EP0165119A1 - Electron multiplier device with electric field localisation - Google Patents

Electron multiplier device with electric field localisation Download PDF

Info

Publication number
EP0165119A1
EP0165119A1 EP85400897A EP85400897A EP0165119A1 EP 0165119 A1 EP0165119 A1 EP 0165119A1 EP 85400897 A EP85400897 A EP 85400897A EP 85400897 A EP85400897 A EP 85400897A EP 0165119 A1 EP0165119 A1 EP 0165119A1
Authority
EP
European Patent Office
Prior art keywords
stage
dynode
lamellae
stages
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85400897A
Other languages
German (de)
French (fr)
Other versions
EP0165119B1 (en
Inventor
Kei-Ichi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpifrance Financement SA
Original Assignee
Agence National de Valorisation de la Recherche ANVAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence National de Valorisation de la Recherche ANVAR filed Critical Agence National de Valorisation de la Recherche ANVAR
Priority to AT85400897T priority Critical patent/ATE48338T1/en
Publication of EP0165119A1 publication Critical patent/EP0165119A1/en
Application granted granted Critical
Publication of EP0165119B1 publication Critical patent/EP0165119B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the invention relates to electron multiplier devices, more particularly photomultiplier tubes.
  • French Patent 78 36148 published under No. 2,445,018, describes an electron multiplier tube capable of "localization".
  • the center of the distribution of secondary electrons on the exit anode corresponds, to a certain extent, to the position of the point of impact of the radiation to be amplified on the entry window of the tube.
  • the word "radiation” is taken here in the broad sense, since it can be photons as well as electrons or other charged particles, capable of causing the extraction of secondary electrons.
  • the electron multiplier previously described gives complete satisfaction, in particular in terms of the spatial resolution that it makes it possible to obtain; but for this it uses the superposition of a magnetic field on the accelerating electric field which the device naturally comprises.
  • the means necessary to obtain this magnetic field tend to complicate the structure of the electron multiplier device, at the same time as increasing its cost. In addition, by their own size, they also tend to reduce the space available for the multiplication of electrons, as well as the width of the input window of the device and / or the access thereof.
  • the present invention comes to solve the problem consisting in producing an electron multiplier device, capable of localization, which functions without an added magnetic field, while making it possible to achieve localization properties which are comparable or almost to those of the previously known electric and magnetic field device.
  • the electron multiplier device comprises, in a vacuum tube, a succession of parallel planar electrodes, which define several stages of dynodes, capable of secondary electronic emission, between an input window and an output anode, and means connected to these electrodes in order to establish between them an electron accelerating field whose general direction is perpendicular to the electrodes.
  • the proposed electron multiplier device has, in certain respects, a structural relationship with the previous device making use of a magnetic field: in both cases, each dynode stage is defined in two successive planes, each consisting of parallel strips interconnected, and these strips are offset from one plane to another so that these two planes together define a baffle obstacle for the electronic paths which are perpendicular to them. It is important to note immediately that, despite this structural relationship, the functioning is not at all the same in the two cases, because the electronic trajectories obtained by jointly using an electric field and a magnetic field are totally different from those obtained with an electric field alone. In the latter case, the location is essentially defined by the lateral path of the secondary electrons due to the transverse component of the initial velocity.
  • the present invention has made it possible to solve, using an appropriate geometric structure of dynodes, the problem of finding a compromise between gain and spatial resolution, which involve this parameter in opaque directions. This therefore constitutes a first element of the invention.
  • each dynode stage is arranged so that the majority of the secondary electrons actually leaving a lamella of its foreground does not strike a lamella of its second plane, while the distance between two stages of consecutive dynodes, large compared to the distance between the two planes of the same stage, is chosen, according to the electric field, so that the secondary electrons coming from the stage upstream strike according to a concentrated distribution a number restricted of slats of the downstream floor.
  • the slats which are prismatic or cylindrical, have a cross section which projects from the side of the entry window, with two flanks capable of secondary emission and which present themselves in a substantially symmetrical manner relative to the general direction of the electric field; the distance between dynode stages is chosen so that the secondary electrons coming from the upstream stage strike in a substantially balanced manner the flanks of lamellae of the downstream stage which have symmetrical inclinations, which makes it possible to avoid a systematic drift of the location.
  • the cross section of the strips is substantially in the form of an isosceles triangle, where the two equal angles are between 40 ° and 70 ° approximately. It can of course be a curvilinear triangle, or whose sides are deformed in another way, taking into account the machining tolerances applicable to the scale of the lamellae.
  • the secondary electrons coming from a side of a lamella of an upstream stage strike mainly only two lamellae neighboring the first plane of the next downstream stage, and a lamella of the second plan of the same downstream floor.
  • the distance between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons thus coming from the upstream stage, in order to avoid a shift in the spatial location due to the inclination of the sides.
  • All the lamellae of the tube can be parallel, but the localization properties can also be improved by orienting them in different directions along the different stages of dynodes, in a regular manner.
  • the easiest way is to make the slats of a dynode stage perpendicular to those of the previous stage.
  • the invention also allows good detection for an isolated photo-electron (or an isolated incident charged particle). To this end, it is expected that the electrical voltage prevailing between the two planes of the same stage of dynodes is at most equal to about 50 volts, at least for the first stages of dynodes.
  • means are provided for adjusting the feed of the electrodes in order to optimize the spatial resolution of the multiplier El p ctrons.
  • the latter may include a cathode or a photocathode near the first dynode.
  • a conventional anode comprises, as anode, a divided anode with multiple connections, an electroluminescent surface, a resistive anode or any equivalent means allowing the use of the location property.
  • the incident signal is delivered by photons, which we know can excite the dynodes of an electron multiplier, either directly or through a photocathode.
  • the present invention may have applications other than photonics, because, more generally, it may be the electrons themselves, or other types of charged particles, which define the input signal of an electron multiplier tube. .
  • the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC.
  • PPC proximity photocathode
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • FIGS. 1 and 2 the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents.
  • Figure 1 shows that this enclosure has in the upper part a
  • FIG. 2 also shows the generally circular shape of the support structure SP which supports the dynodes; this structure is provided with insulating columns such as CP.
  • FIG. 3 illustrates the electrical diagram associated with the photomultiplier, the TPM enclosure of which is recalled in dashed lines. It is easier to see that each dynode stage such as D 1 comprises, according to the invention, two levels or planes of electrodes such as D 11 and D 12 , placed one after the other along the axis F electric field tube, and perpendicular to this axis.
  • the proximity photocathode PPC is connected to a voltage - HT by the electrical connection E 1 .
  • the electrical connection E 2 is connected to ground.
  • a voltage divider network with resistors is mounted between line E 2 and line E 1 in order to provide each of the dynode planes with an appropriate electrical voltage.
  • the high supply voltage defines the potential difference, therefore the electric field, between the different dynode planes.
  • the resistors are adjusted so that this electric field is made as uniform as possible.
  • a resistance R 1 is provided between the first plane of each dynode (for example the plane D 21 of the dynode D 2 ), and the last plane of the previous dynode (in this case the plane D 12 of the dynode D 1 ).
  • a lower resistance R 2 is provided between the two planes of each stage of dynodes (for example between the planes D 21 and D 22 of the dynode D 2 ).
  • the addition of capacities may possibly be required at certain points of this series resistive network, in particular on the top floors.
  • the anodes A n are connected to ground by individual resistors.
  • FIG. 4 illustrates on a larger scale two stages of consecutive dynodes, which are supposed to be stages D 1 and D 2 .
  • the stage D 1 comprises two planes D 11 and D 12 of dynode elements.
  • the stage D 2 also includes two planes D 21 and D 22 of dynode elements.
  • the dynode elements are prismatic or cylindrical lamellae, parallel to each other, and of course coplanar within the same plane of dynodes. These slats are properly treated to have the property of secondary electronic emission, on their faces oriented towards the side of the FE input window, that is to say for any arrival in the direction P of a photon or of a charged particle such as 'an electron. This direction P is parallel or slightly inclined to the general direction of the axis F, along which the electric field inside the tube is established approximately.
  • the base B adjacent to the two equal angles of the isosceles triangle, is perpendicular to the general direction F. It is turned downstream.
  • the two equal sides L and R of the isosceles triangle are made capable of secondary electronic emission, and it is observed that they face symmetrically with the general direction of incidence P.
  • the anal ⁇ is advantageously understood between 40 and 70 ° approximately.
  • the lamellae have a cross section in an isosceles right triangle.
  • the "apparent width" of the slats can be defined as the overall width that they present, perpendicular to the direction F. This width is here equal to the base B of the isosceles right triangle, which measures approximately 0.5 mm in this example. A spacing of 0.5mm is also provided between the adjacent vertices (of angle ⁇ ) of two strips of the same plane of dynodes.
  • the lamellae of the second plane of a dynode stage for example the plane D 12 of the stamen D 1 , are interspersed with those of the previous plane, here D 11 . Therefore, all the dynode elements of the two planes of the same dynode stage appear as an obstacle, or a baffle, for the (electronic) trajectories parallel to the direction F.
  • Z 0 the distance between two planes of d y no d D 11 and D 12 of the same floor, distance taken in the direction F.
  • Z 1 the distance taken in the same way between two floors consecutive dynodes, that is to say for example between the first plane D 11 of the stage D 1 and the first plane D 21 of the stage q e D 2 .
  • Z 1 is approximately equal to four times Z 0 .
  • N denotes the normal to this right flank, at the starting point of its electrons.
  • ob holds the kind of trajectories T and T lmin lmax. corresponding respectively to 5 electron volts and 15 electron volts. These trajectories practically strike only the two lamellae D 211 and D 212 which form part of the first plane D 21 of the dynode stage following D 2 . The trajectory with energies close to these extreme values hits the same lamellae.
  • part of the intermediate energy trajectories pass between the lamellas D 211 and D 212 , to strike, in a substantially symmetrical manner, the two sides of the lamella D 222 , which is part of the second plane D 22 of the D2 dynode stage.
  • the intermediate trajectory corresponding to an energy of about 10 electron volts has been shown in T med .
  • Careful observation shows that one of the trajectories T ex would pass between the lamellae D 212 and D 222 . In fact, this is a very small fraction (in terms of probability) of the secondary electrons emitted. A secondary electron which propagates along this trajectory would moreover be picked up by the next dynode stage.
  • the edge effects produced on the electric field by the tips of the strips D 212 and D 222 would in fact allow the effective capture of the secondary electron at the level of the dynode D 2 , as a result of which it can then emit secondary electrons again, as will have done the other trajectories arriving on the dynode D 2 .
  • the resolution obtained is approximately 12 mm in the X direction transverse to the large dimension of the lamellae, and approximately 10 mm in the Y direction parallel to the large dimension of the lamellae. In fact, the same resolution is obtained in these two directions X and Y, although the structure of a given plane of lamellae is not at all isotropic.
  • the optimal spatial resolution can be easily obtained by adjusting the high voltage, which acts globally on the electric field, or even by a finer action on the electric field at the level of each of the stages and the dynode planes.
  • the photomultiplier thus obtained has a very large sensitive surface, for a sensitivity which can become comporable to that of the prior device. Indeed, an improved spatial resolution can be further obtained by reducing the dimension r of the dynode strips, and by acting in a corresponding manner on the electric field and the vertical dimensions (or longitudinal) of the device.
  • Such resolution characteristics are sufficient for a large part of the applications. They are particularly suitable for applications such as X-ray or Y-ray imaging.
  • the spatial resolution obtained after calculation of the barycenter is at best of the order of 4mm. Under these conditions, it is observed that the spatial resolution is dominated by the resolution of the detector, approximately 50 mm, which is too small compared to the size of the spot of the scintillation beams which is approximately twice the thickness of the crystal. , or 20 mm.

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

1. An electron multiplier device comprising, in a vacuum tube : - an entrance window (FE), - a succession of plane, parallel electrodes comprising small interconnected parallel bars, capable of secondary electrical emission, each dynode stage (D1 ...) comprising two successive planes (D11 , D12 ...) adapted to intercept the electrical trajectories in the manner of a baffle, the width of the bars, in cross-section, being at most equal to 0.5 mm, - an anode capable of localizing the impact of the secondary electrons at its level, and - means (E1 , Ei , R0 -R3 ) connected to these dynode stages (D1 -D10 ) in order to establish between them an electron accelerating electric field, the general direction of which is perpendicular to the electrodes, characterised in that the distance (Z1 ) between two consecutive dynode stages (D1 -D2 ), which is several times greater than the width of the bars, is selected, depending on the electrical field, in such a manner that the secondary electrons originating from the upstream stage (D1 ), in a concentrated distribution, a restricted number of bars of the downstream stage (D2 ), and in that the distance (Z0 ) between the two successive planes of each dynode stage is substantially equal to a quarter of the distance (Z1 ) between dynode stages and is selected, depending on the electrical field prevailing between these two planes, to avoid the recapture of a secondary electron by this dynode stage.

Description

L'invention concerne les dispositifs multiplicateurs d'électrons, plus particulièrement les tubes photomultiplicateurs.The invention relates to electron multiplier devices, more particularly photomultiplier tubes.

Le Brevet français 78 36148, publié sous le N° 2 445 018, décrit un tube multiplicateur d'électrons capable de "localisation". Dans un tel tube, le centre de la distribution des électrons secondaires sur l'anode de sortie correspond, dans une certaine mesure, à la position du point d'impact du rayonnement à amplifier sur la fenêtre d'entrée du tube. Le mot "rayonnement" est pris ici au sens large, puisqu'il peut s'agir aussi bien de photons que d'électrons ou d'autres particules chargées, capables de provoquer l'extraction d'électrons secondaires. Le multiplicateur d'électrons antérieurement décrit donne entière satisfaction, en particulier au plan de la résolution spatiale qu'il permet d'obtenir; mais il utilise pour cela la superposition d'un champ magnétique au champ électrique accélérateur que comporte naturellement le dispositif. Les moyens nécessaires à l'obtention de ce champ magnétique tendent à compliquer la structure du dispositif multiplicateur d'électrons, en même temps qu'à en augmenter le coût. De plus, par leur encombrement propre, ils tendent aussi à réduire la place disponible pour la multiplication d'électrons, ainsi que la largeur de la fenêtre d'entrée du dispositif et/ou l'accès de celle-ci.French Patent 78 36148, published under No. 2,445,018, describes an electron multiplier tube capable of "localization". In such a tube, the center of the distribution of secondary electrons on the exit anode corresponds, to a certain extent, to the position of the point of impact of the radiation to be amplified on the entry window of the tube. The word "radiation" is taken here in the broad sense, since it can be photons as well as electrons or other charged particles, capable of causing the extraction of secondary electrons. The electron multiplier previously described gives complete satisfaction, in particular in terms of the spatial resolution that it makes it possible to obtain; but for this it uses the superposition of a magnetic field on the accelerating electric field which the device naturally comprises. The means necessary to obtain this magnetic field tend to complicate the structure of the electron multiplier device, at the same time as increasing its cost. In addition, by their own size, they also tend to reduce the space available for the multiplication of electrons, as well as the width of the input window of the device and / or the access thereof.

Ainsi qu'on le verra plus loin, la présente invention vient résoudre le problème consistant à réaliser un dispositif multiplicateur d'électrons, capable de localisation, qui fonctidnne sans champ magnétique surajouté, tout en permettant d'atteindre des propriétés de localisation comparables ou presque à celles du dispositif à champs électrique et magnétique antérieurement connu.As will be seen below, the present invention comes to solve the problem consisting in producing an electron multiplier device, capable of localization, which functions without an added magnetic field, while making it possible to achieve localization properties which are comparable or almost to those of the previously known electric and magnetic field device.

Le dispositif multiplicateur d'électrons comporte, dans un tube à vide, une succession d'électrodes planes parallèles, qui définissent plusieurs étages de dynodes, capables d'émission électronique secondaire, entre une fenêtre d'entrée et une anode de sortie, et des moyens connectés à ces électrodes afin d'établir entre elles un champ accélérateur d'électrons dont la direction générale est perpendiculaire aux électrodes.The electron multiplier device comprises, in a vacuum tube, a succession of parallel planar electrodes, which define several stages of dynodes, capable of secondary electronic emission, between an input window and an output anode, and means connected to these electrodes in order to establish between them an electron accelerating field whose general direction is perpendicular to the electrodes.

Par ailleurs, le dispositif multiplicateur d'électrons proposé comporte, à certains égards, une parenté structurelle avec le dispositif antérieur faisant usage d'un champ magnétique : dans les deux cas, chaque étage de dynode est défini en deux plans successifs, constitués chacun de lamelles parallèles interconnectées, et ces lamelles sont décalées d'un plan à l'autre de façon que ces deux plans définissent ensemble un obstacle en chicane pour les trajectoires électroniques qui leur sont perpendiculaires. Il importe de remarquer immédiatement que, malgré cette parenté structurelle, le fonctionnement n'est pas du tout le même dans les deux cas, car les trajectoires électroniques obtenues en utilisant conjointement un champ électrique et un champ magnétique sont totalement différentes de celles qu'on obtient avec un champ électrique seul. Dans ce dernier cas, la localisation est définie essentiellement par le parcours latéral des électrons secondaires dû à la composante transversale de la vitesse initiale. La présente invention a permis de résoudre, à l'aide d'une structure géométrique appropriée de dynodes, le problème de trouver un compromis entre le gain et la résolution spatiale, qui font intervenir ce paramètre dans des sens opoosés. Ceci constitue donc un premier élément de l'invention.Furthermore, the proposed electron multiplier device has, in certain respects, a structural relationship with the previous device making use of a magnetic field: in both cases, each dynode stage is defined in two successive planes, each consisting of parallel strips interconnected, and these strips are offset from one plane to another so that these two planes together define a baffle obstacle for the electronic paths which are perpendicular to them. It is important to note immediately that, despite this structural relationship, the functioning is not at all the same in the two cases, because the electronic trajectories obtained by jointly using an electric field and a magnetic field are totally different from those obtained with an electric field alone. In the latter case, the location is essentially defined by the lateral path of the secondary electrons due to the transverse component of the initial velocity. The present invention has made it possible to solve, using an appropriate geometric structure of dynodes, the problem of finding a compromise between gain and spatial resolution, which involve this parameter in opaque directions. This therefore constitutes a first element of the invention.

A côté de cela, l'invention prévoit aussi que chaque étage de dynode est agencé de sorte que la majorité des électrons secondaires partant effectivement d'une lamelle de son premier plan ne frappe pas une lamelle de son second plan, tandis que la distance entre deux étages de dynodes consécutifs, grande par rapport à la distance entre les deux plans d'un même étage, est choisie, en fonction du champ électrique, de sorte que les électrons secondaires provenant de l'étage amont frappent selon une distribution concentrée un nombre restreint de lamelles de l'étage aval.Besides this, the invention also provides that each dynode stage is arranged so that the majority of the secondary electrons actually leaving a lamella of its foreground does not strike a lamella of its second plane, while the distance between two stages of consecutive dynodes, large compared to the distance between the two planes of the same stage, is chosen, according to the electric field, so that the secondary electrons coming from the stage upstream strike according to a concentrated distribution a number restricted of slats of the downstream floor.

L'expression partant "effectivement" d'une lamelle d'un plan de lamelles donné est utilisée ici pour tenir compte du fait qu'un électron secondaire peut être recapturé soit par la lamelle qui lui a donné naissance, soit par une autre lamelle du même plan.The expression starting "effectively" from a lamella of a given plane of lamellae is used here to take into account the fact that a secondary electron can be recaptured either by the lamella which gave birth to it, or by another lamella of the same plan.

Selon une autre caractéristique de l'invention, les lamelles, qui sont prismatiques ou cylindriques, ont une section droite qui fait saillie du côté de la fenêtre d'entrée, avec deux flancs capables d'émission secondaire et qui se présentent de façon sensiblement symétrique par rapport à la direction générale du champ électrique; la distance entre étages de dynodes est choisie de sorte que les électrons secondaires provenant de l'étage amont frappent de manière sensiblement équilibrée les flancs de lamelles de l'étage aval qui ont des inclinaisons symétriques, ce qui permet d'éviter une dérive systématique de la localisation.According to another characteristic of the invention, the slats, which are prismatic or cylindrical, have a cross section which projects from the side of the entry window, with two flanks capable of secondary emission and which present themselves in a substantially symmetrical manner relative to the general direction of the electric field; the distance between dynode stages is chosen so that the secondary electrons coming from the upstream stage strike in a substantially balanced manner the flanks of lamellae of the downstream stage which have symmetrical inclinations, which makes it possible to avoid a systematic drift of the location.

Dans un mode de réalisation particulier, que l'on préfère actuellement, la section droite des lamelles est sensiblement en forme de triangle isocèle, où les deux angles égaux valent entre 40° et 70° environ. Il peut s'agir bien entendu d'un triangle curviligne, ou dont les côtés sont déformés d'une autre manière, compte tenu des tolérances d'usinage applicables à l'échelle des lamelles.In a particular embodiment, which is currently preferred, the cross section of the strips is substantially in the form of an isosceles triangle, where the two equal angles are between 40 ° and 70 ° approximately. It can of course be a curvilinear triangle, or whose sides are deformed in another way, taking into account the machining tolerances applicable to the scale of the lamellae.

Selon une autre caractéristique particulière de l'invention, les électrons secondaires provenant d'un flanc d'une lamelle d'un étaqe amont ne frappent en majorité que deux lamelles voisines du premier plan de l'étage aval suivant, et une lamelle du second plan de ce même étage aval.According to another particular characteristic of the invention, the secondary electrons coming from a side of a lamella of an upstream stage strike mainly only two lamellae neighboring the first plane of the next downstream stage, and a lamella of the second plan of the same downstream floor.

Avantageusement, la distance entre étages de dynodes consécutifs est choisie pour déséquilibrer légèrement la symétrie d'impact, sur l'étage aval, des électrons secondaires provenant ainsi de l'étage amont, afin d'éviter un décalage de la localisation spatiale dû à l'inclinaison des flancs.Advantageously, the distance between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons thus coming from the upstream stage, in order to avoid a shift in the spatial location due to the inclination of the sides.

Bien que ces paramètres puissent dépendre de la réalisation particulière concernée, il est actuellement considéré que :

  • - la distance entre étaaea de dynodes consécutifs doit être de l'ordre de huit à dix fois la largeur apparente des lamelles ;
  • - la distance entre les deux plans d'un même étage de dynode doit être de l'ordre du quart de la distance entre deux étages de dynodes consécutifs:
  • - la largeur apparente (sensiblement la largeur hors tout) des lamelles doit être au plus égale à environ 0,5mm:
  • - le champ électrique moyen à l'intérieur du tube électronique doit être au moins égal à environ 500 volts/centimètres;
  • - l'énergie initiale des électrons secondaires effectivement émis est, de préférence, au moins égale à 5 électrons-volt environ, et peut aller jusqu'à quelques dizaines d'électrons-volt.
Although these parameters may depend on the particular embodiment concerned, it is currently considered that:
  • - the distance between etaaea of consecutive dynodes must be of the order of eight to ten times the apparent width of the strips;
  • - the distance between the two planes of the same dynode stage must be of the order of a quarter of the distance between two consecutive dynode stages:
  • - the apparent width (appreciably the overall width) of the slats must be at most equal to approximately 0.5 mm:
  • - the average electric field inside the electron tube must be at least equal to around 500 volts / centimeters;
  • - The initial energy of the secondary electrons actually emitted is preferably at least equal to about 5 electron volts, and can range up to a few tens of electron volts.

Toutes les lamelles du tube peuvent être parallèles, mais on peut aussi améliorer les propriétés de localisation en les orientant dans des directions différentes le long des différents étages de dynodes, d'une manière réqulière. Le plus simple est de rendre alors les lamelles d'un étage de dynode perpendiculaires à celles de l'étage précédent.All the lamellae of the tube can be parallel, but the localization properties can also be improved by orienting them in different directions along the different stages of dynodes, in a regular manner. The easiest way is to make the slats of a dynode stage perpendicular to those of the previous stage.

L'invention permet également une bonne détection pour un photo-électron isolé (ou une particule chargée incidente isolée). A cet effet, il est prévu que la tension électrique régnant entre les deux plans d'un même étage de dynodes soit au plus égale à environ 50 volts, tout du moins pour les premiers étages de dynodes.The invention also allows good detection for an isolated photo-electron (or an isolated incident charged particle). To this end, it is expected that the electrical voltage prevailing between the two planes of the same stage of dynodes is at most equal to about 50 volts, at least for the first stages of dynodes.

Selon une autre caractéristngue encore de l'invention, on prévoit des moyens pour ajuster l'alimentation des électrodes, afin d'optimiser la résolution spatiale du dispositif multiplicateur d'élpctrons.According to another caractéristngue still of the invention, means are provided for adjusting the feed of the electrodes in order to optimize the spatial resolution of the multiplier El p ctrons.

Suivant les applications, ce dernier peut comprendre une cathode ou une photocathode à proximité de la première dynode.Depending on the applications, the latter may include a cathode or a photocathode near the first dynode.

Bien qu'une anode classique suffise en certains cas, il comprend en principe, comme anode, une anode divisée à connexions multiples, une surface électroluminescente, une anode résistive ou tout moyen équivalent permettant d'utiliser la propriété de localisation.Although a conventional anode is sufficient in certain cases, it in principle comprises, as anode, a divided anode with multiple connections, an electroluminescent surface, a resistive anode or any equivalent means allowing the use of the location property.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :

  • - la figure 1 est une vue en coupe verticale d'un photomultiplicateur selon l'invention;
  • - la figure 2 est une vue en coupe horizontale du photomultiplicateur de la figure 1;
  • - la figure 3 est un schéma électrique illustrant l'interconnexion des électrodes du même photomultiplicateur;
  • - la figure 4 est un schéma partiel de deux étages de dynodes consécutifs du photomultiplicateur des figures 1 et 2; et
  • - la figure 5 est un diagramme tendant à permettre une interprétation de la résolution spatiale dans la direction X perpendiculaire à grande dimension des lamelles.
Other characteristics and advantages of the invention will appear on examining the detailed description below, and the appended drawings, in which:
  • - Figure 1 is a vertical sectional view of a photomultiplier according to the invention;
  • - Figure 2 is a horizontal sectional view of the photomultiplier of Figure 1;
  • - Figure 3 is an electrical diagram illustrating the interconnection of the electrodes of the same photomultiplier;
  • - Figure 4 is a partial diagram of two stages of consecutive dynodes of the photomultiplier of Figures 1 and 2; and
  • - Figure 5 is a diagram tending to allow an interpretation of the spatial resolution in the direction X perpendicular to large dimension of the lamellae.

Dans la présente invention, la qéométrie des principaux constituants du tube multiplicateur d'électrons est importante. En conséquence, les dessins sont à considérer comme incorporés à la présente description, pour contribuer, le cas échéant, à compléter celle-ci, ainsi qu'à définir l'invention.In the present invention, the qeometry of the main constituents of the electron multiplier tube is important. Consequently, the drawings are to be considered as incorporated into the present description, to contribute, where appropriate, to supplement it, as well as to define the invention.

La description détaillée ci-après s'intéresse à un tube photomultiplicateur. Dans un tel tube, le signal incident est délivré par des photons, dont on sait qu'ils peuvent exciter les dynodes d'un multiplicateur d'électrons, soit directement, soit par l'intermédiaire d'une photocathode. Mais la présente invention peut avoir des applications autres que photoniques, car, plus généralement, ce peuvent être les électrons eux-mêmes, ou d'autres types de particules chargées, qui définissent le signal d'entrée d'un tube multiplicateur d'électrons.The detailed description below is concerned with a photomultiplier tube. In such a tube, the incident signal is delivered by photons, which we know can excite the dynodes of an electron multiplier, either directly or through a photocathode. However, the present invention may have applications other than photonics, because, more generally, it may be the electrons themselves, or other types of charged particles, which define the input signal of an electron multiplier tube. .

Sur les figures 1 et 2, le tube photomultiplicateur comporte une enceinte à vide TPM, qui loge ses constituants principaux. La figure 1 montre que cette enceinte possède en partie supérieure une fenêtre d'entrée plane FE. Juste derrière cette fenêtre est placée une photocathode de proximité notée PPC. Au-dessous de celle-ci (figure 1), se trouvent prévus dix étages de dynodes Dl à D10. Ces derniers sont suivis, plus bas encore, d'une anode divisée en "mosaique" Cette anode comporte un grand nombre d'éléments tels que A et Ai, respectivement reliés à des connexions électriques de sortie individuelles EA1 et EAi. Dans leur ensemble, les éléments d'anode sont notés A . Enfin, d'autres connexions électriques telles que E1 et E permettent de porter les électrodes internes duphotomultiplicateur aux potentiels convenables pour son fonctionnement.In FIGS. 1 and 2, the photomultiplier tube comprises a vacuum chamber TPM, which houses its main constituents. Figure 1 shows that this enclosure has in the upper part a flat FE entry window. Just behind this window is placed a proximity photocathode denoted PPC. Below this (figure 1), ten stages of d y nodes D l to D 10 are provided . These are followed, further down, by an anode divided into "mosaic" This anode comprises a large number of elements such as A and A i , respectively connected to individual electrical output connections EA 1 and EA i . As a whole, the anode elements are denoted A. Finally, other electrical connections such as E 1 and E make it possible to bring the internal electrodes of the photomultiplier to the potentials suitable for its operation.

La figure 2 montre en plus la forme généralement circulaire de la structure porteuse SP qui soutient les dynodes; cette structure est munie de colonnes isolantes telles que CP.FIG. 2 also shows the generally circular shape of the support structure SP which supports the dynodes; this structure is provided with insulating columns such as CP.

La figure 3 illustre le schéma électrique associé au photomultiplicateur, dont l'enceinte TPM est rappelée en trait tireté. On y voit mieux que chaque étage de dynode tel que D1 comporte, selon l'invention, deux niveaux ou plans d'électrodes tels que D11 et D12, placés l'un après l'autre le lonq de l'axe F de champ électrique du tube, et perpendiculairement à cet axe.FIG. 3 illustrates the electrical diagram associated with the photomultiplier, the TPM enclosure of which is recalled in dashed lines. It is easier to see that each dynode stage such as D 1 comprises, according to the invention, two levels or planes of electrodes such as D 11 and D 12 , placed one after the other along the axis F electric field tube, and perpendicular to this axis.

La photocathode de proximité PPC est reliée à une tension - HT par la connexion électrique E1. A l'autre extrémité, la connexion électrique E2 est reliée à la masse. Un réseau diviseur de tension à résistances est monté entre la ligne E2 et la ligne E1 afin d'apporter à chacun des plans de dynodes une tension électrique appropriée. Par la haute tension d'alimentation, on définit la différence de potentiel, donc le champ électrique, entre les différents plans de dynodes. Les résistances sont ajustées de manière que ce champ électrique soit rendu aussi uniforme que possible.The proximity photocathode PPC is connected to a voltage - HT by the electrical connection E 1 . At the other end, the electrical connection E 2 is connected to ground. A voltage divider network with resistors is mounted between line E 2 and line E 1 in order to provide each of the dynode planes with an appropriate electrical voltage. The high supply voltage defines the potential difference, therefore the electric field, between the different dynode planes. The resistors are adjusted so that this electric field is made as uniform as possible.

En pratique, en dehors des résistances d'extrémités RO et R31 on prévoit une résistance R1 entre le premier plan de chaque dynode (par exemple le plan D21 de la dynode D2), et le dernier plan de la dynode précédente (en l'espèce le plan D12 de la dynode D1). Une résistance R2, plus faible, est prévue entre les deux plans de chaque étage de dynodes (par exemple entre les plans D21 et D22 de la dynode D2). L'adjonction de capacités pourra éventuellement être requise en certains points de ce réseau résistif série, en particulier aux derniers étages. Les anodes An sont connectées à la masse par des résistances individuelles.In practice, apart from the end resistances R O and R 31, a resistance R 1 is provided between the first plane of each dynode (for example the plane D 21 of the dynode D 2 ), and the last plane of the previous dynode (in this case the plane D 12 of the dynode D 1 ). A lower resistance R 2 is provided between the two planes of each stage of dynodes (for example between the planes D 21 and D 22 of the dynode D 2 ). The addition of capacities may possibly be required at certain points of this series resistive network, in particular on the top floors. The anodes A n are connected to ground by individual resistors.

La figure 4 illustre à plus qrande échelle deux étages de dynodes consécutifs, qui sont supposés être les étages D1 et D2. Comme précédemment indiqué, l'étage D1comprend deux plans D11 et D12 d'éléments de dynodes. L'étage D2comprend lui aussi deux plans D21 et D 22 d'éléments de dynodes.FIG. 4 illustrates on a larger scale two stages of consecutive dynodes, which are supposed to be stages D 1 and D 2 . As previously indicated, the stage D 1 comprises two planes D 11 and D 12 of dynode elements. The stage D 2 also includes two planes D 21 and D 22 of dynode elements.

Individuellement, les élements de dynodes sont des lamelles prismatiques ou cylindriques, parallèles entre elles, et bien entendu coplanaires à l'intérieur d'un même plan de dynodes. Ces lamelles sont convenablement traitées pour posséder la propriété d'émission électronique secondaire, sur leurs faces orientées du côté de la fenêtre d'entrée FE, c'est-à-dire pour toute arrivée dans la direction P d'un photon ou d'une particule chargée telle qu'un électron. Cette direction P est parallèle ou faiblement inclinée sur la direction générale de l'axe F, selon lequel s'établit approximativement le champ électrique à l'intérieur du tube.Individually, the dynode elements are prismatic or cylindrical lamellae, parallel to each other, and of course coplanar within the same plane of dynodes. These slats are properly treated to have the property of secondary electronic emission, on their faces oriented towards the side of the FE input window, that is to say for any arrival in the direction P of a photon or of a charged particle such as 'an electron. This direction P is parallel or slightly inclined to the general direction of the axis F, along which the electric field inside the tube is established approximately.

Il est actuellement considéré comme préférable d'utiliser des éléments de dynodes dont la section droite est en forme de triangle isocèle. La base B, adjacente aux deux angles égaux du triangle isocèle, est perpendiculaire à la direction générale F. Elle est tournée vers l'aval. Les deux côtés égaux L et R du triangle isocèle sont rendus capables d'émission électronique secondaire, et l'on observe qu'ils font face symétriquement à la direction générale d'incidence P. Pour sa part, l'anale α est avantageusement compris entre 40 et 70° environ. Dans l'exemple illustré, les lamelles ont une section droite en triangle rectangle isocèle.It is currently considered preferable to use elements of dynodes whose cross section is in the form of an isosceles triangle. The base B, adjacent to the two equal angles of the isosceles triangle, is perpendicular to the general direction F. It is turned downstream. The two equal sides L and R of the isosceles triangle are made capable of secondary electronic emission, and it is observed that they face symmetrically with the general direction of incidence P. For its part, the anal α is advantageously understood between 40 and 70 ° approximately. In the example illustrated, the lamellae have a cross section in an isosceles right triangle.

La "largeur apparente" des lamelles peut être définie comme la largeur hors tout qu'elles présentent, perpendiculairement à la direction F. Cette largeur est ici égale à la base B du triangle rectangle isocèle, qui mesure environ 0,5mm dans cet exemple. Un espacement de 0,5mm est également prévu entre les sommets adjacents (d'angle α ) de deux lamelles d'un même plan de dynodes. Enfin, les lamelles du second plan d'un étage de dynode, par exemple le plan D12 de l'étam D1, sont intercalées avec celles du plan précédent, ici D11. De ce fait, l'ensemble des éléments de dynodes des deux plans d'un même étage de dynode apparait comme un obstacle, ou une chicane, pour les trajectoires (électroniques) parallèles à la direction F.The "apparent width" of the slats can be defined as the overall width that they present, perpendicular to the direction F. This width is here equal to the base B of the isosceles right triangle, which measures approximately 0.5 mm in this example. A spacing of 0.5mm is also provided between the adjacent vertices (of angle α) of two strips of the same plane of dynodes. Finally, the lamellae of the second plane of a dynode stage, for example the plane D 12 of the stamen D 1 , are interspersed with those of the previous plane, here D 11 . Therefore, all the dynode elements of the two planes of the same dynode stage appear as an obstacle, or a baffle, for the (electronic) trajectories parallel to the direction F.

Par ailleurs, on note Z0 la distance entre deux plans de dynodes D11 et D12 d'un même étage, distance prise selon la direction F. On note Z1 la distance prise de la même manière entre deux étages de dynodes consécutifs, c'est-à-dire par exemple entre le premier plan D11 de l'étage D1 et le premier plan D21 de l'étaqe D2. De préférence, Z1 est à peu près égal à quatre fois Z0.Furthermore, we denote by Z 0 the distance between two planes of d y no d D 11 and D 12 of the same floor, distance taken in the direction F. We denote by Z 1 the distance taken in the same way between two floors consecutive dynodes, that is to say for example between the first plane D 11 of the stage D 1 and the first plane D 21 of the stage q e D 2 . Preferably, Z 1 is approximately equal to four times Z 0 .

Dans un mode de réalisation particulier, on prend Z0 = 1 mm, et Z1 = 4 mm, si bien que la distance entre deux étages de dynodes est de l'ordre de huit à dix fois la largeur apparente des lamelles formant les éléments de dynodes individuels.In a particular embodiment, we take Z 0 = 1 mm, and Z 1 = 4 mm, so that the distance between two stages of dynodes is of the order of eight to ten times the apparent width of the lamellae forming the elements. individual dynodes.

Sur la figure 4, on considère maintenant les trajectoires des électrons secondaires qui partent du flanc droit de la lamelle D110. N désigne la normale à ce flanc droit, au point de départ de ses électrons.In FIG. 4, we now consider the trajectories of the secondary electrons which leave from the right flank of the lamella D 110 . N denotes the normal to this right flank, at the starting point of its electrons.

Il convient de définir aussi les limites inférieures de l'énergie initiale des émissions secondaires, ainsi que de l'angle d'émission, compté dans le sens trigonométrique par rapport à la normale N. Cet angle d'émission est bien entendu limité aux électrons secondaires utiles, c'est-à-dire ceux qui ne sont pas recapturés par le même plan de lamelles. Il a été observé que l'énergie initiale doit être supérieure à environ 5 électrons-volt, et que l'angle d'émission initial doit être inférieur à 45°, c'est-à-dire que les élections secondaires utiles sont compris dans un cone dont l'ouverture angulaire est de 45° par rapport à la normale.It is also necessary to define the lower limits of the initial energy of the secondary emissions, as well as of the angle of emission, counted in the trigonometric direction compared to the normal N. This angle of emission is of course limited to the electrons useful secondaries, i.e. those which are not recaptured by the same plane of lamellae. It has been observed that the initial energy must be greater than about 5 electron volts, and that the initial emission angle must be less than 45 °, that is to say that the useful secondary elections are included in a cone with an angular opening of 45 ° from normal.

Il a été également observé que la largeur des lamelles doit alors être au plus éqale à 0.5mm. pour un champ électrique de 500 volts/cm. A cette valeur du champ correspond une tension de 50 volts entre les deux plans D11 et D12 de la dynode D1, puisque Zo = 1 mm.It has also been observed that the width of the slats must then be at most equal to 0.5 mm. for an electric field of 500 volts / cm. This field value corresponds to a voltage of 50 volts between the two planes D 11 and D 12 of the dynode D 1 , since Z o = 1 mm.

Au-delà de cette limite supérieure pour la valeur , une partie importante des électrons secondaires émis par la lamelle sera recapturée par la surface émissive d'origine, en raison du fort champ électrique qui rèqne. Ce qui précède tient compte d'une loi angulaire d'émission des électrons secondaires autour de la normale N qui s'établit en cosinus θ.Beyond this upper limit for the value, a significant part of the secondary electrons emitted by the coverslip will be recaptured by the emissive surface of origin, due to the strong electric field which prevails. The above takes into account an angular law of emission of secondary electrons around the normal N which is established in cosine θ.

Par ailleurs, un filtrage en énergie des électrons intervient, du fait de la présence de la lamelle adjacente D111' Il a été observé que l'énergie maximale des électrons secondaires partant effectivement de la lamelle D110 s'établit à quelques dizaines d'électrons-volt, en l'espèce environ 15 électrons-volt.Furthermore, an energy filtering of the electrons takes place, due to the presence of the adjacent lamella D 111 '. It has been observed that the maximum energy of the secondary electrons actually leaving the lamella D 110 is established at a few tens of electron volts, in this case about 15 electron volts.

Pour un angle d'émission donné, par exemple =0°, on obtient de la sorte des trajectoires Tlmin et Tlmax. correspondant respectivement à 5 électrons-volt et 15 électrons-volt. Ces trajectoires frappent pratiquement seulement les deux lamelles D211 et D212 qui font partie du premier plan D21 de l'étage de dynode suivant D2. La trajectoire possédant des énergies proches de ces valeurs extrêmes frappe les mêmes lamelles. Par contre, une partie des trajectoires d'énergie intermédiaire passent entre les lamelles D211 et D212, pour venir frapper, de manière sensiblement symétrique, les deux flancs de la lamelle D222, laquelle fait partie du second plan D22 de l'étage de dynode D2. On a représenté en Tmed la trajectoire intermédiaire correspondant à une énergie d'euviron 10 électrons-volt. Une observation attentive montre que l'une des trajectoires Tex passerait entre les lamellesD212 et D222. En fait, il s'agit d'une très petite fraction (en termes de probabilité) des électrons secondaires émis. Un électron secondaire qui se propaqerait suivant cette trajectoire serait d'ailleurs capté par l'étaqe de dynode suivant. De plus, on peut estimer que les effets de bords produits sur le champ électrique par les pointes des lamelles D212 et D222 permettraient en fait la capture effective de l'électron secondaire au niveau de la dynode D2, à la suite de quoi il peut alors émettre à nouveau des électrons secondaires, comme l'auront fait les autres trajectoires arrivant sur la dynode D2.For a given angle of emission, for example = 0 °, ob holds the kind of trajectories T and T lmin lmax. corresponding respectively to 5 electron volts and 15 electron volts. These trajectories practically strike only the two lamellae D 211 and D 212 which form part of the first plane D 21 of the dynode stage following D 2 . The trajectory with energies close to these extreme values hits the same lamellae. On the other hand, part of the intermediate energy trajectories pass between the lamellas D 211 and D 212 , to strike, in a substantially symmetrical manner, the two sides of the lamella D 222 , which is part of the second plane D 22 of the D2 dynode stage. The intermediate trajectory corresponding to an energy of about 10 electron volts has been shown in T med . Careful observation shows that one of the trajectories T ex would pass between the lamellae D 212 and D 222 . In fact, this is a very small fraction (in terms of probability) of the secondary electrons emitted. A secondary electron which propagates along this trajectory would moreover be picked up by the next dynode stage. In addition, it can be estimated that the edge effects produced on the electric field by the tips of the strips D 212 and D 222 would in fact allow the effective capture of the secondary electron at the level of the dynode D 2 , as a result of which it can then emit secondary electrons again, as will have done the other trajectories arriving on the dynode D 2 .

Alors que ce qui précède concerne le premier plan d'un étage de dynodes, il a été observé que le second plan permet aussi une localisation (Figure 4.).While the above concerns the first plane of a dynode stage, it has been observed that the second plane also allows localization (Figure 4.).

Les conditions de fonctionnement qui viennent d'être décrites ne font intervenir que la projection des trajectoires électroniques sur le plan X-Z. Il a été observé cependant que l'on obtient ainsi un fonctionnement correct, en termes de localisation, non seulement dans la direction X, mais aussi dans la direction Y.The operating conditions which have just been described only involve the projection of the electronic trajectories onto the X-Z plane. It has been observed, however, that a correct functioning is thus obtained, in terms of location, not only in the X direction, but also in the Y direction.

La description ci-dessus montre que :

  • - la distance Z1 entre deux étages de dynodes consécutifs, qui est grande par rapport à la distance Z0 entre les deux plans d'un même étage, peut être ajustée en fonction du champ électrique de sorte que les électrons secondaires provenant de l'étage amont D1 frappent selon une distribution concentrée un nombre restreint de lamelles de l'étage aval D2;
  • - de plus, lorsqu'on utillse, comme c'est le cas ici, des lamelles dont la spction droite est symétrique autour de l'axe F, il a été observé que la distance Z1 peut être choisie de sorte que les électrons secondaires provenant du premier plan de l'étage amont frappent de manière sensiblement équilibrée des flancs des lamelles de l'étage aval qui ont des inclinaisons symétriques. Et ceci s'étend aux électrons secondaires provenant du second plan de l'étage amont.
The above description shows that:
  • - the distance Z 1 between two stages of consecutive dynodes, which is large compared to the distance Z 0 between the two planes of the same stage, can be adjusted according to the electric field so that the secondary electrons coming from the upstream stage D 1 strike in a concentrated distribution a limited number of lamellae of the downstream stage D 2 ;
  • - in addition, when using, as is the case here, lamellae whose straight spction is symmetrical around the axis F, it has been observed that the distance Z 1 can be chosen so that the secondary electrons from from the foreground of the upstream stage strike in a substantially balanced manner the sides of the lamellae of the downstream stage which have symmetrical inclinations. And this extends to the secondary electrons coming from the second plane of the upstream stage.

Par ailleurs, il a été constaté que la distribution dans la direction Y parallèle à la grande dimension des lamelles est interprétée par une simple convolution des parcours latéraux des électrons secondaires au niveau de chacun des étages aval.Furthermore, it has been observed that the distribution in the direction Y parallel to the large dimension of the lamellae is interpreted by a simple convolution of the lateral paths of the secondary electrons at each of the downstream stages.

Il est maintenant fait référence à la figure 5.Reference is now made to FIG. 5.

Celle-ci montre la distribution probabiliste binomiale caractérisée par p=q, où p et q sont les probabilités qu'un électron secondaire frappe le flanc droit et le flanc gauche, respectivement, de lamelles de l'étaqe suivant. Les chiffres mis à l'mtérieur d'un cercle sont proportionnels à la probabilité de production des électrons secondaires à partir d'un seul électron partant du premier étaqe de dynode (n=l), les autres étaqes étant numérotés de manière croissante sur l'axe vertical orienté vers le bas jusqu'à l'anode . L'axe horizontal correspond à des distances exprimées en unité du parcours latéral moyen des électrons secondaires au niveau de l'étage suivant. Ces distances sont notées X(p).This shows the binomial probabilistic distribution characterized by p = q, where p and q are the probabilities that a secondary electron strikes the right flank and the left flank, respectively, of lamellae of the following stage. The figures placed inside a circle are proportional to the probability of production of the secondary electrons starting from only one electron starting from the first stage of dynode (n = l), the other stages being numbered in increasing number on l vertical axis pointing down to the anode. The horizontal axis corresponds to distances expressed in units of the average lateral path of the secondary electrons at the level of the next stage. These distances are denoted X (p).

Dans la direction X, il apparait donc qu'on obtient au niveau de l'anode une distribution très concentrée des électrons secondaires, cette distribution étant pratiquement centrée sur l'axe initial F0. Le décalage tient principalement à l'inclinaison du flanc de la lamelle qui donné le preauer électron secondaire. Mais on n'observe pas, par la surte, une dérive globale du flux d'électrons secondaires par tappport à l'axe F0, dérive qui s'amplifierait d'un étage à l'autre (à condition que p=q). Il en résulte finalement un léger décalage latéral, puisque si le nombre cerclé 126 de gauche se trouve bien sur l'axe F0 à la figure 5, le nombre 126 cerclé de droite est légèrement décalé, ce qui correspond à un décalage de la distribution. Il a été observé que ce décalage peut être corrigé en faisant varier d'environ 10% les valeurs de p et de q. Ceci peut être obtenu en agissant sur la distance Z1, ainsi que le comprendra l'homme de l'art. Mais cette action joue de la même manière, quelle que soit l'inclinaison de la face ou flanc de lamelle ayant produit l'électron initial.In the X direction, it therefore appears that a very concentrated distribution of the secondary electrons is obtained at the anode, this distribution being practically centered on the initial axis F 0 . The offset is mainly due to the inclination of the flank of the coverslip which gives the secondary electron preauer. But we do not observe, by surte, a global drift of the flow of secondary electrons by tappport to the axis F 0 , drift which would amplify from one stage to another (provided that p = q). This finally results in a slight lateral offset, since if the number circled on the left is indeed on the axis F 0 in Figure 5, the number 126 circled on the right is slightly offset, which corresponds to an offset in the distribution . It has been observed that this offset can be corrected by varying the values of p and q by about 10%. This can be obtained by acting on the distance Z 1 , as will be understood by those skilled in the art. But this action plays in the same way, whatever the inclination of the face or flank of the coverslip that produced the initial electron.

Le parcours latéral moyen,p (E,Z) des électrons secondaires joue un rôle essentiel dans ce dispositif. Il s'est avéré en effet que la géométrie de dynodes peut être définie à partir de ce paramètre; par exemple :

  • - la largeur de lamelles £ est choisie de façon que o (E,Z= ℓ/2) soit plus grand que ℓ/2 (pour un gain élevé), mais que p(E,Z=Z1) soit le plus petit possible (pour une bonne localisation).
  • - la distance Z1 est également choisie par un compromis entre la résolution, o (E,Z=Z1), et la largeur de la distribution des électrons,qui est également proportionnelle àc, et qui doit être suffisamment qrande par rapport à ℓpour éviter la dérive systématique en X.
The mean lateral path, p (E, Z) of the secondary electrons plays an essential role in this device. It turns out that the geometry of dynodes can be defined from this parameter; for example :
  • - the width of the slats £ is chosen so that o (E, Z = ℓ / 2) is greater than ℓ / 2 (for a high gain), but that p (E, Z = Z 1 ) is the smallest possible (for good localization).
  • - the distance Z 1 is also chosen by a compromise between the resolution, o (E, Z = Z 1 ), and the width of the distribution of the electrons, which is also proportional to c, and which must be sufficiently large with respect to ℓfor avoid systematic drift in X.

Un dispositif photomultiplicateur constitué comme décrit ci-dessus peut être loqé dans un tube constitué comme suit:

  • - hauteur environ 65 mm;
  • - diamètre extérieur 139 mm
  • - fenêtre d'entrée de diamètre 100 mm, munie d'une photocathode de proximité:
  • - étages de dynode comme décrit plus haut, avec une différence de potentiel d'environ 50 volts entre deux plans d'un même étage de dynode, et une différence de potentiel d'environ 200 volts entre étages de dynodes:
  • - anode divisée en 164 éléments d'environ 7 x 7mm2, séparés d'un intervalle d'environ 0,5mm;
  • - on obtient ainsi un gain de 106 à 107 pour dix étages de dynodes.
A photomultiplier device constituted as described above can be loocated in a tube constituted as follows:
  • - height about 65 mm;
  • - outside diameter 139 mm
  • - 100 mm diameter entry window with proximity photocathode:
  • - dynode stages as described above, with a potential difference of around 50 volts between two planes of the same dynode stage, and a potential difference of around 200 volts between dynode stages:
  • - anode divided into 164 elements of approximately 7 x 7mm 2 , separated by an interval of approximately 0.5mm;
  • - This gives a gain of 10 6 to 10 7 for ten stages of dynodes.

A la base, la résolution obtenue est d'environ 12 mm dans la direction X transversale à la grande dimension des lamelles, et d'environ 10 mm dans la direction Y parallèle à la grande dimension des lamelles. On obtient en effet sensiblement la même résolution dans ces deux directions X et Y, bien que la structure d'un plan de lamelles donné ne soit pas du tout isotrope.Basically, the resolution obtained is approximately 12 mm in the X direction transverse to the large dimension of the lamellae, and approximately 10 mm in the Y direction parallel to the large dimension of the lamellae. In fact, the same resolution is obtained in these two directions X and Y, although the structure of a given plane of lamellae is not at all isotropic.

Pour égaliser encore la résolution en X et en Y, on peut bien entendu croiser alternativement le sens des lamelles dans les étages de dynodes successifs. La résolution spatiale optimale peut être obtenue aisément en ajustant la haute tension, ce qui agit globalement sur le champ électrique, voire même par une action plus fine sur le champ électrique au niveau de chacun des étages et des plans de dynodes.To further equalize the resolution in X and in Y, it is of course possible to alternately cross the direction of the lamellae in the stages of successive dynodes. The optimal spatial resolution can be easily obtained by adjusting the high voltage, which acts globally on the electric field, or even by a finer action on the electric field at the level of each of the stages and the dynode planes.

Le photomultiplicateur ainsi obtenu présente une surface sensible très grande, pour une sensibilité qui peut devenir comporable à celle du dispositif antérieur. En effet, une résolution spatiale améliorée peut être encore obtenue en réduisant la dimension r des lamelles de dynodes, et en agissant de manière correspondante sur le champ électrique et les dimensions verticales (ou longitudinales) du dispositif.The photomultiplier thus obtained has a very large sensitive surface, for a sensitivity which can become comporable to that of the prior device. Indeed, an improved spatial resolution can be further obtained by reducing the dimension r of the dynode strips, and by acting in a corresponding manner on the electric field and the vertical dimensions (or longitudinal) of the device.

De telles caractéristiques de résolution sont suffisantes pour une grande partie des applications. Elles conviennent particulièrement bien pour des applications comme l'imagerie en rayons X ou en rayons Y.Such resolution characteristics are sufficient for a large part of the applications. They are particularly suitable for applications such as X-ray or Y-ray imaging.

Par exemple, lorsqu'on effectue une imaqerie en rayons Y à l'aide d'une caméra du type Anger, constituée par un cristal d'iodure de sodium dont l'épaisseur est de 10 mm, et, comme détecteur, un réseau de photomultiplicateurs 2 pouces (50 mm), couplé directement au cristal, la résolution spatiale obtenue après calcul de barycentre est au mieux de l'ordre de 4mm. Dans ces conditions, on observe que la résolution spatiale est dominée par la résolution du détecteur, environ 50 mm, ce qui est trop faible par rapport à la taille du spot des faisceaux de scintillation qui est d'environ deux fois l'épaisseur du cristal, soit 20 mm.For example, when performing Y-ray imaging using an Anger-type camera, consisting of a sodium iodide crystal with a thickness of 10 mm, and, as a detector, an array of 2 inch (50 mm) photomultipliers, coupled directly to the crystal, the spatial resolution obtained after calculation of the barycenter is at best of the order of 4mm. Under these conditions, it is observed that the spatial resolution is dominated by the resolution of the detector, approximately 50 mm, which is too small compared to the size of the spot of the scintillation beams which is approximately twice the thickness of the crystal. , or 20 mm.

A ce niveau, même une résolution limitée des détecteurs peut améliorer la résolution finale par un facteur important. En effet, avec une résolution de 10 mm du photodétecteur, on peut atteindre une résolution finale de 1,6 mm.At this level, even a limited resolution of the detectors can improve the final resolution by an important factor. Indeed, with a resolution of 10 mm from the photodetector, one can reach a final resolution of 1.6 mm.

C'est précisément ce que peut faire le dispositif photomultiplicateur décrit en détail plus haut.This is precisely what the photomultiplier device described in detail above can do.

Il convient enfin de noter par ailleurs les excellentes propriétés obtenues par le multiplicateur d'électrons selon l'invention, ib termes de temps de réponse et de linéarité du oain, en plus de la résolution spatiale déjà mentionnée.Finally, it should also be noted the excellent properties obtained by the electron multiplier according to the invention, ib terms of response time and linearity of the tin, in addition to the spatial resolution already mentioned.

Claims (13)

1. Dispositif multiplicateur d'électrons, comportant, dans un tube à vide, une succession d'électrodes planes parallèles, qui définissent plusieurs étages de dynodes (D1-D10) capables d'émission électronique secondaire, entre une fenêtre d'entrée (FE) et une anode de sortie (An) et des moyens (E1,E1, R0-R3) connectés à ces électrodes (D-1-D10,An) afin d'établir entre elles un champ électrique accélérateur d'électrons, dont la direction générale est perpendiculaire aux électrodes, caractérisé en ce que chaque étage de dynode (D1-D10) est défini en deux plans successifs (D11, D12,...) constitués chacun de lamelles parallèles interconnectées, et que ces lamelles (D110,D120...) sont décalées d'un plan à l'autre de façon que ces deux plans définissent ensemble un obstacle en chicane pour les trajectoires électroniques qui leur sont perpendiculaires, et
en ce que, chaque étaqe de dynode (D1-D10) étant agencé de sorte que la majorité des électrons secondaires partant effectivement d'une lamelle (D110...) de son premier plan ne frappe pas une lamelle (D121,D122) de second plan,
la distance (Z1) entre deux étages de dynodes consécutifs (D1-D2), grande par rapport à la distance (ZO) entre les deux plans (D11-D12) d'un même étage, est choisie, en fonction du champ électrique, de sorte que les électrons secondaires provenant de l'étage amont (D1) frappent selcn une distribution concentrée un nombre restreint de lamelles de l'étage aval (D2).
1. Electron multiplier device, comprising, in a vacuum tube, a succession of parallel planar electrodes, which define several stages of dynodes (D 1 -D 10 ) capable of secondary electronic emission, between an input window (FE) and an output anode (An) and means (E 1 , E 1 , R 0 -R 3 ) connected to these electrodes (D- 1 -D 10 , An) in order to establish between them an electric field electron accelerator, the general direction of which is perpendicular to the electrodes, characterized in that each dynode stage (D 1 -D 10 ) is defined in two successive planes (D 11 , D 12 , ...) each made up of lamellae interconnected parallels, and that these lamellae (D 110 , D 120 ...) are offset from one plane to another so that these two planes together define a baffle obstacle for the electronic trajectories which are perpendicular to them, and
in that, each dynode stage (D 1 -D 10 ) being arranged so that the majority of the secondary electrons actually leaving a lamella (D 110 ...) from its foreground does not strike a lamella (D 121 , D 122 ) in the background,
the distance (Z 1 ) between two stages of consecutive dynodes (D 1 -D 2 ), large compared to the distance (Z O ) between the two planes (D 11 -D 12 ) of the same stage, is chosen, as a function of the electric field, so that the secondary electrons coming from the upstream stage (D 1 ) strike selcn a concentrated distribution a restricted number of lamellae of the downstream stage (D 2 ).
2. Dispositif sellon la revendication 1, caractérisé en ce que les lamelles, prismatiques ou cylindriques, ont une section droite qui fait saillir du côté de la fenêtre d'entrée, avec deux flancs (L,R) capables d'émission secondaire et sensiblement symétriques par rapport à la direction générale (F) du champ électrique, et en ce que la distance (Z1) entre étages de dynodes est choisie de sorte que les électrons secondaires provenant de l'étage amont (D1) frappent de manière sensiblement équilibrée des flancs des lamelles de l'étage aval qui ont des inclinaisons symétriques (D211R, D212L, D 222 R et L).2. Saddler device of claim 1, characterized in that the lamellae, prismatic or cylindrical, have a cross section which projects from the side of the entrance window, with two sides (L, R) capable of emission secondary and substantially symmetrical with respect to the general direction (F) of the electric field, and in that the distance (Z 1 ) between dynode stages is chosen so that the secondary electrons coming from the upstream stage (D 1 ) strike in a substantially balanced manner from the sides of the lamellae of the downstream stage which have symmetrical inclinations (D 211 R, D 212 L, D 222 R and L ). 3. Dispositif selon la revendication 2, caractérisé en ce que la section droite des lamelles est sensiblement en forme de triangle isocèle, où les deux angles égaux valent entre 40 et 70° environ.3. Device according to claim 2, characterized in that the cross section of the lamellae is substantially in the form of an isosceles triangle, where the two equal angles are between 40 and 70 ° approximately. 4. Dispositif selon l'une des revendications 2 et 3, caractérisé en ce que la distance (Z1) entre étages de dynodes consécutifs est choisie pour déséquilibrer légèrement la symétrie d'impact, sur l'étage aval, des électrons secondaires provenant de l'étage amont, afin d'éviter un décalage de la localisation spatiale dù à l'inclinaison des flancs.4. Device according to one of claims 2 and 3, characterized in that the distance (Z 1 ) between stages of consecutive dynodes is chosen to slightly unbalance the impact symmetry, on the downstream stage, of the secondary electrons coming from the upstream floor, in order to avoid a shift in spatial location due to the inclination of the sides. 5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la largeur apparente des lamelles est au plus égale à environ 0,5 mm.5. Device according to one of claims 1 to 4, characterized in that the apparent width of the strips is at most equal to about 0.5 mm. 6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le champ électrique moyen est au moins égal à environ 500 v/cm.6. Device according to one of claims 1 to 5, characterized in that the average electric field is at least equal to about 500 v / cm. 7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'énerqie initiale des électrons secondaires effectivement émis est au moins égale à 5 électrons-volt, enviton.7. Device according to one of the preceding claims, characterized in that the initial energy of the secondary electrons actually emitted is at least equal to 5 electron volts, enviton. 8. Dispositif selon la revendication 7, caractérise en ce que l'énergie initiale des électrons secondaires effectivement émis est limitée à quelques dizaines d'électrons-volt.8. Device according to claim 7, characterized in that the initial energy of the secondary electrons actually emitted is limited to a few tens electron volts. 9. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'au moins deux étages de dynodes consécutifs ont leurs lamelles orientées dans des directions différentes, de préférence perpendiculaires.9. Device according to one of the preceding claims, characterized in that at least two stages of consecutive dynodes have their lamellae oriented in different directions, preferably perpendicular. 10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la tension électrique régnant entre les deux plans d'un même étage de dynode est au plus égale à environ 50 volts, au moins pour les premiers étages, ce qui permet une bonne détection d'un photo-électron isolé.10. Device according to one of the preceding claims, characterized in that the electrical voltage prevailing between the two planes of the same dynode stage is at most equal to approximately 50 volts, at least for the first stages, which allows a good detection of an isolated photo-electron. 11. Dispositif selon l'une des revendications précédentes, caractérisé par des moyens pour ajuster l'alimentation des électrodes afin d'optimiser la résolution.11. Device according to one of the preceding claims, characterized by means for adjusting the supply of the electrodes in order to optimize the resolution. 12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une cathode ou photocathode (PPC) à proximité de la première dynode.12. Device according to one of the preceding claims, characterized in that it comprises a cathode or photocathode (PPC) near the first dynode. 13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, comme anode (An), une anode divisée à connexions multiples, une surface électro-luminescente, ou une anode résistive.13. Device according to one of the preceding claims, characterized in that it comprises, as anode (An), a divided anode with multiple connections, an electroluminescent surface, or a resistive anode.
EP85400897A 1984-05-09 1985-05-07 Electron multiplier device with electric field localisation Expired EP0165119B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85400897T ATE48338T1 (en) 1984-05-09 1985-05-07 ELECTRON MULTIPLIER DEVICE WITH ELECTRIC FIELD LOCALIZATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8407142 1984-05-09
FR8407142A FR2566175B1 (en) 1984-05-09 1984-05-09 ELECTRON MULTIPLIER DEVICE, LOCATED BY THE ELECTRIC FIELD

Publications (2)

Publication Number Publication Date
EP0165119A1 true EP0165119A1 (en) 1985-12-18
EP0165119B1 EP0165119B1 (en) 1989-11-29

Family

ID=9303797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400897A Expired EP0165119B1 (en) 1984-05-09 1985-05-07 Electron multiplier device with electric field localisation

Country Status (6)

Country Link
US (1) US4914351A (en)
EP (1) EP0165119B1 (en)
JP (1) JPS6182646A (en)
AT (1) ATE48338T1 (en)
DE (1) DE3574522D1 (en)
FR (1) FR2566175B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592523A1 (en) * 1985-12-31 1987-07-03 Hyperelec Sa HIGH EFFICIENCY COLLECTION MULTIPLIER ELEMENT
US4980604A (en) * 1988-07-05 1990-12-25 U.S. Philips Corp. Sheet-type dynode electron multiplier and photomultiplier tube comprising such dynodes
EP0471563A2 (en) * 1990-08-15 1992-02-19 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes
EP0833368A2 (en) * 1996-09-26 1998-04-01 Hamamatsu Photonics K.K. Photomultiplier tube

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917802A4 (en) * 1996-08-05 1999-11-17 Culkin Joseph B Video display and image intensifier system
JP2005011592A (en) * 2003-06-17 2005-01-13 Hamamatsu Photonics Kk Electron multiplier
JP4819437B2 (en) * 2005-08-12 2011-11-24 浜松ホトニクス株式会社 Photomultiplier tube
JP4849521B2 (en) * 2006-02-28 2012-01-11 浜松ホトニクス株式会社 Photomultiplier tube and radiation detector
JP5284635B2 (en) * 2007-12-21 2013-09-11 浜松ホトニクス株式会社 Electron multiplier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579017A (en) * 1968-06-17 1971-05-18 Scient Research Instr Corp Harp electron multiplier
EP0013235A1 (en) * 1978-12-22 1980-07-09 ANVAR Agence Nationale de Valorisation de la Recherche Electron multiplying apparatus with axial magnetic field

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649268A (en) * 1984-03-09 1987-03-10 Siemens Gammasonics, Inc. Imaging dynodes arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579017A (en) * 1968-06-17 1971-05-18 Scient Research Instr Corp Harp electron multiplier
EP0013235A1 (en) * 1978-12-22 1980-07-09 ANVAR Agence Nationale de Valorisation de la Recherche Electron multiplying apparatus with axial magnetic field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REVIEW OF SCIENTIFIC INSTRUMENTS, vol 52, no. 3, mars 1981, pages 337-346, New York, US; K. KURODA et al.: "New type of position sensitive photomultiplier" *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592523A1 (en) * 1985-12-31 1987-07-03 Hyperelec Sa HIGH EFFICIENCY COLLECTION MULTIPLIER ELEMENT
EP0230694A1 (en) * 1985-12-31 1987-08-05 Philips Composants Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
US4980604A (en) * 1988-07-05 1990-12-25 U.S. Philips Corp. Sheet-type dynode electron multiplier and photomultiplier tube comprising such dynodes
EP0471563A2 (en) * 1990-08-15 1992-02-19 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes
EP0471563A3 (en) * 1990-08-15 1992-04-08 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes
US5254906A (en) * 1990-08-15 1993-10-19 Hamamatsu Photonics K.K. Photomultiplier tube having a grid type of dynodes
EP0833368A2 (en) * 1996-09-26 1998-04-01 Hamamatsu Photonics K.K. Photomultiplier tube
EP0833368A3 (en) * 1996-09-26 1999-11-24 Hamamatsu Photonics K.K. Photomultiplier tube

Also Published As

Publication number Publication date
ATE48338T1 (en) 1989-12-15
US4914351A (en) 1990-04-03
DE3574522D1 (en) 1990-01-04
JPS6182646A (en) 1986-04-26
JPH0421303B2 (en) 1992-04-09
FR2566175B1 (en) 1986-10-10
FR2566175A1 (en) 1985-12-20
EP0165119B1 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
EP0742954B1 (en) Ionising radiation detector having proportional microcounters
EP0855086B1 (en) High-resolution position detector for high-flux ionising particle streams
EP0165119B1 (en) Electron multiplier device with electric field localisation
EP0230818B1 (en) Photo cathode with internal amplification
FR2660999A1 (en) IMPROVED IONIZATION MANOMETER FOR VERY LOW PRESSURES.
EP0851512A1 (en) High resistivity semiconductor ionizing radiation detector
EP1155341A1 (en) Two-dimensional detector of ionising radiation and method for making same
EP0045704B1 (en) Radiation detector
CA2887442C (en) Semi-transparent photocathode with improved absorption rate
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
EP3912183B1 (en) Elementary particle detector
EP0125962B1 (en) X-ray image intensifier and its use in computed x-ray image processing
WO2007003723A2 (en) Multi-channel electron multiplier tube
EP0013235B1 (en) Electron multiplying apparatus with axial magnetic field
EP1343194A1 (en) Radiation detectors and autoradiographic imaging devices comprising such detectors
EP0418965B1 (en) Cathode ray tube having a photodeflector
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
FR2494906A1 (en) ELECTRON MULTIPLICATION PHOTODETECTOR TUBE FOR USE IN A COLOR VIDEO READER
EP0340126A1 (en) Parallax-free gas-filled X-ray detector
EP0412887A1 (en) High efficiency cathodoluminescent screen for high luminance cathode ray tube
FR2481004A1 (en) Photo multiplier with grid anode - is formed by ladder network of coplanar spaced leaf collectors in parallel planes
EP2483909A1 (en) Radiation detectors and autoradiographic imaging devices comprising such detectors
WO2000030150A1 (en) Gas-filled photon detector
FR2955427A1 (en) Multi-channel photomultiplier tube i.e. four channel photomultiplier tube, for positron emission tomography application, has window whose concavity has surface equal to outer face's surface, and stage provided with dynodes through concavity
EP0851455A1 (en) Radiological image intensifier tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860129

17Q First examination report despatched

Effective date: 19870408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891129

Ref country code: AT

Effective date: 19891129

REF Corresponds to:

Ref document number: 48338

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3574522

Country of ref document: DE

Date of ref document: 19900104

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
26N No opposition filed
BERE Be: lapsed

Owner name: AGENCE NATIONALE DE VALORISATION DE LA RECHERCHE

Effective date: 19900531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930514

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930714

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930723

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940531

Ref country code: CH

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940507

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST