EP0161192B1 - Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé - Google Patents

Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0161192B1
EP0161192B1 EP85420058A EP85420058A EP0161192B1 EP 0161192 B1 EP0161192 B1 EP 0161192B1 EP 85420058 A EP85420058 A EP 85420058A EP 85420058 A EP85420058 A EP 85420058A EP 0161192 B1 EP0161192 B1 EP 0161192B1
Authority
EP
European Patent Office
Prior art keywords
axis
rolling
roll
rolling mill
bearing housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85420058A
Other languages
German (de)
English (en)
Other versions
EP0161192A1 (fr
Inventor
Jean-Marc Jour
Pierre Peytavin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec SA
Original Assignee
Vallourec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vallourec SA filed Critical Vallourec SA
Priority to AT85420058T priority Critical patent/ATE44247T1/de
Publication of EP0161192A1 publication Critical patent/EP0161192A1/fr
Application granted granted Critical
Publication of EP0161192B1 publication Critical patent/EP0161192B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/008Skew rolling stands, e.g. for rolling rounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers

Definitions

  • the invention relates to a method for adjusting a rolling mill with oblique cylinders, of the type used for rolling metal bars or tubes in order to obtain a high reduction ratio in a single pass.
  • the invention also relates to a rolling mill allowing the implementation of this adjustment method.
  • Such a process applies in particular to the hot rolling of bars or tubes, for example of steel.
  • Patent FR 1 576 091 describes, on pages 5 and 6 as well as in FIG. 2, a rolling mill with oblique cylinders comprising three working cylinders in the shape of a mushroom. These cylinders are arranged inside a cage formed by a casing 30, to which three cylinder supports 31 are fixed, distributed around the axis of the material to be laminated. The cage rotates around this axis, thanks to a motor whose drive pinion drives a toothed ring 37. The rotation of each cylinder 27 around its axis 36 is obtained by a planetary system comprising a toothed ring 32 fixed on a shaft hollow inside which the material to be laminated moves.
  • Three satellite systems mesh on this ring gear and each rotate a cylinder such as 27 by means of a pair of angle gears 35.
  • One of these gears is mounted on the axis of the satellite 34, the another on the axis 36 of the rolling cylinder.
  • the adjustment means of a rolling mill of this type so as to adjust the advance to the desired value in particular as a function of the laminated diameter is described in the article by E.J.F.E. Breitschneider published in Iron and Steel Engineer (October 1981 pages 51 to 54). It consists (see page 51 left column), to rotate the axis of each rolling cylinder around the axis of the corresponding satellite, so as to obtain the desired degree of inclination which allows the advance. This rotation from one axis around the other is carried out without modifying the angle between these two axes which is imposed by construction, and can be, for example, 60 ° (see page 52 left column). This inclination allowing the advance can, according to the author, vary from 0 to 10 °.
  • FR 1 576 091 describes a means for adjusting the rolling diameter. This means consists in sliding each working cylinder along its axis 36, by acting on an approach device 38, which makes it possible to vary the outlet section of the material to be laminated.
  • This transverse displacement is due to the fact that, the more the angle of advance is increased, the more the cylinder deviates from the plane of symmetry which passes through the rolling axis and the axis of the satellite. This results in a first cause of disturbance of the rolling conditions, which, in such a process, are particularly critical and must be able to be adjusted with great precision.
  • the adjustment of the outlet section obtained by sliding the cylinder along its axis, also has the disadvantage of displacing the rolling zone along the rolling axis.
  • the combination of such an axial displacement with the transverse displacement consecutive to the adjustment of the advance has the effect of further disrupting the rolling conditions and therefore adversely affecting the quality of the product, in particular with regard to the state of surface and in the case of a tube the regularity of thickness.
  • French patent 1,475,645 describes another type of oblique rolling mill with three rolls in which a joint adjustment is made of the spacing of the rolls with respect to the rolling axis and the feed angle.
  • each cylinder is mounted on two bearings arranged on either side of the cylinder.
  • FIG. 1 of this document shows that this combined adjustment is achieved by rotating a flange around the rolling axis which carries the three bearings located on the same side of the cylinders.
  • This adjustment method has the disadvantage of causing a displacement of the working area of each cylinder in contact with the product.
  • the method applies to rolling mills the axis of the rolls of which is only slightly inclined relative to the rolling axis.
  • This displacement device perpendicular to the axis of the cylinder cage allows, as said in this patent, to widen the range of adjustment of the feed angles, but this results in a modification of the working area of each cylinder in contact with the therefore produces rolling conditions as explained above.
  • the present invention aims to produce a rolling mill with oblique cylinders of the type mentioned above, making it possible to adjust the advance of the product during rolling virtually independently of the other adjustment parameters. It also relates to the possibility in such a rolling mill to vary within wide limits the diameter of the laminated products obtained, while preserving the optimal rolling conditions in particular by using the same set of rolling rolls.
  • the invention also aims to produce a rolling mill having a structure as compact and robust as possible as well as a minimum bulk.
  • the rolling mill according to the invention provides a particularly effective solution to these problems.
  • the invention relates to a rolling mill with oblique cylinders making it possible to obtain metallic bars or tubes of revolution, comprising at least three cylinders distributed around the rolling axis, each cylinder having a profile of revolution of generally decreasing section, at least in the part ensuring the reduction in outside diameter of the product to be laminated, from the entry side thereof to its exit side and being mounted in cantilever at one end of a shaft of revolution connected by means transmission to a rotary drive means, this shaft of revolution being supported by bearings mounted inside a cylinder holder cage itself mounted in rotation about an adjustment axis which cuts the axis of revolution of the cylinder by forming an angle of 20 to 70 ° with it, crosses the surface of the cylinder in the area of contact with the product being rolled and cuts the rolling axis at right angles, a first means of setting allowing to adjust the spacing of each cylinder relative to the rolling axis by moving the cylinder holder cage along the adjustment axis.
  • the rolling mill is characterized in that the first adjustment means comprises a screw / nut assembly centered on the adjustment axis, one of the two components of which, preferably the screw, is disposed at the periphery of the cylinder holder cage, and integral with it, the other component being mounted free in rotation on a bearing fixed relative to the frame of the rolling mill, a drive means in rotation making it possible to rotate the free component in rotation relative to that which is integral of the cylinder holder cage, around the adjustment axis, by a determined amount to move the cylinder holder cage of the desired length along the adjustment axis.
  • the first adjustment means comprises a screw / nut assembly centered on the adjustment axis, one of the two components of which, preferably the screw, is disposed at the periphery of the cylinder holder cage, and integral with it, the other component being mounted free in rotation on a bearing fixed relative to the frame of the rolling mill, a drive means in rotation making it possible to rotate the free component in rotation relative to that which is integral of the
  • each rolling cylinder has a calibration zone at the end of the reduction deformation zone.
  • the adjustment axis crosses the. surface of the cylinder in an area of this cylinder corresponding to the middle of the calibration area.
  • the component free in rotation of the screw / nut assembly comprises a toothed ring which can be driven in rotation by a first motor means which actuates a toothed pinion which meshes on this ring.
  • the screw of the screw / nut assembly is constituted by a thread, produced at the periphery of the cylinder holder cage, the nut being a nut crown mounted in rotation on a bearing fixedly connected to the rolling mill frame. .
  • a second adjustment means comprises a rotary drive means which makes it possible to rotate the cylinder holder cage around the adjustment axis, under the action of a second motor means.
  • This makes it possible to orient the cylinder holder cage so as to give the cylinder the desired angle of advance A with respect to the rolling axis.
  • a wedging means can make it possible to prevent the rotation of the free component in rotation of the screw / nut assembly, during the drive in rotation of the cylinder-holder cage around the adjustment axis. The action of this wedging means makes it possible, by acting only on the second adjusting means, to combine the advance angle and the spacing of the cylinder with respect to the rolling axis.
  • the feed angle A is preferably adjusted between 3 ° and 30 °.
  • the means for driving in rotation of each cylinder-carrying cage is a pivot fixed to the periphery of this cage on which a rod actuated by the second motor means is articulated; it is advantageously a jack.
  • the pivot is advantageously mounted on a revolution ring fixed in rotation on the cylinder holder cage and surrounding the screw / nut assembly.
  • a means of synchronizing the angular displacements of all of the cylinder carrier cages connects these cages to each other, so as to impose at all times on their cylinders the same angle of advance relative to the rolling axis.
  • This synchronization means can for example be produced with articulated connecting means.
  • a prestressing means makes it possible to support the cylinder carrier cage on the frame, canceling the existing clearances, in particular at the screw / nut contact and at the level of the bearing against which door the free rotating component of the screw / nut assembly.
  • this prestressing means comprises a traction means, disposed along the adjustment axis, connected on the one hand to the cylinder holder cage and on the other hand to the frame.
  • This traction means applies a force oriented parallel to the cylinder holder cage. the adjustment axis and directed towards the frame.
  • This traction means is advantageously a jack.
  • each rolling cylinder is driven by means of a pair of conical toothed pinions, by means of a drive shaft disposed either radially with respect to the rolling axis or perpendicular to the adjustment axis.
  • the drive shaft is connected to the drive means by a flexible articulation such as a universal joint.
  • a particularly effective method of implementing the rolling mill thus designed consists in using, during the rolling of a tube blank, the second adjustment means, so as to effect a combined variation of the angle of advance and of the spacing of each cylinder relative to the rolling axis, the movable component of the screw / nut assembly being locked in rotation.
  • the first and second adjustment means can also be synchronized so as to superimpose on the variation in spacing combined with the variation in angle of advance, an independent variation in spacing which can be added or subtracted. of the first, in the direction of rotation of the free rotating component of the screw / nut assembly.
  • Figure 1 shows schematically in elevation and in section, a rolling cylinder, of an oblique rolling mill with three cylinders equipped with the adjusting device according to the invention.
  • the oblique cylinder 2 is mounted on an axis of revolution Y o Y, inside a cage 3 of generally cylindrical shape, in which it rests on bearings 4.
  • the cage 3 is itself rotatably mounted around an adjustment axis Z 0 Zi, perpendicular to the axis X 0 X 1 , and intersecting it.
  • This adjustment axis Z o Z 1 intersects the axis Y o Y 1 , and crosses the surface of the cylinder in the zone of contact with the tube 1.
  • the point 5 crossing the surface of the cylinder by the axis Z 0 Z 1 is located in the calibration zone, at the end of the contact zone on the outlet side of the tube, zone in which the work of the cylinder essentially consists in leveling the cylindrical surface of the tube, so as to eliminate the undulations in profile helical resulting from the advance.
  • Figure 2 is a top view along the axis of adjustment Z o Z, of Figure 1.
  • the plane of this figure, perpendicular to Z 0 Z, contains the axis X o X 1 . Only the cylinder 2 and the tube or bar 1 have been shown, the cage 3 being removed.
  • the projection onto the plane of the figure of the axis of revolution Y o Y, makes with the axis X o X I an angle A.
  • This angle A is, by definition, the angle of advance of the cylinder 2 with respect to the rolling axis.
  • This angle is adjustable by rotation of the cage 3 around the axis Z o Z 1 . It can for example be 10 °.
  • the angle of inclination i of the axis of revolution Y o Y 1 relative to the adjustment axis Z o Z is approximately 45 °. This angle is fixed and independent of the angle of advance. It can vary according to the characteristics of the rolling mills from around 20 ° to around 70 °.
  • the axis of revolution Y o Y 1 is oriented so as to approach the rolling axis X o X 1 , in the direction of the exit zone of the rolled product from the rolling mill. By construction, this axis does not intersect the rolling axis except when the feed angle A is equal to 0, which is never the case in the rolling position.
  • the rolling roll 2 has a profile of revolution whose section decreases towards the exit zone of the product to be laminated. In the calibration zone, the profile of the generator of the cylinder is determined so as to smooth the surface of the bar by attenuating or eliminating the helical undulations which it may present.
  • the adjustment of the advance angle A is carried out by rotating the cage 3 around the adjustment axis Z o Z, until it gives the desired angular orientation.
  • the feed angle A is adjusted to the desired value, by rotating, by known means and not shown, the cage 3 inside a fixed annular envelope 6, which is itself secured to the fixed structure of the rolling mill, also not shown.
  • An angular wedging means makes it possible to wedge the cage 3 in a determined angular position inside the envelope 6. It can be seen that, thanks to this method of adjusting the advance angle according to the invention, it is possible to vary the feed angle, within very wide limits, without significantly disturbing the rolling conditions.
  • the rotation of the cage around the axis Z 0 Z 1 rotates the cylinder, in its zone of contact with the bar or the tube around the fixed point 5 which is on the adjustment axis. This point 5 is normally located in the calibration zone C of the cylinder.
  • the reference mark 7 represents on the cylinder the limit between the calibration zone C and the reduction zone.
  • the rolling cylinder 2 is rotated, whatever the adjustment position, by a pair of toothed bevel gears 8 and 9.
  • the pinion 8 is wedged on the shaft 10 which drives the cylinder around the axis Y o Y i .
  • the pinion 9 is wedged on the motor shaft 11 mounted on the axis Z o Z 1 which drives it by means of a motor means not shown.
  • a rolling mill of this type comprises at least three stands, such as that shown in FIG. 1, whose adjustment axes, such as Z o Z l , are distributed around a rolling axis, such as X 0 X 1 .
  • these axes such as Z 0 Z 1 are arranged, at 120 ° from one another around the axis X o X 1 and are concurrent.
  • the envelopes 6 occupy, most often, a fixed position in space, which facilitates the driving of the drive shafts 11 by suitable drive means.
  • the rotational speeds of these shafts are preferably synchronized.
  • Figure 3 is a view along the rolling axis of the outlet side of the rolled product of a rolling mill with three oblique rollers according to the invention.
  • the plane of the figure is perpendicular to the rolling axis, which is marked in X 2 .
  • These cylinders are mounted in cages 15, 16, 17 of cylindrical shape of revolution which can slide and rotate with a minimum of play inside annular envelopes 18, 19, 20 mounted integral with each other by means of the parts. 55 56 57.
  • Each of these stands can rotate around one of the three adjustment axes Z 2 , Z 3 , Z 4 perpendicular to the rolling axis and concurrent in X 2 in the case of the figure.
  • Each of these cages has the same adjustment means according to the invention. These means are shown, schematically, in the case of the cage 15.
  • the latter has on its side wall a lug 21 which is held in an angular position determined by two screw stops 22, 23 which can be move by engaging them more or less inside the threaded housings 24, 25 fixed on the casing 18. By screwing and unscrewing these stops, the lug can be moved transversely relative to the adjustment axis Z 2 and therefore rotate the cage 15 by a determined angle and wedge it in a very precise angular position. The angle of advance is thus adjusted as described above.
  • the cage 15 can be moved along the axis Z 2 so as to adjust the exit section of the laminated bar.
  • Simple means of achieving this movement are constituted by adjustable stops.
  • the figure shows four stops comprising rods 26, 27, 28, 29 parallel to the axis Z 2 .
  • the rods 27 28 which are pressure screws of adjustable length, are mounted screwed into threaded sleeves 31 32 fixed on a cover 34 perpendicular to Z 2 and integral with the envelope 18.
  • the rods 26 29 which are return rods hydraulic cylinder rod type are mounted on bodies 30 33 fixed to the cover 34 perpendicular to Z 2 and integral with the casing 18.
  • the two rods 26 29 have heads 35 36 housed in an annular groove 37, having retaining edges 39, formed on the upper face 38 of the cage 15.
  • the two screw rods 27 28 are in direct contact by their free ends 40 41 on the face 38 while the rods 26 29 exert a force in the opposite direction.
  • the axial adjustment device with stops as described may comprise, instead of two pressure screws such as 27 28, a wedging at three or more points instead of two, the return rods such as 26 29 being associated as required. .
  • Each of the cages 16 17 is adjusted axially, in the same way as the cage 15 by similar means not shown.
  • the three rolling rolls 12, 13 and 14 are thus adjusted with the same angle of advance A with respect to the rolling axis and the same spacing with respect to this axis.
  • each cylinder The drive in rotation of each cylinder is made by a pair of bevel gears 42 43 shown in dashes.
  • Motor means not shown, drive motor shafts, arranged radially along the adjustment axes, such as shaft 44.
  • a frame 45 maintains the assembly in a fixed position.
  • the products rolled by means of this rolling mill circulate through it, turning on themselves, along the rolling axis.
  • the finished diameter is obtained by adjusting for each desired diameter the feed angle A and the radial position of the cylinders according to their respective adjustment axis Z 2 , Z 3 , Z 4 .
  • Figures 4 and 5 show an alternative embodiment of the method and the device according to the invention. It is a rolling mill with three oblique cylinders of which only one cylinder is shown.
  • Figure 4 is an elevational view in section passing through the adjustment axis.
  • Figure 5 is a top view along the axis Z s Z a of Figure 4.
  • the cylinder 46 rotates around an axis of revolution Y 5 Y 6 inside a cylindrical cage of revolution 47.
  • This cage can rotate around an adjustment axis Z 5 Z 6 , or slide along it inside a fixed annular envelope 48.
  • the axis Z 5 Z a is perpendicular and cuts the rolling axis X 3 X 4 .
  • the adjustment axis passes through the wall of the cylinder 46 in its zone of contact with the tube 49, during rolling, in accordance with the invention.
  • the cylinder 46 is driven in rotation by means of a pair of toothed bevel gears 50 51.
  • the pinion 51 is mounted on the motor shaft 52 perpendicular to the adjustment axis Z 5 Z 6 , which is driven by an engine not shown.
  • This shaft 52 is mounted so as to move as little as possible from the parallelism with respect to the rolling axis X 3 X 4 .
  • the shaft 52 is arranged by construction inside the cage 47 so that, in projection on the plane of Figure 5, it forms, with the projection on this same plane of the axis of revolution Y 5 Y s , an angle B whose value is close to the average value which is given to the angle A of the cylinder 46.
  • This arrangement makes it possible to connect the motor shaft 52 to a motor means whose shaft is substantially parallel to the rolling axis.
  • one or more articulated connections are provided, such as cardan joints and extensions between the shaft 52 and the shaft of the drive means. Such a connection is shown diagrammatically at 53.
  • Such an arrangement makes it possible to produce a rolling mill with three cylinders comprising cages which are themselves driven in rotation about the rolling axis X 3 X 4 by their envelopes, which in turn are mounted in rotation relative to a fixed frame.
  • the cages By giving the cages an equal and opposite direction of rotation to that of the product being rolled, this can be laminated. product without rotating relative to the rolling mill frame.
  • This facilitates the introduction and extraction of the products being rolled, which is particularly advantageous in the case of products of great lengths.
  • it is also possible to drive each cylinder by planetary and satellite gear. It suffices to provide an articulated connection, for example a cardan joint between the planet carrier shaft and the drive shaft of each cylinder, such as the shaft 52.
  • Figures 6 to 10 show another embodiment of a rolling mill with oblique cylinders according to the invention comprising special means for adjusting the spacing of the rolls relative to the rolling axis, as well as the angle d 'advance of these cylinders with respect to this same axis.
  • FIG. 6 is a schematic overall view, on the downstream side, of a rolling mill with three oblique cylinders according to the invention, used for the rolling of a tube blank 101.
  • the rolling axis X s is perpendicular to the plan of the figure.
  • the three cylinders 102, 103, 104 are mounted in cylinder carrier cages 105, 106, 107 themselves connected by base plates 108, 109, 110 to the frame 111 of the rolling mill.
  • This frame is in two parts, articulated with respect to each other around the axis X s perpendicular to the plane of the figure.
  • the ends 112, 113 of these two parts are held in abutment against one another at 114, thanks to a jack not shown.
  • the opening of the frame makes it possible to avoid breakage of parts.
  • Three jacks 115, 116, 117 make it possible to vary the angle of advance of the cylinders 102, 103, 104 and also, in a combined manner, the spacing of these cylinders.
  • the bodies of these jacks are articulated on the frame 111 at 118, 119, 120.
  • Their rods 121, 122, 123 are articulated on pivots 124, 125, 126 fixed on rings 127, 128, 129 which are themselves respectively secured to cylinder holder cages 105, 106, 107.
  • the jacks allow the axes, such as Y 7 , (see FIG. 7) of the cylinders to rotate, around 102, around their adjustment axes such as Z7.
  • Figure 7 is a sectional view of the cylinder holder cage 105, along a plane passing through the rolling axis X 5 and the adjusting axis Z 7 which are, according to the invention concurrent and perpendicular.
  • the axis Y 7 of the cylinder 102 intersects at (M) the adjustment axis at an angle ⁇ of approximately 30 °.
  • This axis Y 7 is shown in the plane of Figure 7. Its inclination relative to the rolling axis X 5 is in this condition of about 60 °, the angle of advance then being zero.
  • the cylinder 102 is set in rotation relative to the cylinder-carrying shaft 130, of revolution, by means of the threaded end rod 131 which is screwed into the threaded housing 132 of the cylinder 102.
  • An opening 133 is formed in the frame 111 for screwing or unscrewing the rod 131.
  • the cylinder-holder shaft 130 is mounted in rotation around Y 7 by means of bearings 134, 135, 177 bearing on the cylinder-holder cage 105. These bearings are designed, in known manner, to support the rolling forces.
  • the cylinder-holder shaft 130 comprises a conical crown 136, locked in rotation on it, on which meshes a conical pinion 137 mounted on a shaft (138). This arrangement is similar to that shown in Figure 4.
  • the axis X 7 of the shaft 138 is in the plane of the figure. Under the rolling conditions, this axis makes an angle with the plane of the figure which corresponds to the feed angle.
  • the shaft 138 is connected to a drive shaft, not shown, by one or more articulated connections, such as cardan shafts, which are also not shown.
  • the cylinder holder cage 105 comprises an annular zone 139, of axis Z 7 , provided with a male thread 140.
  • This thread comprises less than three threads and its pitch is calculated so as to achieve a determined relationship between the variation of feed angle and the combined variation of the spacing of the rolls, with respect to the rolling axis X 5 that is to be obtained.
  • This relationship is mainly a function of the dimensions of the tube blanks, the mechanical characteristics of the metal, under the rolling conditions, and the reduction rates that it is proposed to achieve.
  • a nut ring 141 is provided with a female thread 142 in engagement with the male thread 140 which constitutes the screw of this screw / nut assembly.
  • the ring 141 is mounted to rotate freely on a bearing 143 which also includes a centering and retaining ring 144 which ensures the centering of the ring 141 relative to the axis Z 7 and keeps it in abutment against the plate. base 108.
  • the nut ring 141 comprises a toothed crown 145, on which meshes a toothed pinion 146 mounted on an axis 147 which passes through the frame 111 and is driven in rotation by a first drive means such as a hydraulic motor shown at 176 (see figures 9 and 10).
  • This arrangement is a first means of independent adjustment of the spacing of the cylinder 102 relative to the rolling axis X 5 .
  • the rotation of the nut ring 141 in one direction or the other causes a displacement of the cylinder holder cage 105 along the adjustment axis and therefore a variation in the spacing of the cylinder 102 relative to the rolling axis X 5 . It is possible, in a known manner, to drive the nut ring 141 by the first drive means independently, or in conjunction with the drive of the other two nut rings 149, 150 which move each of the two other cylinder holder cages 106, 107.
  • the base plate 108 is fixed by known means, such as screws, not shown, to the frame 111.
  • the ring 127, mounted in revolution with respect to the axis Z 7 is locked in rotation on the cylinder holder cage 105 and surrounds the screw / nut assembly 140,141.
  • It includes an axis control pivot 124 X 8 parallel to Z 7 on which the end of the rod 121 of the jack 115 shown in FIG. 6 is articulated in rotation.
  • the rotary drive of the ring 127 around the axis Z 7 allows a combined adjustment of the angle of advance and the spacing of the cylinder 102 relative to the rolling axis X s the nut ring 141 being set in rotation by known means.
  • a rotation of the ring 127, seen along F1 in a clockwise direction, brings the cylinder 102 closer to the axis X 5 in the case of a screw nut system having a step to the right and increases the angle of advance, initially equal to zero.
  • the articulations of the jack rods 121, 122, 123 around the control pivots 124, 125, 126 and those 118, 119, 120 of the jack bodies 115, 116, 117 on the frame 111 are designed to allow, in known manner, the displacement of the pivots 124, 125, 126 parallel to the axis Z 7 within the limits for adjusting the spacing of the cylinders relative to the axis X 5 .
  • FIG. 8 shows the synchronization means used in the case of the present rolling mill.
  • Two levers bent at 120 ° 154, 155 are each articulated around a pivot 156, 157 fixed on the frame 111 and with an axis parallel to X 5 .
  • the axis of each of these pivots intersects a bisector of the angle of 120 ° formed by two adjustment lines.
  • the angular movements of these levers 154, 155 are synchronized by a link 158 articulated at 159, 160 at the ends of the arms 161, 162 of these levers.
  • the axes of the articulation points 156, 159, 160, 157 are parallel to the rolling axis X 5 and form the vertices of a deformable parallelogram.
  • Each of the three synchronization pivots 151, 152, 153 is connected to an arm of one of the two levers 154, 155 by an identical link 163, 164, 165 at the articulation points 166, 167, 168.
  • a prestressing means such as 169 makes it possible to exert traction on each cage along the adjustment axis Z 7 in the direction of the frame 111.
  • This device comprises a traction rod 170 of axis Z 7 , screwed onto the top of the cylinder holder cage (105).
  • This rod passes through a jack whose body 171 is integral with the frame 111.
  • An annular piston 172 slides in the body 171 and exerts a thrust on the flange 173, via the annular bearing 174, when a pressurized fluid is introduced in the annular chamber 175 by a pipe not shown.
  • the collar 173 is integral with the rod 170.
  • Such a rolling mill has the advantage of a very large compactness combined with great robustness and great rigidity. This results from the use of a screw / nut assembly, mounted at the periphery of each cylinder holder cage which minimizes the radial size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Laminated Bodies (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
  • Massaging Devices (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Description

  • L'invention concerne un procédé de réglage d'un laminoir à cylindres obliques, du type utilisé pour le laminage de barres ou de tubes métalliques afin d'obtenir en une seule passe un fort taux de réduction. L'invention concerne également un laminoir permettant la mise en oeuvre de ce procédé de réglage.
  • Un tel procédé s'applique en particulier au laminage à chaud de barres ou de tubes par exemple en acier.
  • Le brevet FR 1 576 091 décrit, aux pages 5 et 6 ainsi qu'à la figure 2, un laminoir à cylindres obliques comportant trois cylindres de travail en forme de champignon. Ces cylindres sont disposés à l'intérieur d'une cage formée par un carter 30, auquel sont fixés trois supports de cylindre 31, répartis autour de l'axe de la matière à laminer. La cage tourne autour de cet axe, grâce à un moteur dont le pignon d'entraînement attaque une couronne dentée 37. La rotation de chaque cylindre 27 autour de son axe 36 est obtenue par un système planétaire comprenant une couronne dentée 32 fixée sur un arbre creux à l'intérieur duquel se déplace la matière à laminer.
  • Trois systèmes satellites engrènent sur cette couronne dentée et font, chacun, tourner un cylindre tel que 27 au moyen d'un couple de pignons d'angle 35. L'un de ces pignons est monté sur l'axe du satellite 34, l'autre sur l'axe 36 du cylindre de laminage.
  • Le moyen de réglage d'un laminoir de ce type, de façon à ajuster l'avance à la valeur souhaitée en particulier en fonction du diamètre laminé est décrit dans l'article de E.J.F.E. Breitschneider publié dans Iron and Steel Engineer (Octobre 1981 pages 51 à 54). Il consiste (voir page 51 colonne de gauche), à faire tourner l'axe de chaque cylindre de laminage autour de l'axe du satellite correspondant, de façon à obtenir le degré d'inclinaison voulu qui permet l'avance. Cette rotation d'un axe autour de l'autre est effectuée sans modifier l'angle que font entre eux ces deux axes qui est imposé par construction, et peut être, par exemple, de 60° (voir page 52 colonne de gauche). Cette inclinaison permettant l'avance peut, selon l'auteur, varier de 0 à 10°.
  • Par ailleurs, le FR 1 576 091 décrit un moyen permettant de régler le diamètre de laminage. Ce moyen consiste à faire glisser chaque cylindre de travail le long de son axe 36, en agissant sur un dispositif d'approche 38, ce qui permet de faire varier la section de sortie de la matière à laminer.
  • Le réglage des cylindres des laminoirs de ce type, par ces deux moyens, présente de sérieux inconvénients. En effet, le réglage de l'avance, qu'on effectue en faisant tourner l'axe de chaque cylindre autour de l'axe du satellite correspondant, entraîne un déplacement de la zone de travail de chaque cylindre au contact du produit.
  • Ce déplacement transversal est dû au fait que, plus on augmente l'angle d'avance et plus le cylindre s'écarte du plan de symétrie qui passe par l'axe de laminage et l'axe du satellite. Il en résulte une première cause de perturbation des conditions de laminage, qui, dans un tel procédé, sont particulièrement critiques et doivent pouvoir être ajustées avec une grande précision. Le réglage de la section de sortie, obtenu en faisant glisser le cylindre le long de son axe, a également l'inconvénient de déplacer la zone de laminage le long de l'axe de laminage. La combinaison d'un tel déplacement axial avec le déplacement transversal consécutif au réglage de l'avance, a pour effet de perturber encore davantage les conditions de laminage et donc de nuire à la qualité du produit, en particulier en ce qui concerne l'état de surface et dans le cas d'un tube la régularité d'épaisseur.
  • Le brevet français 1 475 645 décrit un autre type de laminoir oblique à trois cylindres dans lequel on effectue un réglage conjugué de l'écartement des cylindres par rapport à l'axe de laminage et de l'angle d'avance. Pour cela chaque cylindre est monté sur deux paliers disposés de part et d'autre du cylindre. La figure 1 de ce document montre que ce réglage conjugué est réalisé en faisant tourner autour de l'axe de laminage un flasque qui porte les trois paliers situés d'un même côté des cylindres.
  • On peut ainsi en cours de laminage, en particulier en fin de laminage d'une ébauche de tube, faire varier simultanément l'écartement des cylindres et l'angle d'avance, pour éviter en particulier les déchirures d'ébauches et même les blocages. Cette possibilité est particulièrement importante pour les taux élevés de réduction de section.
  • Cette méthode de réglage présente l'inconvénient de provoquer un déplacement de la zone de travail de chaque cylindre au contact du produit.
  • Par ailleurs, comme on peut le voir sur les figures 1 à 6 de ce même document, la méthode s'applique à des laminoirs dont l'axe des cylindres n'est que faiblement incliné par rapport à l'axe de laminage.
  • On connaît aussi le brevet russe 733 748 qui décrit un laminoir à trois cylindres obliques fixés en porte à faux à l'extrémité de leur arbre de révolution respectif. Ces arbres sont eux-mêmes montés dans des cages. On peut dans ce laminoir régler l'écartement des cylindres par rapport à l'axe de laminage et modifier l'angle d'avance en déplaçant les cages par rapport à un axe perpendiculaire à l'axe de laminage. La caractéristique essentielle du SU 733 748 est que la cage porte-cylindre puisse se déplacer perpendiculairement à son axe. Ce dispositif de déplacement perpendiculairement à l'axe de la cage porte-cylindre permet comme le dit ce brevet d'élargir la plage de réglage des angles d'avance mais il en résulte une modification de la zone de travail de chaque cylindre au contact du produit donc des conditions de laminage comme expliqué précédemment.
  • La présente invention vise à réaliser un laminoir à cylindres obliques du type ci-dessus mentionné, permettant de régler l'avance du produit en cours de laminage de façon pratiquement indépendante des autres paramètres de réglage. Elle vise aussi la possibilité dans un tel laminoir de faire varier dans de larges limites le diamètre des produits laminés obtenus, en conservant les conditions optimales de laminage en particulier en utilisant le même jeu de cylindres de laminage.
  • L'invention vise également à réaliser un laminoir présentant une structure aussi compacte et robuste que possible ainsi qu'un encombrement minimal.
  • Le laminoir suivant l'invention apporte une solution particulièrement efficace à ces problèmes.
  • L'invention concerne un laminoir à cylindres obliques permettant l'obtention de barres ou tubes métalliques de révolution, comportant au moins trois cylindres répartis autour de l'axe de laminage, chaque cylindre ayant un profil de révolution de section généralement décroissante, du moins dans la partie assurant la réduction de diamètre extérieur du produit à laminer, depuis le côté d'entrée de celui-ci jusqu'à son côté de sortie et étant monté en porte à faux à une extrémité d'un arbre de révolution relié par un moyen de transmission à un moyen d'entraînement en rotation, cet arbre de révolution étant supporté par des paliers montés à l'intérieur d'une cage porte-cylindre elle-même montée en rotation autour d'un axe de réglage qui coupe l'axe de révolution du cylindre en formant avec celui-ci un angle de 20 à 70°, traverse la surface du cylindre dans la zone de contact avec le produit en cours de laminage et coupe à angle droit l'axe de laminage, un premier moyen de réglage permettant de régler l'écartement de chaque cylindre par rapport à l'axe de laminage en déplaçant la cage porte-cylindre le long de l'axe de réglage. Le laminoir est caractérisé en ce que le premier moyen de réglage comprend un ensemble vis/écrou axé sur l'axe de réglage dont l'un des deux composants, de préférence la vis, est disposé à la périphérie de la cage porte-cylindre, et solidaire de celle-ci, l'autre composant étant monté libre en rotation sur un palier fixe par rapport au bâti du laminoir, un moyen d'entraînement en rotation permettant de faire tourner le composant libre en rotation par rapport à celui qui est solidaire de la cage porte-cylindre, autour de l'axe de réglage, d'une quantité déterminée pour déplacer la cage porte-cylindre de la longueur voulue le long de l'axe de réglage.
  • Selon des pratiques connues, chaque cylindre de laminage comporte une zone de calibrage, à l'extrémité de la zone de déformation par réduction.
  • Avantageusement, l'axe de réglage traverse la. surface du cylindre dans une zone de ce cylindre correspondant au milieu de la zone de calibrage.
  • De préférence le composant libre en rotation de l'ensemble vis/écrou comporte une couronne dentée qui peut être entraînée en rotation par un premier moyen moteur qui actionne un pignon denté qui engrène sur cette couronne. De préférence également la vis de l'ensemble vis/écrou est constituée par un filetage, réalisé à la périphérie de la cage porte-cylindre, l'écrou étant une couronne écrou montée en rotation sur un palier relié de façon fixe au bâti du laminoir.
  • De préférence au niveau de chaque cage porte-cylindre, un deuxième moyen de réglage comprend un moyen d'entraînement en rotation qui permet d'entraîner en rotation la cage porte-cylindre autour de l'axe de réglage, sous l'action d'un deuxième moyen moteur. Celui-ci permet d'orienter la cage porte-cylindre de façon à donner au cylindre l'angle d'avance A voulu par rapport à l'axe de laminage. De préférence un moyen de calage peut permettre d'empêcher la rotation du composant libre en rotation de l'ensemble vis/écrou, pendant l'entraînement en rotation de la cage porte-cylindre autour de l'axe de réglage. L'action de ce moyen de calage permet d'effectuer, en agissant uniquement sur le deuxième moyen de réglage, une variation conjuguée de l'angle d'avance et de l'écartement du cylindre par rapport à l'axe de laminage.
  • On règle de préférence l'angle d'avance A entre 3° et 30°.
  • On peut aussi prévoir de solidariser les deux composants de l'ensemble vis/écrou lorsqu'on fait agir le deuxième moyen de réglage, de façon à faire varier uniquement l'angle d'avance.
  • Une telle disposition faisant appel à un ensemble vis/écrou entourant la cage permet de réaliser une structure très robuste et très compacte avec en particulier un encombrement radial réduit au minimum.
  • Par exemple le moyen d'entraînement en rotation de chaque cage porte-cylindre est un pivot fixé à la périphérie de cette cage sur lequel s'articule une tige actionnée par le deuxième moyen moteur ; celui-ci est avantageusement un vérin. Le pivot est avantageusement monté sur une bague de révolution calée en rotation sur la cage porte-cylindre et entourant l'ensemble vis/écrou.
  • Un moyen de synchronisation des déplacements angulaires de l'ensemble des cages porte-cylindre relie ces cages les unes aux autres, de façon à imposer à chaque instant à leurs cylindres un même angle d'avance par rapport à l'axe de laminage. Ce moyen de synchronisation peut par exemple être réalisé avec des moyens de liaison articulés.
  • Avantageusement, au niveau de chaque cage porte-cylindre, un moyen de précontrainte permet de mettre en appui la cage porte-cylindre sur le bâti, en annulant les jeux existants, en particulier au contact vis/écrou et au niveau du palier contre lequel porte le composant libre en rotation de l'ensemble vis/écrou. Avantageusement, ce moyen de précontrainte comporte un moyen de traction, disposé suivant l'axe de réglage, relié d'une part à la cage porte-cylindre et d'autre part au bâti. Ce moyen de traction applique sur la cage porte-cylindre une force orientée parallèlement à l'axe de réglage et dirigée vers le bâti. Ce moyen de traction est avantageusement un vérin.
  • Avantageusement également, chaque cylindre de laminage est entraîné par l'intermédiaire d'un couple de pignons dentés coniques, au moyen d'un arbre moteur disposé soit radialement par rapport à l'axe de laminage soit perpendiculairement à l'axe de réglage.
  • Avantageusement, l'arbre moteur est relié au moyen moteur par une articulation flexible telle qu'une articulation à cardan.
  • Une méthode de mise en oeuvre particulièrement efficace du laminoir ainsi conçu consiste à utiliser, en cours de laminage d'une ébauche de tube, le deuxième moyen de réglage, de façon à effectuer une variation conjuguée de l'angle d'avance et de l'écartement de chaque cylindre par rapport à l'axe de laminage, le composant mobile de l'ensemble vis/écrou étant calé en rotation.
  • Grâce à la disposition suivant l'invention de l'axe de réglage, et à la variation conjuguée, il est possible de faire varier simultanément l'angle d'avance et l'épaisseur du tube, ce qui permet de laminer le tube jusqu'à son extrémité en évitant les blocages en fin de laminage, blocages dus aux déformations triangulaires excessives que l'on a constatées contrairement à ce à quoi on pouvait s'attendre sur un tel laminoir à trois cylindres.
  • Dans ce cas on accroît l'écartement des cylindres et on réduit l'angle d'avance.
  • Il est possible d'utiliser des ensembles vis/écrou dont le pas est adapté de façon à ajuster le rapport entre la variation d'angle d'avance et la variation de l'écartement des cylindres à la valeur optimale. On peut aussi actionner de façon synchronisée le premier et le deuxième moyen de réglage de façon à superposer à la variation d'écartement conjuguée à la variation d'angle d'avance, une variation indépendante d'écartement qui peut s'ajouter ou se retrancher de la première, suivant le sens d'entraînement en rotation du composant libre en rotation de l'ensemble vis/écrou.
  • La description détaillée ainsi que les figures ci-après permettent de mieux comprendre, de façon non limitative, les caractéristiques du procédé de réglage suivant l'invention d'un laminoir à cylindres obliques, et celles des différents modes de réalisation du laminoir qui fait également partie de l'invention.
    • La figure 1 est une vue en élévation et en coupe d'une cage porte-cylindre d'un laminoir oblique, comportant les moyens de réglage suivant l'invention, équipée d'un arbre moteur monté radialement par rapport à l'axe de laminage.
    • La figure 2 est une vue de dessus, du cylindre de laminage de la figure 1 en position de travail sur un tube ou une barre en cours de laminage.
    • La figure 3 est une vue selon l'axe de laminage côté sortie, d'un laminoir à trois cylindres équipé des moyens de réglage suivant l'invention.
    • La figure 4 est une vue en élévation et en coupe d'une cage porte-cylindre d'un laminoir oblique, comportant les moyens de réglage suivant l'invention, équipée d'un arbre moteur perpendiculaire à l'axe de réglage.
    • La figure 5 est une vue de dessus de la figure 4.
    • La figure 6 est une vue schématique du côté aval d'un autre mode de réalisation d'un laminoir à cylindres obliques, suivant l'invention, permettant la mise en oeuvre du procédé suivant l'invention, de façon particulièrement avantageuse.
    • La figure 7 est une vue en coupe suivant A-A de la figure 6.
    • La figure 8 est une vue schématique du côté amont du laminoir de la figure 6.
    • La figure 9 est une vue de dessus de la figure 7.
    • La figure 10 est une vue partielle en coupe suivant H-H de la figure 9.
  • La figure 1 représente de façon schématique en élévation et en coupe, un cylindre de laminage, d'un laminoir oblique à trois cylindres équipé du dispositif de réglage suivant l'invention.
  • Sur cette figure, on remarque l'axe de laminage Xo Xi, le long duquel un tube ou une barre de révolution 1 est en cours de laminage.
  • Le cylindre oblique 2 est monté sur un axe de révolution Yo Y, à l'intérieur d'une cage 3 de forme générale cylindrique, dans laquelle il repose sur des paliers 4.
  • La cage 3 est elle-même montée en rotation autour d'un axe de réglage Z0 Zi, perpendiculaire à l'axe X0 X1, et l'intersectant. Cet axe de réglage Zo Z1 intersecte l'axe Yo Y1, et traverse la surface du cylindre dans la zone de contact avec le tube 1. Le point 5 de traversée de la surface du cylindre par l'axe Z0 Z1, se trouve dans la zone de calibrage, à l'extrémité de la zone de contact du côté sortie du tube, zone dans laquelle le travail du cylindre consiste essentiellement à égaliser la surface cylindrique du tube, de façon à éliminer les ondulations de profil hélicoïdal résultant de l'avance.
  • Dans le cas de cette figure les axes perpendiculaires Xo XI et Zo Z, sont dans le plan de la figure et l'axe de révolution Yo Y, du cylindre 2 est incliné par rapport à ce plan qu'il traverse à son point d'intersection avec l'axe de réglage Z0 Z1.
  • La figure 2 est une vue de dessus suivant l'axe de réglage Zo Z, de la figure 1. Le plan de cette figure, perpendiculaire à Z0 Z, contient l'axe Xo X1. On a représenté uniquement le cylindre 2 et le tube ou barre 1, la cage 3 étant enlevée. La projection sur le plan de la figure de l'axe de révolution Yo Y, fait avec l'axe Xo XI un angle A. Cet angle A est, par définition l'angle d'avance du cylindre 2 par rapport à l'axe de laminage.
  • Cet angle est réglable par rotation de la cage 3 autour de l'axe Zo Z1. Il peut être par exemple de 10°.
  • Dans le cas de la figure 2, le cylindre 2 vu de dessus tourne dans le sens de la flèche (sens des aiguilles d'une montre) pour entraîner le produit le long de l'axe XO X1 de droite à gauche.
  • Comme le montre la figure 1, l'angle d'inclinaison i de l'axe de révolution Yo Y1 par rapport à l'axe de réglage Zo Z, est d'environ 45°. Cet angle est fixe et indépendant de l'angle d'avance. Il peut varier suivant les caractéristiques des laminoirs d'environ 20° à environ 70°.
  • On remarque par ailleurs, que l'axe de révolution Yo Y1 est orienté de façon à se rapprocher de l'axe de laminage Xo X1, en direction de la zone de sortie du produit laminé du laminoir. Par construction cet axe n'intersecte pas l'axe de laminage sauf lorsque l'angle d'avance A est égal à 0, ce qui n'est jamais le cas en position de laminage. Le cylindre de laminage 2 a un profil de révolution dont la section décroît en direction de la zone de sortie du produit à laminer. Dans la zone de calibrage, le profil de la génératrice du cylindre est déterminé de façon à lisser la surface de la barre en atténuant ou supprimant les ondulations hélicoïdales qu'elle peut présenter.
  • Suivant l'invention, le réglage de l'angle d'avance A est effectué en faisant tourner la cage 3 autour de l'axe de réglage Zo Z, jusqu'à lui donner l'orientation angulaire voulue. Dans le cas de la figure 1, on ajuste l'angle d'avance A à la valeur désirée, en faisant tourner, par un moyen connu et non représenté, la cage 3 à l'intérieur d'une enveloppe annulaire fixe 6, qui est elle-même solidarisée avec la structure fixe du laminoir également non représentée.
  • Un moyen de calage angulaire non représenté permet de caler la cage 3 dans une position angulaire déterminée à l'intérieur de l'enveloppe 6. On voit que, grâce à ce procédé de réglage de l'angle d'avance suivant l'invention, il est possible de faire varier l'angle d'avance, dans de très larges limites, sans perturber notablement les conditions de laminage. On constate en effet, que la rotation de la cage autour de l'axe Z0 Z1 fait tourner le cylindre, dans sa zone de contact avec la barre ou le tube autour du point fixe 5 qui est sur l'axe de réglage. Ce point 5 est normalement situé dans la zone de calibrage C du cylindre. Sur la figure 1 le repère 7 représente sur le cylindre la limite entre la zone de calibrage C et la zone de réduction.
  • De telles possibilités ne sont pas offertes par les méthodes de réglage connues, telles que celle décrite dans l'article publié dans « Iron and Steel Engineer » (Octobre 1981 pages 51 à 54).
  • Il est également possible, suivant l'invention, de régler le diamètre de sortie des produits laminés, sans modifier notablement les conditions de laminage. Ceci est réalisé en faisant glisser la cage porte-cylindre 3, à l'intérieur de l'enveloppe fixe 6, suivant l'axe Zo Zl. Des moyens connus et non décrits permettent de réaliser ce glissement et de caler axialement la cage 3 par rapport à l'enveloppe 6, en n'importe quel point à l'intérieur de la plage de réglage. Ce réglage par glissement, le long de l'axe Zo Z1, n'entraîne pas de déplacement du cylindre le long de l'axe Xo X1 et donc pas non plus de déplacement de son point 5 de rotation au contact du produit en cours de laminage. Ceci garantit la possibilité d'ajuster l'angle d'avance A aux nouvelles conditions de laminage sans perturbations notables. Il est en effet nécessaire d'adapter l'angle d'avance au diamètre de sortie du produit, si on veut maintenir un bon état de surface.
  • Toujours dans le cas de la figure 1, le cylindre de laminage 2 est entraîné en rotation, quelle que soit la position de réglage, par un couple de pignons coniques dentés 8 et 9. Le pignon 8 est calé sur l'arbre 10 qui entraîne le cylindre autour de l'axe Yo Yi. Le pignon 9 est calé sur l'arbre moteur 11 monté sur l'axe Zo Z1 qui l'entraîne grâce à un moyen moteur non représenté.
  • Un laminoir de ce type comporte au moins trois cages, telles que celle représentée figure 1, dont les axes de réglage, tels que Zo Zl, sont répartis autour d'un axe de laminage, tel que X0 X1. Dans le cas d'un laminoir à trois cylindres, ces axes tels que Z0 Z1 sont disposés, à 120° les uns des autres autour de l'axe Xo X1 et sont concourants.
  • Les enveloppes 6 occupent, le plus souvent, une position fixe dans l'espace, ce qui facilite l'entraînement des arbres moteurs 11 par des moyens moteurs adaptés. Les vitesses de rotation de ces arbres sont, de préférence, synchronisées.
  • La figure 3 est une vue selon l'axe de laminage du côté de la sortie du produit laminé d'un laminoir à trois cylindres obliques suivant l'invention. Le plan de la figure est perpendiculaire à l'axe de laminage, lequel est repéré en X2. On voit trois cylindres de laminage 12, 13, 14 dont les axes de révolution sont Y2, Y3, Y4. Ces cylindres sont montés dans des cages 15, 16, 17 de forme cylindrique de révolution qui peuvent coulisser et tourner avec un minimum de jeu à l'intérieur d'enveloppes annulaires 18, 19, 20 montées solidaires entre elles par l'intermédiaire des pièces 55 56 57.
  • Chacune de ces cages peut tourner autour de l'un des trois axes de réglage Z2, Z3, Z4 perpendiculaires à l'axe de laminage et concourants en X2 dans le cas de la figure. Chacune de ces cages comporte les mêmes moyens de réglage conformes à l'invention. Ces moyens sont figurés, de façon schématique, dans le cas de la cage 15. Celle-ci comporte sur sa paroi latérale un ergot 21 qui est maintenu dans une position angulaire déterminée par deux butées à vis 22, 23 butées que l'on peut déplacer en les engageant plus ou moins à l'intérieur des logements filetés 24, 25 fixés sur l'enveloppe 18. En vissant et dévissant ces butées, on peut déplacer l'ergot transversalement par rapport à l'axe de réglage Z2 et donc faire tourner la cage 15 d'un angle déterminé et la caler dans une position angulaire bien précise. On ajuste ainsi l'angle d'avance comme cela a été décrit plus haut.
  • De même on peut déplacer la cage 15 le long de l'axe Z2 de façon à régler la section de sortie de la barre laminée. Des moyens simples de réaliser ce déplacement sont constitués par des butées ajustables.
  • La figure montre quatre butées comportant des tiges 26, 27, 28, 29 parallèles à l'axe Z2. Les tiges 27 28 qui sont des vis de pression de longueur réglable, sont montées vissées dans des manchons filetés 31 32 fixés sur un couvercle 34 perpendiculaire à Z2 et solidaire de l'enveloppe 18. Les tiges 26 29 qui sont des tiges de rappel hydraulique du type tige de vérin sont montées sur des corps 30 33 fixés sur le couvercle 34 perpendiculaire à Z2 et solidaire de l'enveloppe 18. A l'autre extrémité les deux tiges 26 29 comportent des têtes 35 36 logées dans une rainure annulaire 37, ayant des bords de retenue 39, formée sur la face supérieure 38 de la cage 15. Les deux tiges à vis 27 28 sont en appui direct par leurs extrémités libres 40 41 sur la face 38 tandis que les tiges 26 29 exercent une force de rappel dans le sens opposé.
  • On comprend qu'en réglant correctement les tiges 26 27 28 29 on peut déplacer axialement la cage 15 et la caler axialement en un point quelconque de l'axe Z2.
  • En variante le dispositif de réglage axial à butées tel que décrit peut comporter au lieu de deux vis de pression telles que 27 28 un calage en trois points ou plus au lieu de deux, les tiges de rappel telles que 26 29 étant associées selon les besoins.
  • On règle axialement chacune des cages 16 17, de la même façon que la cage 15 par des moyens semblables non représentés. On règle ainsi les trois cylindres de laminage 12, 13 et 14 avec le même angle d'avance A par rapport à l'axe de laminage et le même écartement par rapport à cet axe.
  • L'entraînement en rotation de chaque cylindre est fait par un couple de pignons dentés coniques 42 43 représentés en tirets. Des moyens moteurs non figurés entraînent des arbres moteurs, disposés radialement suivant les axes de réglage, tels que l'arbre 44.
  • Un bâti 45 maintient l'ensemble en position fixe. Les produits laminés au moyen de ce laminoir circulent à travers celui-ci, en tournant sur eux-mêmes, le long de l'axe de laminage.
  • A titre d'exemple on peut laminer avec un laminoir tel que celui décrit à la figure 3 équipé de trois cylindres dont le diamètre maximal de la partie utilisée durant le laminage est de 800 mm des tubes dont le diamètre extérieur fini est compris entre 200 et 400 mm sans changement de cylindres.
  • Avec un montage de cylindres tel que l'angle i soit de 60°, le diamètre fini est obtenu en réglant pour chaque diamètre recherché l'angle d'avance A et la position radiale des cylindres selon leur axe de réglage respectif Z2, Z3, Z4.
  • Ainsi pour les dimensions citées, l'angle d'avance peut varier de A = 17° pour un diamètre extérieur fini de 219 mm à A = 11° pour un diamètre extérieur fini de 406 mm.
  • Les gammes de laminage, sur mandrin intérieur, suivantes sont utilisées à titre d'exemple :
    • 1) Ebauche : diamètre (extérieur) -270 mm, épaisseur - 45 mm
      • tube fini obtenu : diamètre (extérieur) - 219 mm, épaisseur - 8 mm
      • soit un allongement (rapport longueur du tube fini/tube ébauche) de 6.
    • 2) Ebauche : diamètre (extérieur) - 460 mm, épaisseur - 50 mm
      • tube fini obtenu : diamètre (extérieur) ― 406 mm, épaisseur - 9,5 mm
      • soit un allongement de 5,4.
  • Les figures 4 et 5 représentent une variante de réalisation du procédé et du dispositif suivant l'invention. Il s'agit d'un laminoir à trois cylindres obliques dont un seul cylindre est représenté. La figure 4 est une vue en élévation et en coupe passant par l'axe de réglage. La figure 5 est une vue de dessus suivant l'axe Zs Za de la figure 4. Comme dans le cas des figures précédentes, le cylindre 46 tourne autour d'un axe de révolution Y5 Y6 à l'intérieur d'une cage cylindrique de révolution 47. Cette cage peut tourner autour d'un axe de réglage Z5 Z6, ou glisser le long de celui-ci à l'intérieur d'une enveloppe annulaire fixe 48. L'axe Z5 Za est perpendiculaire et coupe l'axe de laminage X3 X4. Il coupe également l'axe de révolution Y5 Y6. Comme le montre la figure 4, l'axe de réglage traverse la paroi du cylindre 46 dans sa zone de contact avec le tube 49, en cours de laminage, conformément à l'invention. L'entraînement en rotation du cylindre 46 est fait au moyen d'un couple de pignons coniques dentés 50 51. Le pignon 51 est monté sur l'arbre moteur 52 perpendiculaire à l'axe de réglage Z5 Z6, qui est entraîné par un moteur non représenté.
  • Cet arbre 52, comme le montrent les figures 4 et 5, est monté de façon à s'écarter le moins possible du parallélisme par rapport à l'axe de laminage X3 X4.
  • Pour cela l'arbre 52 est disposé par construction à l'intérieur de la cage 47 de façon que, en projection sur le plan de la figure 5, il forme, avec la projection sur ce même plan de l'axe de révolution Y5 Ys, un angle B dont la valeur est proche de la valeur moyenne qu'on donne à l'angle A du cylindre 46. Cette disposition permet de relier l'arbre moteur 52 à un moyen moteur dont l'arbre est sensiblement parallèle à l'axe de laminage. Afin cependant de pouvoir régler l'angle d'avance A dans la plage de réglage voulue, on prévoit une ou plusieurs liaisons articulées, telles que des cardans et allonges entre l'arbre 52 et l'arbre du moyen moteur. Une telle liaison est figurée schématiquement en 53. On comprend que si l'angle B a été bien choisi, il suffit de pouvoir écarter l'arbre 52 de l'axe de l'arbre du moyen moteur d'un angle qui n'est pas supérieur à la moitié de l'angle d'avance A maximal. On conserve donc intégralement la possibilité de réglage de A par rotation de la cage 47 autour de l'axe de réglage Z5 Z6. Le mouvement de l'arbre 52 est permis par l'échancrure 54 pratiquée dans la cage 47 et son enveloppe 48.
  • Une telle disposition permet de réaliser un laminoir à trois cylindres comportant des cages entraînées elles-mêmes en rotation autour de l'axe de laminage X3 X4 par leurs enveloppes, montées à leur tour en rotation par rapport à un bâti fixe. En donnant aux cages une vitesse de rotation égale et de sens contraire à celle du produit en cours de laminage on peut laminer ce produit sans qu'il tourne par rapport au bâti du laminoir. On facilite ainsi l'introduction et l'extraction des produits qu'on lamine, ce qui est particulièrement avantageux dans le cas des produits de grandes longueurs. Grâce à un tel montage on peut aussi entraîner chaque cylindre par engrenage planétaire et satellite. Il suffit de prévoir une liaison articulée, par exemple à cardan entre l'arbre porte-satellite et l'arbre d'entraînement de chaque cylindre, tel que l'arbre 52.
  • Les figures 6 à 10 représentent un autre mode de réalisation d'un laminoir à cylindres obliques suivant l'invention comportant des moyens particuliers de réglage de l'écartement des cylindres par rapport à l'axe de laminage, ainsi que de l'angle d'avance de ces cylindres par rapport à ce même axe.
  • La figure 6 est une vue schématique d'ensemble, du côté aval, d'un laminoir à trois cylindres obliques suivant l'invention, utilisé pour le laminage d'une ébauche de tube 101. L'axe de laminage Xs est perpendiculaire au plan de la figure. Les trois cylindres 102, 103, 104 sont montés dans des cages porte-cylindre 105, 106, 107 elles-mêmes reliées par des plaques de base 108, 109, 110 au bâti 111 du laminoir. Ce bâti est en deux parties, articulées l'une par rapport à l'autre autour de l'axe Xs perpendiculaire au plan de la figure. Les extrémités 112, 113 de ces deux parties sont maintenues en appui l'une contre l'autre en 114, grâce à un vérin non représenté. En cas d'efforts excessifs pendant le laminage, dépassant la force de serrage du vérin, l'ouverture du bâti permet d'éviter les ruptures de pièces.
  • Trois vérins 115, 116, 117, à commande hydraulique non représentés, permettent de faire varier l'angle d'avance des cylindres 102, 103, 104 et aussi, de façon conjuguée l'écartement de ces cylindres. Les corps de ces vérins sont articulés sur le bâti 111 en 118, 119, 120. Leurs tiges 121, 122, 123 sont articulées sur des pivots 124, 125, 126 fixés sur des bagues 127, 128, 129 elles-mêmes solidaires respectivement des cages porte-cylindre 105, 106, 107. De cette façon les vérins permettent de faire tourner les axes, tels que Y7, (voir figure 7) des cylindres, tels que 102, autour de leurs axes de réglage tels que Z7.
  • La figure 7 est une vue en coupe de la cage porte-cylindre 105, suivant un plan passant par l'axe de laminage X5 et par l'axe de réglage Z7 qui sont, suivant l'invention concourants et perpendiculaires. L'axe Y7 du cylindre 102 intersecte en (M) l'axe de réglage sous un angle a d'environ 30°. Cet axe Y7 est représenté dans le plan de la figure 7. Son inclinaison par rapport à l'axe de laminage X5 est dans cette condition d'environ 60°, l'angle d'avance étant alors nul. Le cylindre 102 est calé en rotation par rapport à l'arbre porte-cylindre 130, de révolution, au moyen de la tige à extrémité filetée 131 qui est vissée dans le logement fileté 132 du cylindre 102. Une ouverture 133 est ménagée dans le bâti 111 pour le vissage ou le dévissage de la tige 131.
  • L'arbre porte-cylindre 130 est monté en rotation autour de Y7 au moyen de roulements 134, 135, 177 prenant appui sur la cage porte-cylindre 105. Ces roulements sont conçus, de façon connue, pour supporter les efforts de laminage. L'arbre porte-cylindre 130 comporte une couronne à denture conique 136, calée en rotation sur lui, sur laquelle engrène un pignon conique 137 monté sur un arbre (138). Cette disposition est analogue à celle représentée à la figure 4.
  • Dans le cas de la présente figure 7 l'axe X7 de l'arbre 138 est dans le plan de la figure. Dans les conditions de laminage cet axe fait avec le plan de la figure un angle qui correspond à l'angle d'avance. De façon connue l'arbre 138 est relié à un arbre moteur, non représenté, par une ou plusieurs liaisons articulées, telles que des cardans, qui ne sont pas non plus représentées.
  • La cage porte-cylindre 105 comporte une zone annulaire 139, d'axe Z7, munie d'un filetage mâle 140. Ce filetage comporte moins de trois filets et son pas est calculé de façon à réaliser une relation déterminée entre la variation d'angle d'avance et la variation conjuguée de l'écartement des cylindres, par rapport à l'axe de laminage X5 qu'on veut obtenir. Cette relation est principalement fonction des dimensions des ébauches de tubes, des caractéristiques mécaniques du métal, dans les conditions de laminage, et des taux de réduction qu'on se propose de réaliser.
  • Un anneau écrou 141 est muni d'un filetage femelle 142 en prise avec le filetage mâle 140 lequel constitue la vis de cet ensemble vis/écrou. L'anneau 141 est monté libre en rotation sur un palier 143 qui comporte également une bague de centrage et de retenue 144 qui assure le centrage de l'anneau 141 par rapport à l'axe Z7 et le maintient en appui contre la plaque de base 108.
  • L'anneau écrou 141 comporte une couronne dentée 145, sur laquelle engrène un pignon denté 146 monté sur un axe 147 qui traverse le bâti 111 et est entraîné en rotation par un premier moyen moteur tel qu'un moteur hydraulique représenté en 176 (voir figures 9 et 10). Cette disposition est un premier moyen de réglage indépendant de l'écartement du cylindre 102 par rapport à l'axe de laminage X5. En effet pour une position angulaire donnée de la cage porte-cylindre 105 autour de l'axe de réglage, correspondant à un angle d'avance déterminé, la rotation de l'anneau écrou 141 dans un sens ou dans l'autre provoque un déplacement de la cage porte-cylindre 105 le long de l'axe de réglage et donc une variation de l'écartement du cylindre 102 par rapport à l'axe de laminage X5. On peut, de façon connue, entraîner l'anneau écrou 141 par le premier moyen moteur de façon indépendante, ou conjuguée avec l'entraînement des deux autres anneaux écrou 149, 150 qui déplacent chacune des deux autres cages porte-cylindre 106, 107.
  • La plaque de base 108 est fixée par des moyens connus, tels que des vis non représentées, au bâti 111. La bague 127, montée de révolution par rapport à l'axe Z7 est calée en rotation sur la cage porte-cylindre 105 et entoure l'ensemble vis/écrou 140,141.
  • Elle comporte un pivot de commande 124 d'axe X8 parallèle à Z7 sur lequel s'articule en rotation l'extrémité de la tige 121 du vérin 115 représenté figure 6.
  • L'entraînement en rotation de la bague 127 autour de l'axe Z7 permet un réglage conjugué de l'angle d'avance et de l'écartement du cylindre 102 par rapport à l'axe de laminage Xs l'anneau écrou 141 étant calé en rotation par un moyen connu. Ainsi dans le cas de la figure 7 une rotation de la bague 127, vue suivant F1, dans le sens des aiguilles d'une montre, rapproche le cylindre 102 de l'axe X5 dans le cas d'un système vis écrou ayant un pas à droite et fait croître l'angle d'avance, initialement égal à zéro.
  • Les articulations des tiges de vérin 121, 122, 123 autour des pivots de commande 124, 125, 126 et celles 118, 119, 120 des corps de vérins 115, 116, 117 sur le bâti 111 sont conçues pour permettre, de façon connue, le déplacement des pivots 124, 125, 126 parallèlement à l'axe Z7 dans les limites de réglage de l'écartement des cylindres par rapport à l'axe X5.
  • Les trois pivots de synchronisation 151, 152, 153, diamétralement opposés aux trois pivots de commande, permettent de synchroniser de façon rigoureuse l'action des trois vérins 115, 116, 117. La figure 8 montre les moyens de synchronisation mis en oeuvre dans le cas du présent laminoir. Deux leviers coudés à 120° 154, 155 sont articulés chacun autour d'un pivot 156, 157 fixé sur le bâti 111 et d'axe parallèle à X5. L'axe de chacun de ces pivots intersecte une bissectrice de l'angle de 120° formé par deux droites de réglage. Les déplacements angulaires de ces leviers 154, 155 sont synchronisés par une biellette 158 articulée en 159, 160 aux extrémités des bras 161, 162 de ces leviers. Les axes des points d'articulation 156, 159, 160, 157 sont parallèles à l'axe de laminage X5 et forment les sommets d'un parallélogramme déformable. Chacun des trois pivots de synchronisation 151, 152, 153 est relié à un bras d'un des deux leviers 154, 155 par une biellette identique 163, 164, 165 aux points d'articulation 166, 167, 168. Afin d'annuler le jeu entre les filetages 140 et 142 et de mettre ainsi en appui chaque cage porte-cylindre, telle que 105, contre le bâti 111, un moyen de précontrainte tel que 169 permet d'exercer une traction sur chaque cage suivant l'axe de réglage Z7 en direction du bâti 111. Ce dispositif comporte une tige de traction 170 d'axe Z7, vissée sur le sommet de la cage porte-cylindre (105). Cette tige traverse un vérin dont le corps 171 est solidaire du bâti 111. Un piston annulaire 172 coulisse dans le corps 171 et exerce une poussée sur la collerette 173, par l'intermédiaire du roulement annulaire 174, lorsqu'un fluide sous pression est introduit dans la chambre annulaire 175 par une canalisation non représentée. La collerette 173 est solidaire de la tige 170.
  • Un tel laminoir présente l'avantage d'une très grande compacité alliée à une grande robustesse et une grande rigidité. Cela résulte de l'utilisation d'un ensemble vis/écrou, monté à la périphérie de chaque cage porte-cylindre qui réduit au minimum l'encombrement radial.

Claims (16)

1. Laminoir à cylindres obliques permettant l'obtention de barres ou tubes métalliques de révolution, comportant au moins trois cylindres (102, 103, 104) répartis autour de l'axe de laminage (Xo-X1, X5), chaque cylindre ayant un profil de révolution de section généralement décroissante, du moins dans la partie assurant la réduction de diamètre extérieur du produit à laminer, depuis le côté d'entrée de celui-ci jusqu'à son côté de sortie et étant monté en porte à faux à une extrémité d'un arbre de révolution (10, 130) relié par un moyen de transmission (10, 8, 9, 11) à un moyen d'entraînement en rotation, cet arbre de révolution étant supporté par des paliers (4, 134) montés à l'intérieur d'une cage porte-cylindre (3, 105), elle-même montée en rotation autour d'un axe de réglage (ZO-Zl-Z7) qui coupe l'axe de révolution du cylindre en formant avec celui-ci un angle (i, a) de 20° à 70°, traverse la surface du cylindre dans la zone de contact avec le produit (5) en cours de laminage et coupe à angle droit l'axe de laminage, un premier moyen de réglage permettant de régler l'écartement de chaque cylindre par rapport à l'axe de laminage en déplaçant la cage porte-cylindre le long de l'axe de réglage caractérisé en ce que ce premier moyen de réglage comprend un ensemble vis/écrou (140, 141) axé sur l'axe de réglage (27) dont l'un des deux composants, de préférence la vis (140), est disposé à la périphérie de la cage porte-cylindre (105) et solidaire de celle-ci, l'autre composant étant monté libre en rotation sur un palier (143) fixe par rapport au bâti (111) du laminoir, un moyen d'entraînement en rotation (176) permettant de faire tourner le composant libre en rotation (141), par rapport à celui qui est solidaire de la cage porte-cylindre, autour de l'axe de réglage, d'une quantité déterminée pour déplacer la cage porte-cylindre de la longueur voulue le long de l'axe de réglage.
2. Laminoir suivant revendication 1 caractérisé en ce que le composant libre en rotation (141) de l'ensemble vis/écrou comporte une couronne dentée (145) qui peut être entraînée en rotation par un premier moyen moteur (176) qui actionne un pignon denté (146) qui engrène sur cette couronne.
3. Laminoir suivant revendication 1 ou 2 caractérisé en ce que la vis (140) de l'ensemble vis/écrou est constitué par un filetage réalisé à la périphérie de la cage porte-cylindre, l'écrou (141) étant une couronne-écrou montée en rotation sur un palier (143) relié de façon fixe au bâti du laminoir.
4. Laminoir suivant l'une des revendications 1 à 3 caractérisé en ce qu'il comporte, au niveau de chaque porte-cylindre, un deuxième moyen de réglage qui comprend un moyen d'entraînement en rotation (124, 125, 126) de la cage porte-cylindre autour de l'axe de réglage sous l'action d'un deuxième moyen moteur (115, 116, 117) permettant d'orienter la cage porte-cylindre de façon à donner au cylindre l'angle d'avance (A) voulu par rapport à l'axe de laminage.
5. Laminoir suivant revendication 4 caractérisé en ce que l'intervalle de réglage de l'angle d'avance (A) est compris entre 3 et 30°.
6. Laminoir suivant revendication 4 ou 5 caractérisé en ce que un moyen de calage peut permettre d'empêcher la rotation du composant libre en rotation (141) de l'ensemble vis/écrou pendant l'entraînement en rotation de la cage porte-cylindre (105) autour de l'axe de réglage (Z7).
7. Laminoir suivant l'une des revendications 4 à 6 caractérisé en ce que le moyen d'entraînement en rotation de chaque cage porte-cylindre est un pivot de commande (124, 125, 126), disposé à la périphérie de cette cage porte-cylindre, sur lequel s'articule une tige actionnée par le deuxième moyen moteur (115, 116, 117).
8. Laminoir suivant l'une des revendications 4 à 7 caractérisé en ce. que le deuxième moyen moteur est un vérin.
9. Laminoir suivant l'une des revendications 4 à 8 caractérisé en ce qu'il comporte des moyens de synchronisation (151, 152, 153), des déplacements angulaires des cages porte-cylindre, de façon à imposer à chaque instant à leurs cylindres un même angle d'avance par rapport à l'axe de laminage.
10. Laminoir suivant l'une des revendications 4 à 9 caractérisé en ce qu'il comporte au niveau de chaque cage porte-cylindre un moyen de précontrainte (169) qui exerce un effort de traction sur la cage porte-cylindre en direction du bâti.
11. Laminoir suivant l'une des revendications 1 à 10 caractérisé en ce qu'un couple de pignons coniques (136, 137) assure la transmission du mouvement d'un arbre moteur à l'arbre sur lequel est monté chaque cylindre du laminoir.
12. Laminoir suivant revendication 11 caractérisé en ce que l'arbre moteur (11) de chaque cylindre est monté radialement par rapport à l'axe de laminage (XO-X1).
13. Laminoir suivant revendication 11 caractérisé en ce que l'arbre moteur (138) de chaque cylindre est perpendiculaire à l'axe de réglage.
14. Laminoir suivant revendication 13 caractérisé en ce que l'arbre moteur est relié au moyen moteur par une articulation flexible, telle qu'une articulation à cardan (53).
15. Procédé de laminage d'une ébauche tubulaire caractérisé en ce que on met en oeuvre un laminoir suivant l'une des revendications 1 à 14 et en ce que on effectue, au cours du laminage de l'ébauche, un réglage conjugué de l'angle d'avance et de l'écartement des cylindres, en agissant uniquement sur le deuxième moyen de réglage, le composant mobile de l'ensemble vis/écrou étant calé en rotation.
16. Procédé suivant revendication 15 caractérisé en ce que le réglage conjugué est effectué au voisinage de l'extrémité arrière de l'ébauche, de façon à accroître l'écartement des cylindres et à réduire l'angle d'avance.
EP85420058A 1984-03-28 1985-03-26 Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé Expired EP0161192B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85420058T ATE44247T1 (de) 1984-03-28 1985-03-26 Anstellverfahren fuer ein schraegwalzwerk und walzwerk zur ausfuehrung dieses verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8405424A FR2561950B1 (fr) 1984-03-28 1984-03-28 Procede de reglage d'un laminoir a cylindres obliques et laminoir pour la mise en oeuvre de ce procede
FR8405424 1984-03-28

Publications (2)

Publication Number Publication Date
EP0161192A1 EP0161192A1 (fr) 1985-11-13
EP0161192B1 true EP0161192B1 (fr) 1989-06-28

Family

ID=9302890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85420058A Expired EP0161192B1 (fr) 1984-03-28 1985-03-26 Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé

Country Status (11)

Country Link
US (1) US4660398A (fr)
EP (1) EP0161192B1 (fr)
JP (1) JPS60221105A (fr)
KR (1) KR910002719B1 (fr)
AT (1) ATE44247T1 (fr)
BR (1) BR8501401A (fr)
CA (1) CA1260737A (fr)
DE (1) DE3571209D1 (fr)
ES (1) ES8704093A1 (fr)
FR (1) FR2561950B1 (fr)
MX (1) MX162850B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604929B1 (fr) * 1986-10-14 1988-12-02 Vallourec Dispositif d'accrochage rapide assurant la retenue d'un mandrin rotatif
DE10261057A1 (de) * 2002-12-24 2004-07-22 Sms Meer Gmbh Walzenanordnung für ein Walzwerk
CN109772890B (zh) * 2019-02-28 2020-01-31 西北工业大学 一种大尺寸高温合金棒材的超细晶轧制方法
CN112044950B (zh) * 2020-08-13 2021-06-01 西北工业大学 大尺寸超细珠光体中碳钢棒材3d-spd成形方法
CN113843379B (zh) * 2021-10-26 2022-04-22 宁波大学 一种成形阶梯轴的三辊斜轧装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1234245A (en) * 1915-07-20 1917-07-24 Ludwig Wolffgram Rolling-mill for seamless tubes.
SU380376A1 (ru) * 1971-06-28 1973-05-15 Московский институт стали , сплавов Рабочая клеть косовалкового стана
SU538797A1 (ru) * 1974-08-08 1976-12-15 Предприятие П/Я А-7697 Рабоча клеть стана поперечно-винтовой прокатки
SU598669A1 (ru) * 1976-06-28 1978-03-25 Уральский ордена Трудового Красного Знамени политехнический институт им. С.М.Кирова Привод валка стана винтовой прокатки
US4116032A (en) * 1976-06-30 1978-09-26 Ernst Grob Method and apparatus for manufacturing straight or inclined toothed machine elements, especially spur gears by cold working
SU655440A1 (ru) * 1976-05-21 1979-04-08 Электростальский Завод Тяжелого Машиностроения Рабоча клеть стана поперечновинтовой прокатки
SU733748A1 (ru) * 1978-01-02 1980-05-15 Предприятие П/Я Г-4361 Рабоча клеть стана поперечно-винтовой прокатки
US4242894A (en) * 1978-03-31 1981-01-06 Wean United, Inc. Method and apparatus for producing thin tubes in a skew-rolling mill

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE417639A (fr) * 1936-10-03
FR1475645A (fr) * 1965-07-23 1967-04-07 Vallourec Nouveau laminoir à tubes et procédé utilisé pour la mise en oeuvre de ce laminoir
DE3044672A1 (de) * 1980-11-27 1982-07-22 SMS Schloemann-Siemag AG, 4000 Düsseldorf Schraegwalzwerk zum reduzieren von voll- und hohlquerschnitten
DE3131790C2 (de) * 1980-10-11 1983-11-03 SMS Schloemann-Siemag AG, 4000 Düsseldorf Schrägwalzwerk zum Reduzieren von Voll- und Hohlquerschnitten
JPS594905A (ja) * 1982-06-30 1984-01-11 Sumitomo Metal Ind Ltd 中空棒材の製造方法
SE450818B (sv) * 1982-07-20 1987-08-03 Mo I Stali I Splavov Forfarande for valsning av metallemnen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1234245A (en) * 1915-07-20 1917-07-24 Ludwig Wolffgram Rolling-mill for seamless tubes.
SU380376A1 (ru) * 1971-06-28 1973-05-15 Московский институт стали , сплавов Рабочая клеть косовалкового стана
SU538797A1 (ru) * 1974-08-08 1976-12-15 Предприятие П/Я А-7697 Рабоча клеть стана поперечно-винтовой прокатки
SU655440A1 (ru) * 1976-05-21 1979-04-08 Электростальский Завод Тяжелого Машиностроения Рабоча клеть стана поперечновинтовой прокатки
SU598669A1 (ru) * 1976-06-28 1978-03-25 Уральский ордена Трудового Красного Знамени политехнический институт им. С.М.Кирова Привод валка стана винтовой прокатки
US4116032A (en) * 1976-06-30 1978-09-26 Ernst Grob Method and apparatus for manufacturing straight or inclined toothed machine elements, especially spur gears by cold working
SU733748A1 (ru) * 1978-01-02 1980-05-15 Предприятие П/Я Г-4361 Рабоча клеть стана поперечно-винтовой прокатки
US4242894A (en) * 1978-03-31 1981-01-06 Wean United, Inc. Method and apparatus for producing thin tubes in a skew-rolling mill

Also Published As

Publication number Publication date
US4660398A (en) 1987-04-28
EP0161192A1 (fr) 1985-11-13
DE3571209D1 (en) 1989-08-03
BR8501401A (pt) 1985-11-26
FR2561950B1 (fr) 1987-11-13
ES8704093A1 (es) 1987-03-16
FR2561950A1 (fr) 1985-10-04
KR850007003A (ko) 1985-10-30
JPS60221105A (ja) 1985-11-05
ATE44247T1 (de) 1989-07-15
JPH0378164B2 (fr) 1991-12-12
KR910002719B1 (ko) 1991-05-03
ES541614A0 (es) 1987-03-16
MX162850B (es) 1991-06-28
CA1260737A (fr) 1989-09-26

Similar Documents

Publication Publication Date Title
CH683894A5 (fr) Dispositif micrométrique pour la finition d'un alésage de haute précision.
EP0640412B1 (fr) Dispositif de nettoyage d'un cylindre
FR2591919A1 (fr) Machine-outil pour laminer par refoulement des pieces cylindriques creuses
FR3026454A1 (fr) Mecanisme de vis a rouleaux et procede de fabrication associe
EP0161192B1 (fr) Procédé de réglage d'un laminoir à cylindres obliques et laminoir pour la mise en oeuvre de ce procédé
WO1997037785A1 (fr) Machine a cintrer ou a cambrer un profile, et tete de cintrage pour une telle machine
FR2576228A1 (fr) Procede et dispositif pour la realisation de gorges sur une paroi de revolution
EP2274117B1 (fr) Poste d'amenage
FR2580341A1 (fr) Procede de realisation d'une liaison rigide entre deux pieces mecaniques coaxiales, et ensemble de deux pieces liees par ce procede
FR2560077A1 (fr) Laminoir a trois cylindres obliques coniques
EP0126677B1 (fr) Machine à dérouler le bois perfectionnée
FR2690858A1 (fr) Dispositif permettant le formage d'ailettes hélicoïdales sur la paroi extérieure de tubes.
EP0860228A1 (fr) Machine pour la coupe et/ou l'usinage de tubes
EP0952896B1 (fr) Machine a cintrer des tubes de faible diametre
FR2701414A1 (fr) Taraud machine.
FR2659879A1 (fr) Dispositif de dressage d'un fil metallique.
FR2556268A1 (fr) Dispositif de coupe rotative d'une nappe de materiau sur enclume
WO1982003435A1 (fr) Mecanisme reducteur de vitesse
EP0599685A1 (fr) Dispositif pour usiner des fentes au travers d'un tube
FR2537893A1 (fr) Machine a dresser des tubes ou des barres, dont les outils de dressage consistent en au moins un cylindre creux a surface interne convexe
EP0463433A1 (fr) Canon de guidage réglable pour tour à poupée mobile
BE896270A (fr) Cage de laminoir pour laminage helicoidal
EP0267128B1 (fr) Dispositif d'accrochage rapide assurant la retenue d'un mandrin rotatif
FR2558396A1 (fr) Procede de laminage de tubes au pas de pelerin, laminoir pour sa mise en oeuvre et tubes lamines conformement audit procede
FR2545014A1 (fr) Dispositif de reglage mecanique et hydraulique de la position de travail d'un cylindre de laminoir

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19851126

17Q First examination report despatched

Effective date: 19870316

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALLOUREC S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 44247

Country of ref document: AT

Date of ref document: 19890715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3571209

Country of ref document: DE

Date of ref document: 19890803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85420058.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020314

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030220

Year of fee payment: 19

Ref country code: AT

Payment date: 20030220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030224

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030225

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040326