, an electroluminescent surface, or a resistive anode.
EP85400897A 1984-05-09 1985-05-07 Electron multiplier device with electric field localisation Expired EP0165119B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400897T ATE48338T1 (en) 1984-05-09 1985-05-07 ELECTRON MULTIPLIER DEVICE WITH ELECTRIC FIELD LOCALIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407142 1984-05-09
FR8407142A FR2566175B1 (en) 1984-05-09 1984-05-09 ELECTRON MULTIPLIER DEVICE, LOCATED BY THE ELECTRIC FIELD

Publications (2)

Publication Number Publication Date
EP0165119A1 EP0165119A1 (en) 1985-12-18
EP0165119B1 true EP0165119B1 (en) 1989-11-29

Family

ID=9303797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400897A Expired EP0165119B1 (en) 1984-05-09 1985-05-07 Electron multiplier device with electric field localisation

Country Status (6)

Country Link
US (1) US4914351A (en)
EP (1) EP0165119B1 (en)
JP (1) JPS6182646A (en)
AT (1) ATE48338T1 (en)
DE (1) DE3574522D1 (en)
FR (1) FR2566175B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592523A1 (en) * 1985-12-31 1987-07-03 Hyperelec Sa HIGH EFFICIENCY COLLECTION MULTIPLIER ELEMENT
FR2634062A1 (en) * 1988-07-05 1990-01-12 Radiotechnique Compelec "SHEET" TYPE DYNODE, ELECTRON MULTIPLIER AND PHOTOMULTIPLIER TUBE COMPRISING SUCH DYNODES
JP3056771B2 (en) * 1990-08-15 2000-06-26 浜松ホトニクス株式会社 Electron multiplier
WO1998006217A1 (en) * 1996-08-05 1998-02-12 Culkin Joseph B Video display and image intensifier system
US5886465A (en) * 1996-09-26 1999-03-23 Hamamatsu Photonics K.K. Photomultiplier tube with multi-layer anode and final stage dynode
JP2005011592A (en) 2003-06-17 2005-01-13 Hamamatsu Photonics Kk Electron multiplier
JP4819437B2 (en) * 2005-08-12 2011-11-24 浜松ホトニクス株式会社 Photomultiplier tube
JP4849521B2 (en) * 2006-02-28 2012-01-11 浜松ホトニクス株式会社 Photomultiplier tube and radiation detector
JP5284635B2 (en) * 2007-12-21 2013-09-11 浜松ホトニクス株式会社 Electron multiplier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579017A (en) * 1968-06-17 1971-05-18 Scient Research Instr Corp Harp electron multiplier
FR2445018A1 (en) * 1978-12-22 1980-07-18 Anvar ELECTRON MULTIPLIER TUBE WITH AXIAL MAGNETIC FIELD
US4649268A (en) * 1984-03-09 1987-03-10 Siemens Gammasonics, Inc. Imaging dynodes arrangement

Also Published As

Publication number Publication date
JPS6182646A (en) 1986-04-26
EP0165119A1 (en) 1985-12-18
ATE48338T1 (en) 1989-12-15
FR2566175A1 (en) 1985-12-20
DE3574522D1 (en) 1990-01-04
JPH0421303B2 (en) 1992-04-09
FR2566175B1 (en) 1986-10-10
US4914351A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
EP0742954B1 (en) Ionising radiation detector having proportional microcounters
EP0165119B1 (en) Electron multiplier device with electric field localisation
FR2739941A1 (en) HIGH-RESOLUTION POSITION DETECTOR OF HIGH FLOWS OF IONIZING PARTICLES
EP2583298B1 (en) Electron multiplying detector having a highly doped nanodiamond layer
WO1998057349A1 (en) X-ray tube comprising an electron source with microtips and magnetic guiding means
EP0230818A1 (en) Photo cathode with internal amplification
EP0851512A1 (en) High resistivity semiconductor ionizing radiation detector
EP1155341A1 (en) Two-dimensional detector of ionising radiation and method for making same
EP0045704B1 (en) Radiation detector
CA2887442C (en) Semi-transparent photocathode with improved absorption rate
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
EP0125962B1 (en) X-ray image intensifier and its use in computed x-ray image processing
EP0013235B1 (en) Electron multiplying apparatus with axial magnetic field
WO2007003723A2 (en) Multi-channel electron multiplier tube
EP1343194A1 (en) Radiation detectors and autoradiographic imaging devices comprising such detectors
WO2020148508A1 (en) Elementary particle detector
EP2483909B1 (en) Radiation detectors and autoradiographic imaging devices comprising such detectors
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
EP0418965B1 (en) Cathode ray tube having a photodeflector
FR2494906A1 (en) ELECTRON MULTIPLICATION PHOTODETECTOR TUBE FOR USE IN A COLOR VIDEO READER
WO2000030150A1 (en) Gas-filled photon detector
FR2955427A1 (en) Multi-channel photomultiplier tube i.e. four channel photomultiplier tube, for positron emission tomography application, has window whose concavity has surface equal to outer face's surface, and stage provided with dynodes through concavity
WO2004112080A2 (en) Small multichannel photomultiplier tube
FR2955426A1 (en) Multi-channel photomultiplier tube i.e. four channel photomultiplier tube, for positron emission tomography application, has envelope comprising wall forming window, where surface of concavity of window is equal to surface of outer face
CH603007A5 (en) Flat video cathode tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860129

17Q First examination report despatched

Effective date: 19870408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891129

Ref country code: AT

Effective date: 19891129

REF Corresponds to:

Ref document number: 48338

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3574522

Country of ref document: DE

Date of ref document: 19900104

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
26N No opposition filed
BERE Be: lapsed

Owner name: AGENCE NATIONALE DE VALORISATION DE LA RECHERCHE

Effective date: 19900531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930514

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930714

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930723

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940507

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST