EP0159379B1 - Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler - Google Patents

Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler Download PDF

Info

Publication number
EP0159379B1
EP0159379B1 EP84104616A EP84104616A EP0159379B1 EP 0159379 B1 EP0159379 B1 EP 0159379B1 EP 84104616 A EP84104616 A EP 84104616A EP 84104616 A EP84104616 A EP 84104616A EP 0159379 B1 EP0159379 B1 EP 0159379B1
Authority
EP
European Patent Office
Prior art keywords
air
temperature
heat exchanger
transfer medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84104616A
Other languages
English (en)
French (fr)
Other versions
EP0159379A1 (de
Inventor
Albert Rosenow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROSENOW, ALBERT
Original Assignee
Rosenow Albert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenow Albert filed Critical Rosenow Albert
Priority to DE8484104616T priority Critical patent/DE3470595D1/de
Priority to AT84104616T priority patent/ATE33707T1/de
Priority to EP84104616A priority patent/EP0159379B1/de
Publication of EP0159379A1 publication Critical patent/EP0159379A1/de
Application granted granted Critical
Publication of EP0159379B1 publication Critical patent/EP0159379B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention relates to a heat pump heating device, in which flue gas or exhaust gas from a boiler is passed through a heat exchanger, through which, on the other hand, a heat transfer medium circuit is passed, which is passed through a cooler, which on the other hand is an evaporator of a compressor heat pump, on the other hand, via the condenser of which Return of a heating circuit is performed, and with an air heat exchanger which is coupled to the heat pump on the evaporator side.
  • bivalent heating devices which include a heat pump system and a boiler, with a heat exchanger for cooling the flue gas of the boiler, in order to obtain the heat extracted from the flue gas for heating purposes via the heat pumps, for safety reasons
  • the flue gas is not fully charged, but a multiple of the supply air is mixed into the flue gas.
  • the energy in the flue gas is partly dissipated with the increased amount of exhaust air, as a result of which it is lost for the heating purpose, and the entropy in the flue gas is lost as a result of the mixing process, and as a result, the efficiency of the heat pump in the recovery is reduced compared to an energy supply at the flue gas temperature .
  • a heating device in which two evaporators with upstream throttles are arranged in parallel in a heat pump circuit, one of which is an outside air cooler and the other is coupled to an auxiliary heater.
  • the disadvantage here is that the entire heating output is conducted via the heat pump, so that it must be dimensioned for the maximum heating output requirement.
  • a heating device according to the first part of claim 1 is known, the heat pump with its condenser introduces heat into the flow of a boiler and the evaporator cools a heat transfer medium circuit which is connected in parallel via an outside air heat exchanger and a flue gas heat exchanger which follows the boiler is, is led.
  • This arrangement has the disadvantage that in pure heat pump operation, as it is in the so-called transition period, the efficiency is lower due to the temperature drop due to the intermediate heat transfer circuit than when an evaporator is placed directly as an air heat exchanger.
  • the solution to the problem is that the evaporator forms a common air heat exchanger with the cooler, through which the circuit of the heat pump and the heat transfer medium circuit are separated from one another in terms of flow, but are thermally coupled.
  • the additional heat transfer medium circuit is routed through the flue gas heat exchanger, and this circuit is also routed through a cooler that is coupled to the evaporator of the heat pump circuit.
  • the heat transfer medium is, for example, a well-known antifreeze and consists, for example, of glycols or brine. It extracts the heat energy from the flue gases, which leave the boiler at a temperature of around 250 ° C and are then cooled below the dew point, for example, at this corresponding temperature, which means that the heat pump dissipates it with extremely high efficiency. Since the cooled flue gas has only a low thermal lift, it is discharged through a chimney pipe with the help of a fan. The cross-section of the chimney pipe can, however, be kept relatively small since no supply air is added.
  • the control of the mode of operation of the combined cooler is advantageously provided such that the heat pump extracts thermal energy from the flue gas to the extent that the corresponding efficiency is more favorable than when heat is obtained from the outside air or from the groundwater or the like.
  • the control takes place via a corresponding temperature comparison.
  • An advantageous increase in the overall efficiency of the device is achieved in that a memory is provided in the heat transfer medium circuit, which makes it possible to temporarily store the thermal energy that is continuously extracted from the flue gas and cannot be continuously removed from the heat pump system, so that it can be stored in the The boiler burner can be removed from the heat pump by the heat pump.
  • the heat transfer medium cooled down during the break advantageously lowers the exhaust gas temperature accordingly.
  • the volume or the heat capacity of the storage device is advantageously adapted to the usual burner switch-on times.
  • a central control device is advantageously provided for controlling the device the necessary temperature signals are supplied and which controls the fans, drives of the valves, mixers and air dampers as well as the burner and the heat pump system in accordance with the optimization specifications.
  • a further pump 22 with a check valve 21 is provided for an intensive flow, and a check valve 23 leads back to the pump 22 via a return line 24 and a mixer 12. In this way, only a permissible partial flow of the circulating water flows through the heat exchanger 4 via the circulation line 44, so that destruction is prevented.
  • the boiler 1 is put into operation by the burner control unit Bs. This is connected with its heating register on the one hand via a check valve 11 to the flow 13 of the heating circuit and on the other hand to the second outlet of the mixer 12 and in parallel to the return of the process water heat exchanger 31.
  • the mixer 12 is actuated by the mixer drive 12a in such a way that a predetermined flow temperature is maintained in each case. If heat is no longer extracted from the boiler, the burner control switches off in a known manner when a predetermined boiler temperature is exceeded.
  • the temperature of the flue gas R is usual when leaving the boiler 250 ° C. According to the invention, this flue gas is passed over a flue gas heat exchanger 8 and discharged through a chimney with an exhaust gas fan 81 as cooled exhaust gas A.
  • the flue gas heat exchanger 8 is connected to its own heat transfer medium circuit which, via a line 84, a pump 82, a line 85, a heat exchanger 87, a line 86 with the pressure and / or pressure flow meter 86pv, a memory 83 for heat transfer medium and past a temperature detector 86m back to the flue gas heat exchanger 8.
  • the heat exchanger 87 contains an evaporator 7, which may be parallel to the evaporator 6 in the heat pump circuit.
  • controllable condensate valves 56, 57 and condensate lines 62, 64, 65; 72, 74, 75 each consisting of a circulation control valve 62, 72, a bypass 64, 74, a temperature sensor 66t, 76t on the steam outlet lines 66, 76 and a circulation control 65, 75, which are based on the temperature at the temperature sensor and the respective comparison values given to the drive 62a, 72a of the circulation control valve 62, 72 is actuated, so that there is an independent closed control loop in each case.
  • the comparison values are selected so that the heat pump achieves an optimal efficiency and the temperature sensor 66t is 0 ° C when the supply air temperature is 7 ° C and the temperature sensor 76t +1 ° C when the temperature of the cooled heat transfer medium is in Line 86 is +10 ° C.
  • This setting of the reference of the controller takes place during operation of the circuit components involved, that is to say of the heat pump, boiler, fans 61, 81, pump 82, etc.
  • the signal outputs are designed several times depending on the number of connected drives.
  • the drive of the fan 61b or 61c in FIGS. 3, 4, 5 can be regulated in speed by corresponding control signals from the control device ST, as explained below.
  • the pump 82 and possibly the condensate valve 57 are also activated.
  • the condensate valve 56 may be turned off during this time.
  • the flue gas R is thereby cooled below the condensation point, which means that energy is largely removed.
  • the heat transfer medium heats up, the volume of which is determined by the store 83, which is advantageously designed so large that a temperature increase of a maximum of 20 ° C during the normal duty cycle of the Brenners occurs.
  • the pump 82 continues to operate until the temperature of the heat transfer medium at the temperature detector 86m has dropped to the temperature of the supply air at the temperature detector 9m. Then the pump 82 is switched off and the condensate valves 57, 56 are switched over so that normal heat pump operation takes place.
  • the signal from the pressure or flow meter 86pv is used to monitor the heat exchanger 87, in that if the pressure or flow drops below a predetermined value, which can be an indication of icing or leakage of the circuit, the condensate valve 57 is controlled closed and preferably an operating alarm message is displayed by the control device.
  • a predetermined value which can be an indication of icing or leakage of the circuit.
  • icing is not to be expected as long as the freezing point of the coolant is reduced to -20 or -30 ° C, for example, by antifreeze.
  • FIGS. 2 and 3 The details of the design of the device according to the main claim are shown in FIGS. 2 and 3.
  • the heat transfer medium heat exchanger 87b which replaces the heat exchanger 87, is thermally coupled directly to the evaporator 7b, which takes over the function of the evaporators 7 and 6 in FIG. 1, and is assembled to form a common air heat exchanger 100.
  • the heat exchanger which is made up of fins or bulging cooling surfaces, is traversed on the one hand by supply air ZL or circulating air UL and on the other hand is connected to lines 87, 86 of the heat transfer medium circuit and also to the condensate line 55 and steam line 53 of the heat pump coolant circuit, each with a pipe loop or an evaporator chamber connected.
  • FIG. 3 shows a vertical section so that the functionally essential components can be seen.
  • the air heat exchanger 100 is mounted vertically in a housing 9, filling it in height.
  • the supply air ZL leads into this housing 9 on the inflow side via a supply air pendulum flap 93 and a circulating air line 98 via a recirculating air pendulum flap 92.
  • a fan 61 b which is preferably a radial fan, is arranged behind the exhaust air chamber 99 and, depending on the position of the controllable cold air flap 91, drives the cooled air through the recirculation line 98 or to the cold air outlet. If the cold air flap 91 is closed, the air recirculation pendulum flap 92 opens, which closes the supply air pendulum flap via a flap coupling 94. Of course, it is also possible to control one of the other flaps or all of them instead of using swing flaps.
  • an air baffle 95 is expediently arranged, which causes a uniform action on the inflow side.
  • a condensate tray 96 with a condensate drain 97 is attached below the air heat exchanger.
  • the thermal coupling of the two heat exchanger parts 7b, 87b can thus take place directly via common cooling plates or fins, and it continues to take place via the circulating air UL.
  • the control of the air circulation or cold air flap 91 takes place by the control device ST in such a way that as long as the temperature at the temperature sensor 99m in the exhaust air space 99 is higher than the temperature of the supply air ZL at the temperature sensor 9m, the cold air flap is closed.
  • the speed or power of the fan 61 b is controlled in such a way that the temperature in the exhaust air space 99 corresponds to a predetermined temperature, for example 40 ° C., in recirculation mode and that the temperature in the exhaust air space 99 in the supply air mode, that is to say when the cold air flap 91 is open to a featured given temperature difference is below the supply air temperature.
  • a predetermined temperature for example 40 ° C.
  • FIG. 4 is a schematic vertical section.
  • the air heat exchanger 100 is mounted approximately diagonally in the housing 9a, so that the supply air space 99z corresponds at the bottom approximately to the width of the housing and the exhaust air space 99 corresponds approximately to the diameter of the inlet opening of the fan 61b.
  • the cross section of the housing 9a can be kept smaller than that of the housing 9, FIG. 3.
  • the air recirculation line is not shown.
  • the housing 99a is shown in plan view in FIG. 5.
  • the standard version of the housing has; only half the length up to the line of symmetry H and has a fan 61b. If there is a high power requirement, expansion with two fans 61b, 61c is provided. The second fan is switched on when there is a greater demand for heat.
  • the relatively low overall height achieved as a result enables installation in basements. Since the fans run relatively slowly, except when the supply air temperature is very low, there is only a small amount of noise, which in turn is advantageous when installed in buildings.
  • a design corresponding to FIG. 4 is also advantageously provided for the housing of the flue gas heat exchanger, so that an arrangement can be made directly behind a boiler. This makes it very easy to retrofit existing heating systems. Since no additional oxygen-containing air acts on the flue gas heat exchanger with the flue gas, the aggressiveness of the condensate which is separated from the flue gas is limited, which extends its durability compared to the known devices.
  • FIGS. 6 and 7 show a further advantageous embodiment of the flue gas heat exchanger 8a, b, c, d, an exhaust gas fan being dispensed with, since the flue gas heat exchanger is arranged on the chimney 88a and the flue gas rises through the chimney due to its own thermal buoyancy. Here, it cools down due to expansion, but the fan drive energy is saved.
  • a condensate tray 102 is mounted on the chimney 88a with a chimney sleeve 101, on which the flue gas heat exchanger 8a, b, c, d is arranged in blocks or in a circle around the chimney opening 88, so that the cooled exhaust air A flows out laterally.
  • a cover 104 is attached with supports 103 above the cooler and the chimney opening 88.
  • the air heat exchanger 100 (FIG. 3) can also be replaced by a water heat exchanger, that is to say water instead of air flowing through it. Instead of the cold air flap 91, the water removal is then controlled accordingly.
  • Outside air can also serve as supply air, as can warm or humid air in work rooms. In this case, it is advisable to switch from pure heat pump operation to additional boiler operation if the supply air temperature is below 15 ° C.
  • the air heat exchanger can be installed directly in the work rooms, so that long air inlets and outlets are no longer necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)

Description

  • Die Erfindung betrifft eine Wärmepumpenheizvorrichtung, bei der Rauchgas- oder Abgas von einem Heizkessel durch einen Wärmetauscher geführt ist, durch den andererseits ein Wärmeübertragungsmittelkreislauf geführt ist, der durch einen Kühler geführt ist, der andererseits Verdampfer einer Kompressor-Wärmepumpe ist, über deren Kondensator andererseits der Rücklauf eines Heizkreises geführt ist, und mit einem Luftwärmetauscher der verdampferseitig mit der Wärmepumpe gekoppelt ist.
  • Es ist aus DE-A-2855485 bekannt, sogenannte bivalente Heizvorrichtungen, die eine Wärmepumpenanlage und einen Heizkessel beinhalten, mit einem Wärmetauscher zur Abkühlung des Rauchgases des Heizkessels, zwecks Gewinnung der dem Rauchgas entzogenen Wärme zu Heizzwecken über die Wärmepumpen, auszurüsten, wobei aus sicherheitstechnischen Gründen der Wärmetauscher nicht voll mit Rauchgas beaufschlagt wird, sondern eine Zumischung des Mehrfachen an Zuluft zum Rauchgas vorgenommen wird. Hierdurch wird die Energie im Rauchgas zum Teil mit der erhöhten Menge Abluft abgeführt, wodurch sie dem Heizzweck verloren geht, und die Entropie im Rauchgas durch den Mischvorgang verlustig geht, und wodurch der Wirkungsgrad der Wärmepumpe bei der Rückgewinnung verringert ist verglichen zu einer EnergieZuführung bei Rauchgastemperatur.
  • Aus WO 83/03133 ist eine Heizvorrichtung bekannt, bei der in einem Wärmepumpenkreislauf zwei Verdampfer mit vorgeschalteten Drosseln parallel angeordnet sind, von denen der eine ein Aussenluftkühler ist und der andere mit einer Hilfsheizung gekoppelt ist. Es ergibt sich dabei der Nachteil, dass die gesamte Heizleistung über die Wärmepumpe geführt wird, so dass diese für den Maximalheizleistungsbedarf dimensioniert sein muss.
  • Aus WO 83/03662 ist eine Heizvorrichtung nach dem 1. Teil des Anspruchs 1 bekannt, deren Wärmepumpe mit ihrem Kondensator Wärme in den Vorlauf eines Heizkessels einbringt und deren Verdampfer einen Wärmeübertragungsmittelkreislauf kühlt, der parallel über einen Aussenluftwärmetauscher und einen Rauchgaswärmetauscher, der dem Heizkessel nachgeschaltet ist, geführt ist. Diese Anordnung hat den Nachteil, dass bei reinem Wärmepumpenbetrieb, wie er in der sogenannten Übergangszeit vorliegt, wegen des Temperaturabfalles durch den zwischengeschalteten Wärmeübertragungskreislauf der Wirkungsgrad geringer ist, als bei einer unmittelbaren Plazierung eines Verdampfers als Luftwärmetauscher.
  • Es ist Aufgabe der Erfindung, eine vereinfachte Vorrichtung der eingangs genannten Art, die mit erhöhtem Wirkungsgrad arbeitet, zu offenbaren.
  • Die Lösung der Aufgabe besteht darin, dass der Verdampfer mit dem Kühler einen gemeinsamen Luftwärmetauscher bildet, durch den der Kreislauf der Wärmepumpe und der Wärmeübertragungsmittelkreislauf strömungsmässig voneinander getrennt, aber thermisch gekoppelt geführt sind.
  • Zur Erfüllung der sicherheitstechnischen Anforderung, dass ein Verdampfungskühler nicht voll mit Rauchgas beaufschlagt wird, ist der zusätzliche Wärmeübertragungsmittelkreislauf durch den Rauchgaswärmetauscher geführt, und dieser Kreislauf ist weiterhin durch einen Kühler geführt, der mit dem Verdampfer des Wärmepumpenkreislaufs gekoppelt ist. Das Wärmeübertragungsmittel ist zum Beispiel ein bekanntes Frostschutzmittel und besteht etwa aus Glykolen oder Sole. Es entzieht aus den Rauchgasen, die etwa mit einer Temperatur von 250 °C den Heizkessel verlassen und dann zum Beispiel unter den Taupunkt abgekühlt werden, bei dieser entsprechenden Temperatur die Wärmeenergie, wodurch diese mit extrem hohem Wirkungsgrad von der Wärmepumpe abgeführt wird. Da das abgekühlte Rauchgas nur geringen thermischen Auftrieb besitzt, wird es mit Hilfe eines Ventilators durch ein Kaminrohr abgeführt. Der Querschnitt des Kaminrohres kann allerdings relativ klein gehalten werden, da keine Zuluft beigemischt wird.
  • Eine vorteilhafte Anordnung des Rauchgaswärmetauschers ergibt die Anbringung oberhalb des Kamins, da dann der Rauchgasventilator erübrigt wird und ein Versotten des Kamins durch Kondensation ausgeschlossen ist.
  • Für die Zuführung der Wärmeenergie im Wärmeübertragungsmittelkreislauf sind vorteilhafte Ausführungen dargestellt. Dabei ist der Kühler-Wärmetauscher des Wärmeübertragungsmittels direkt thermisch mit dem Verdampfer gekoppelt, und mit dieser gekoppelten Vorrichtung wird auch der Aussenluft Wärmeenergie entzogen. Diese Kombination führt zu einer Vereinfachung, da ein zweiter Verdampfer und Steuerelemente für diesen Verdampfer entfallen.
  • Die Steuerung der Arbeitsweise des kombinierten Kühlers ist vorteilhaft so vorgesehen, dass die Wärmepumpe in dem Umfang dem Rauchgas Wärmeenergie entzieht, wie der entsprechende Wirkungsgrad günstier ist als bei einer Wärmegewinnung aus der Aussenluft bzw. dem Grundwasser oder ähnlichem. Die Steuerung geschieht über einen entsprechenden Temperaturvergleich.
  • Eine vorteilhafte Erhöhung des Gesamtwirkungsgrades der Vorrichtung ist dadurch erreicht, dass im Wärmeübertragungsmittelkreislauf ein Speicher vorgesehen ist, der es ermöglicht, die Wärmeenergie, die laufend aus dem Rauchgas entzogen wird und nicht laufend von der Wärmepumpenanlage abgeführt werden kann, zwischenzuspeichern, so dass sie in der Betriebspause des Brenners des Heizkessels von der Wärmepumpe aus dem Speicher entnommen werden kann. Das in der Pause heruntergekühlte Wärmeübertragungsmittel senkt die Abgastemperatur vorteilhaft entsprechend weit ab. Das Volumen bzw. die Wärmekapazität des Speichers ist den üblichen Einschaltzeiten des Brenners vorteilhaft angepasst.
  • Für die Steuerung der Vorrichtung ist vorteilhaft eine zentrale Steuervorrichtung vorgesehen, der die notwendigen Temperatursignale zugeführt werden, und die die Ventilatoren, Antriebe der Ventile, Mischer und Luftklappen sowie den Brenner und die Wärmepumpenanlage entsprechend der Optimierungsvorgaben steuert.
  • Die Ausgestaltung der Vorrichtung und des Verfahrens zur Steuerung in vorteilhafter Weise ist im einzelnen anhand der Fig. 1 bis 7 dargestellt:
    • Fig. 1 zeigt eine Blockschaltung einer Vorrichtung mit zwei Verdampfern in Parallelschaltung;
    • Fig. 2 zeigt einen Luftwärmetauscher kombiniert mit dem Kühler des zweiten Kühlmittelkreislaufs;
    • Fig. 3 zeigt eine Anordnung des Luftwärmetauschers nach Fig. 2 im Gehäuse (geöffnet) von der Seite;
    • Fig. 4 zeigt eine Alternative zu Fig. 3 als Schnitt durch Fig. 5;
    • Fig. 5 zeigt eine Draufsicht auf ein Gehäuse zum Luftwärmetauscher;
    • Fig. 6 zeigt einen Rauchgaskühler auf einem Kamin angeordnet, von der Seite;
    • Fig. 7 zeigt einen horizontalen Schnitt durch Fig. 6.
    • Fig. 1 zeigt eine schematische Darstellung einer bivalenten Heizvorrichtung, bei der aus Zeichnungsgründen der Luftwärmetauscher getrennt vom Kühler und Verdampfer dargestellt ist. Wie bekannte Anlagen dieser Art besitzt diese eine Wärmepumpenanlage 52,4,6, mit einem Kühlmittelkreislauf mit einem Kompressor 52, einem Verflüssiger 5 eines Verflüssiger-Wärmetauschers 4, über den die Wärme abgeführt wird, und einen Verdampfer 6, der Aussenluft Wärme entzieht, die mit einem Ventilator 61 durch die Rippen des Verdampfers 6 gezogen wird. Aus dem Wärmetauscher 4 wird mit einer Pumpe 42 über ein Rückschlagventil 41 der Heizkreislauf 2 und/oder der Brauchwasser-Wärmetauscher 31 je nach der Stellung des Mischers 43 und ggf. dem Betrieb der Pumpe 32 mit dem erwärmten Wasser im Wasserkreislauf beaufschlagt. Die Steuerung der Pumpe 32 und des Mischers 43 geschieht in bekannter Weise, abhängig von vorgegebenen Temperaturen für das Brauchwasser im Speicher 3 und im Vorlauf des Heizkreises, in denen jeweils Temperaturmelder 3m, 13m angeordnet sind.
  • Im Heizkreis-Kreislauf ist für eine intensive Durchströmung eine weitere Pumpe 22 mit einem Rückschlagventil 21 vorgesehen, und ein Rückschlagventil 23 führt über eine Rücklaufleitung 24 und einen Mischer 12 zur Pumpe 22 zurück. Auf diese Weise wird der Wärmetauscher 4 über die Umlaufleitung 44 stets nur von einem zulässigen Teilstrom des Kreislaufwassers durchströmt, so dass eine Zerstörung verhindert wird.
  • Reicht die Leistung der Wärmepumpenanlage nicht aus, um den Wärmebedarf zu decken, das heisst, sinken die Temperaturen im Speicher 3 und/oder Vorlauf 13 unter untere Grenzwerte ab, so wird der Heizkessel 1 durch die Brennersteuerung Bs in Betrieb gesetzt. Dieser ist mit seinem Heizregister einerseits über ein Rückschlagventil 11 am Vorlauf 13 des Heizkreises und andererseits am zweiten Ausgang des Mischers 12 sowie parallel dazu am Rücklauf des Brauchwasser-Wärmetauschers 31 angeschlossen. Der Mischer 12 wird durch den Mischerantrieb 12a so betätigt, dass jeweils eine vorgegebene Vorlauftemperatur erhalten bleibt. Wird dem Kessel keine Wärme mehr entzogen, so schaltet die Brennersteuerung bei Überschreiten einer vorgegebenen Kesseltemperatur in bekannter Weise ab.
  • Die Temperatur des Rauchgases R ist üblich beim Verlassen des Kessels 250 °C. Dieses Rauchgas wird erfindungsgemäss über einen Rauchgaswärmetauscher 8 geleitet und mit einem Abgasventilator 81 als gekühltes Abgas A durch einen Kamin abgeführt.
  • Der Rauchgaswärmetauscher 8 ist mit einem eigenen Wärmeübertragungsmittelkreislauf verbunden, der über eine Leitung 84, eine Pumpe 82, eine Leitung 85, einen Wärmetauscher 87, eine Leitung 86 mit dem Druck und/oder Druckflussmesser 86pv, einem Speicher 83 für Wärmeübertragungsmittel und vorbei an einem Temperaturmelder 86m zurück zum Rauchgaswärmetauscher 8 führt. Der Wärmetauscher 87 enthält einen Verdampfer 7, der im Wärmepumpenkreislauf ggf. parallel zum Verdampfer 6 liegt.
  • Die Verteilung des Kondensats, das dem Kühlmittelkreislauf der Wärmepumpenanlage vom Verflüssiger 5 über Leitung 55 den Verdampfern 6 und 7 parallel zugeführt wird, geschieht einmal über jeweils vorgeschaltete steuerbare Kondensatventile 56, 57 und Kondensatumleitungen 62, 64, 65; 72, 74, 75, die jeweils aus einem Umlaufsteuerventil 62,72, einer Umleitung 64, 74 einem Temperaturfühler 66t, 76t an den Dampfaustrittsleitungen 66, 76 und einer Umlaufsteuerung 65, 75, die aufgrund der Temperatur am Temperaturfühler und jeweils vorgegebener Vergleichswerte dem Antrieb 62a, 72a des Umlaufsteuerventils 62, 72 betätigt, so dass jeweils ein unabhängiger geschlossener Regelkreis vorliegt.
  • Die Vergleichswerte sind jeweils so gewählt, dass ein optimaler Wirkungsgrad der Wärmepumpe erreicht wird und jeweils am Temperaturfühler 66t 0 °C herrscht, wenn die Zulufttemperatur 7 °C beträgt und am Temperaturfühler 76t +1 °C herrscht, wenn die Temperatur des gekühlt austretenden Wärmeübertragungsmittels in Leitung 86 +10 °C beträgt. Diese Einstellung der Referenz der Regler erfolgt jeweils beim Betrieb der beteiligten Kreislaufbauteile, das heisst von Wärmepumpe, Heizkessel, Ventilatoren 61,81, Pumpe 82 usw.
  • Die Kondensatventile 56, 57 werden jeweils parallel zum entsprechenden Ventilator 61 bzw. der Pumpe 82 durch den Magneten 56a, 57a betätigt. Für die Steuerung der Heizvorrichtung ist eine Steuervorrichtung ST vorgesehen, die als Mikroprozessor ausgeführt sein kann, der die Signale der Temperaturmelder Tm für unter anderem Zuluft 9m, Kaltluft 6m, Wärmeübertragungsmittel 86m, Vorlauf 13m, Brauchwasser 3m und des Druck- oder Durchlaufmelders 86pv sowie Eingabedaten für den Grenzwertvergleich oder Betriebszustände von einer Eingabevorrichtung E zum Beispiel einer Tastatur oder Wählschaltern zugeleitet werden. Weiterhin enthält sie zweckmässig, einen Zeitgeber zur Steuerung der Betriebszustände abhängig von der Tageszeit und zur Mindest- und Maximalzeitüberwachungen oder Steuerungen der Einschaltperioden der Wärmepumpe und des Heizkessels. Abhängig von den erzeugten Ausgangswerten werden jeweils Ausgänge (jeweils mit Index «s» bezeichnet) aktiviert, die im einzelnen folgende Antriebe (jeweils mit Index «a» bezeichnet) ansteuern:
    • - Kondensatventile KVs-Antriebsmagnete 56a, 57a für Kondensatventile 56, 57
    • - Stellantriebe Ss - Antriebsmotore 12a, 43a für steuerbar 3-Wege-Stellventile 12, 43
    • - Kompressorantrieb Ks - Antriebsmotor - Kompressor 52
    • - Pumpenantriebe Ps - Pumpenmotore - Pumpen 22, 32, 42, 82
    • - Ventilatorantriebe Vs - Ventilatoren 61,81
    • - Brennersteuerung Bs des Heizkessels 1 Umluftlappenantrieb UKs - Antrieb 91a der Kaltluftklappe 91 (Fig. 3).
  • Die Signalausgänge sind jeweils entsprechend der Anzahl der angeschlossenen Antriebe mehrfach ausgeführt. Der Antrieb des Ventilators 61 b bzw. 61c in Fig. 3, 4, 5 ist durch entsprechende Steuersignale der Steuervorrichtung ST - wie unten ausgeführt- in der Geschwindigkeit regelbar.
  • Die Steuerung arbeitet folgendermassen:
  • Sobald die Brennersteuerung Bs bei entsprechendem Energiebedarf eingeschaltet ist, der von der Wärmepumpenanlage bei zu niedriger Temperatur der Zuluft ZL nicht bereitgestellt werden kann, das heisst die Vorlauftemperatur zu niedrig ist, wird auch die Pumpe 82 und ggf. das Kondensatventil 57, aktiviert. Das Kondensatventil 56 kann während dieser Zeit ausgeschaltet sein. Das Rauchgas R wird dadurch unter den Kondensationspunkt abgekühlt, was einen weitgehenden Energieentzug bedeutet. Soweit die Leistung der Wärmepumpenanlage nicht ausreicht, die gesamte Energie laufend dem Heizkreis zuzuführen, erwärmt sich das Wärmeübertragungsmittel, dessen Volumen durch den Speicher 83 bestimmt ist, der vorteilhaft so gross ausgelegt ist, dass eine Temperaturerhöhung von maximal 20 °C während der normalen Einschaltdauer des Brenners auftritt.
  • Nach Abschalten des Brenners, wenn also eine ausreichende Nachheizung erfolgte, arbeitet die Pumpe 82 so lange weiter, bis die Wärmeübertragungsmitteltemperatur am Temperaturmelder 86m auf die Temperatur der Zuluft am Temperaturmelder 9m abgesunken ist. Dann wird die Pumpe 82 abgeschaltet, und die Kondensatventile 57, 56 werden umgeschaltet, so dass der normale Wärmepumpenbetrieb stattfindet.
  • Das Signal des Druck- oder Durchflussmessers 86pv dient zur Überwachung des Wärmetauschers 87, indem bei Druck- oder Durchflussabfall unter einen vorgegebenen Wert, was ein Anzeichen für eine beginnende Vereisung oder Undichtigkeit des Kreislaufs sein kann, das Kondensatsventil 57 geschlossen gesteuert wird sowie vorzugsweise eine Betriebsalarmmeldung von der Steuervorrichtung angezeigt wird. Im allgemeinen ist mit einer Vereisung nicht zu rechnen, so lange der Gefrierpunkt des Kühlmittels durch Frostschutzmittelanteile zum Beispiel auf -20 oder -30°C abgesenkt ist.
  • Die Einzelheiten der Ausgestaltung der Vorrichtung nach dem Hauptanspruch sind in Fig. 2 und 3 dargestellt. Hierbei ist der Wärmeübertragungsmittelwärmetauscher 87b, der den Wärmetauscher 87 ersetzt, direkt mit dem Verdampfer 7b, der die Funktion der Verdampfer 7 und 6 der Fig. 1 übernimmt, thermisch gekoppelt und zu einem gemeinsamen Luftwärmetauscher 100 zusammengebaut. Der aus Rippen oder prallen Kühlflächen aufgebaute Wärmetauscher wird einerseits quer von Zuluft ZL oder Umluft UL durchströmt und ist andererseits an die Leitungen 87, 86 des Wärmeübertragungsmittelkreislaufs und ausserdem an die Kondensatleitung 55 und Dampfleitung 53 des Wärmepumpen-Kühlmittelkreislaufs mit je einer Rohrschleife bzw. einem Verdampferraum angeschlossen.
  • Eine bevorzugte Art des Einbauens dieses Luftwärmetauschers 100 ist in Fig. 3 dargestellt, die einen senkrechten Schnitt zeigt, damit die funktionswesentlichen Bauelemente erkennbar sind. Der Luftwärmetauscher 100 ist senkrecht in einem Gehäuse 9, dieses in der Höhe ausfüllend, montiert. In dieses Gehäuse 9 führt zustromseitig über eine Zuluftpendelklappe 93 die Zuluft ZL und über eine Umluftpendelklappe 92 eine Umluftleitung 98.
  • Abstromseitig ist hinter dem Abluftraum 99 ein Ventilator 61 b, der bevorzugt ein Radiallüfter ist, angeordnet, der die gekühlte Luft je nach Stellung der steuerbaren Kaltluftklappe 91 durch die Umluftleitung 98 oder zum Kaltluftaustritt treibt. Ist die Kaltluftklappe 91 geschlossen, öffnet sich die Umluftpendelklappe 92, die über eine Klappenkopplung 94 die Zuluftpendelklappe schliesst. Es ist selbstverständlich auch möglich, auch eine der anderen Klappen oder alle zu steuern anstatt Pendelklappen zu verwenden. Vor dem Luftwärmetauscher 100 ist zweckmässig ein Luftleitblech 95 angeordnet, das eine gleichmässige Beaufschlagung der Zustromseite bewirkt. Unterhalb des Luftwärmetauschers ist eine Kondensatwanne 96 mit einem Kondensatablass 97 angebracht.
  • Die thermische Kopplung der beiden Wärmetauscherteile 7b, 87b, kann somit einmal unmittelbar über gemeinsame Kühlbleche oder -Rippen geschehen, und sie geschieht weiterhin über die Umluft UL. Die Steuerung der Umluftführung bzw. Kaltluftklappe 91 geschieht von der Steuervorrichtung ST in der Weise, dass, so lange die Temperatur am Temperaturmelder 99m im Abluftraum 99 höher ist als die Temperatur der Zuluft ZL am Temperaturmelder 9m, die Kaltluftklappe geschlossen wird.
  • Weiterhin erfolgt die Steuerung der Drehzahl oder Leistung des Ventilators 61 b in der Weise, dass bei Umluftbetrieb die Temperatur im Abluftraum 99 einer vorgegebenen Temperatur zum Beispiel 40 °C entspricht und dass bei Zuluftbetrieb, das heisst bei geöffneter Kaltluftklappe 91, die Temperatur im Abluftraum 99 um eine vorgegebene Temperaturdifferenz unter der Zulufttemperatur liegt.
  • Durch die Kombination der beiden Wärmetauscherteile 7, 87b in dem einen Luftwärmetauscher 100 werden die Kondensatventile 56, 57 (Fig. 1) und eine Kondensatumleitung sowie die entsprechenden Steuermittel erübrigt.
  • Weiterhin ist der zusätzliche grosse Vorteil gegeben, dass bei solchen Betriebsverhältnissen insbesondere in der sogenannten Übergangszeit, in der Temperaturen nahe Null Grad und hohe Luftfeuchtigkeit herrschen und somit Vereisung am Luftwärmetauscher auftritt, die Wärme aus dem Rauchgas das Eis abtaut, sobald der Heizkessel zugeschaltet ist. Eine zusätzliche Enteisungssteuerung erübrigt sich, und der Luftkühler arbeitet, da er kaum vereist und immer wieder abgetaut und getrocknet wird, mit maximalem Wärmeübergang.
  • Eine andere Anordnung des Luftwärmetauschers 100 im Gehäuse 9a zeigt Fig. 4, die ein schematischer senkrechter Schnitt ist. Hierbei ist der Luftwärmetauscher 100 etwa diagonal in dem Gehäuse 9a montiert, so dass der Zuluftraum 99z unten etwa der Breite des Gehäuses entspricht und der Abluftraum 99 oben etwa dem Durchmesser der Eintrittsöffnung des Ventilators 61 b entspricht. Auf diese Weise kann der Querschnitt des Gehäuses 9a geringer gehalten werden als beim Gehäuse 9, Fig. 3. Die Umluftleitung ist nicht dargestellt.
  • Das Gehäuse 99a ist in Fig. 5 im Grundriss gezeigt. In Normalausführung hat das Gehäuse ; nur die halbe Länge bis zur Symmetrielinie H und besitzt einen Ventilator 61b. Bei grossem Leistungsbedarf ist der Ausbau mit zwei Ventilatoren 61b, 61c vorgesehen. Der zweite Ventilator wird jeweils bei grösserem Wärmebedarf zugeschaltet. Die dadurch erreichte relativ geringe Bauhöhe ermöglicht die Aufstellung in Kellerräumen. Da ausser bei sehr niedriger Zulufttemperatur die Ventilatoren relativ langsam laufen, tritt nur eine geringe Lärmbelästigung auf, was wiederum bei Aufstellung in Gebäuden vorteilhaft ist.
  • Eine der Fig. 4 entsprechende Gestaltung ist auch für das Gehäuse des Rauchgaswärmetauschers vorteilhaft vorgesehen, so dass unmittelbar eine Anordnung hinter einem Heizkessel vorgenommen werden kann. Auf diese Weise ist sehr einfach eine Nachrüstung vorhandener Heizungsanlagen möglich. Da keine zusätzliche sauerstoffhaltige Luft mit dem Rauchgas den Rauchgaswärmetauscher beaufschlagt ist die Agressivität des Kondensats, das aus dem Rauchgas abgeschieden wird, begrenzt, was dessen Haltbarkeit gegenüber den bekannten Vorrichtungen verlängert.
  • Eine weitere vorteilhafte Ausgestaltung des Rauchgaswärmetauschers 8a, b, c, d, zeigen Fig. 6 und 7, wobei ein Abgasventilator erübrigt wird, da der Rauchgaswärmetauscher auf dem Kamin 88a angeordnet ist und das Rauchgas durch den eigenen thermischen Auftrieb durch den Kamin aufsteigt. Hierbei kühlt es sich zwar durch Ausdehnung ab, aber die Ventilatorantriebsenergie wird gespart.
  • Auf dem Kamin 88a ist mit einer Kaminmuffe 101 eine Kondensatwanne 102 montiert, auf der der Rauchgaswärmetauscher 8a, b, c, d um die Kaminöffnung 88 herum in Blöcken oder kreisförmig angeordnet ist, so dass die gekühlte Abluft A seitlich ausströmt. Mit Stützen 103 ist über dem Kühler und der Kaminöffnung 88 eine Abdeckhaube 104 angebracht.
  • Es liegt im Rahmen der Erfindung, andere Gestaltungen der Wärmetauscher vorzusehen und den Rauchgaswärmetauscher anstelle hinter einem Heizkessel an andere Rauch- oder Abgasleitungen anzuschliessen. Weiterhin kann der Luftwärmetauscher 100 (Fig. 3) auch durch einen Wasserwärmetauscher ersetzt werden, das heisst von Wasser, statt von Luft durchströmt werden. Anstelle der Kaltluftklappe 91 wird dann die Wasserabfuhr entsprechend gesteuert.
  • Weiterhin kann als Zuluft sowohl Aussenluft dienen als auch warme oder feuchte Luft in Arbeitsräumen dienen. In diesem Fall wird zweckmässig von reinem Wärmepumpenbetrieb auf zusätzlichen Kesselbetrieb umgeschaltet, wenn die Zulufttemperatur unter 15 °C liegt. Der Luftwärmetauscher kann unmittelbar in den Arbeitsräumen aufgestellt werden, so dass lange Luftzu- und -ableitungen entfallen.

Claims (12)

1. Wärmepumpenheizvorrichtung, bei der Rauchgas- oder Abgas (R) von einem Heizkessel (1) durch einen Wärmetauscher (8) geführt ist, durch den andererseits ein Wärmeübertragungsmittelkreislauf geführt ist, der durch einen Kühler (87, 87b) geführt ist, der andererseits Verdampfer (7, 7b) einer Kompressor-Wärmepumpe (52) ist, über deren Kondensator (5) andererseits der Rücklauf eines Heizkreises (2) geführt ist, und die einen Luftwärmetauscher (6) beinhaltet, der verdampferseitig mit der Wärmepumpe (52) gekoppelt ist, dadurch gekennzeichnet, dass der Verdampfer (7, 76) mit dem Kühler (87, 87b) einen gemeinsamen Luftwärmetauscher (100) bildet, durch den der Kreislauf der Wärmepumpe (52) und der Wärmeübertragungsmittelkreislauf strömungsmässig voneinander getrennt, aber thermisch gekoppelt geführt sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass an dem Luftwärmetauscher (100) ein Ventilator (61 b) angeordnet ist und der Luftwärmetauscher (100) eingangsseitig steuerbar mit einer Umluftleitung (86) oder einer Zuluft- öffnung verbunden ist und abstromseitig steuerbar mit der Umluftleitung (98) oder einer Zuluftöffnung verbunden ist und abstromseitig steuerbar mit der Umluftleitung (98) bzw. einem Kaltluftaustritt verbunden ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Luftwärmetauscher (100) in einem Gehäuse (9a) gegen die Vertikale um ca. 30 Grad geneigt angeordnet ist, so dass untenseitig ein Zuluftraum (99z) etwa der Breite des Gehäuses (9a) gemäss gebildet ist und obenseitig ein Abluftraum (99) dem Durchmesser der Lufteintrittsöffnung des obenseitig angeordneten Ventilators (61 b), der ein Radiallüfter ist, entsprechend gebildet ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass mehrere Ventilatoren (61b, 61c), von Seiten des Lufteintritts der Zuluft (ZL) gesehen, nebeneinander angeordnet sind und das Gehäuse (9a) lufteintrittsseitig etwa doppelt so breit wie hoch ist.
5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in dem Wärmeübertragungsmittelkreislauf ein Speicher (83) abstromseitig des Wärmetauschers (87, 87b) angeordnet ist, dessen Wärmekapazität so bemessen ist, dass während der mittleren Einschaltdauer des Brenners des Heizkessels (1) eine Temperaturerhöhung des Wärmeübertragungsmittels von maximal 20 °C auftritt.
6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeübertragungsmittel ein Frostschutzmittel ist und ein Gefrierpunkt tiefer als -30 °C hat und vorzugsweise aus Glykolen oder Sole besteht.
7. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass in eine Steuervorrichtung (ST) Temperaturmeldesignale (Tm) von einem Zulufttemperaturmelder (9m), einem Wärmeübertragungsmittel-Temperaturmelder (86m); einem Kaltlufttemperaturmelder (6m), einem Umlufttemperaturmelder (99m) und einem Vorlauftemperaturmelder (13m) zugeführt sind und an die Steuervorrichtung (ST) ausgangsseitig ein Ventilatorantrieb (Vs) des Ventilators (61, 61 b), ein Abgasventilator (81), ein Pumpenantrieb (Ps) einer Wärmeübertragungsmittelpumpe (82) der Antrieb (Ks) der Wärmepumpe (52), ein Kaltluftklappenantrieb (91 a) einer Kaltluftklappe (91), eine Brennersteuerung (Bs) des Heizkessels (1) angeschlossen sind und die Steuerung (ST) die genannten Ausgänge abhängig von den Temperaturmeldesignalen und Zeitgebersignalen gemäss Steuer- und Vergleichsgrössen aktiviert, wobei abhängig von der Zulufttemperaturmeldung (9m) und derVorlauftemperaturmeldung (13m, 3m) die Wärmepumpe (52) und bedarfsweise zusätzlich die Brennersteuerung (Bs) aktiviert werden und mit der Wärmepumpe (52) die Wärmeübertragungsmittelpumpe (82) und der Umluftventilator (61 b) aktiviert sind, und dass jeweils mit Abschalten der Brennersteuerung (Bs) die Wärmeübertragungsmittelpumpe (82) so lange aktiviert bleibt, bis die Temperatur am Wärmeübertragungsmitteltemperaturmelder (86m) die Temperatur des Zuluftmelders (9m) oder einen vorgegebenen Grenzwert unterschreitet, und dann abgeschaltet wird und dass die Wärmepumpe (52) mindestens bis zu diesem Zeitpunkt aktiviert ist.
8. Vorrichtung gemäss Anspruch 7, dadurch gekennzeichnet, dass die Steuervorrichtung (ST) abhängig von den Meldungen des Zulufttemperaturmelders (9m) und des Vorlauftemperaturmelders (13m, 3m) die Wärmepumpe (52) und bedarfsweise die Brennersteuerung (Bs) aktiviert und gleichzeitig die Wärmepumpe (52), die Wärmeübertragungsmittelpumpe (82) und der Umluftventilator (61b, 61c) aktiviert sind und die Kaltluftklappe (91) geschlossen ist und dadurch eine Umluftpendelklappe (92) geöffnet und eine Zuluftpendelklappe (93) geschlossen ist und dass jeweils mit Abschalten der Brennersteuerung (Bs) die Wärmeübertragungsmittelpumpe (82) so lange aktiviert und die Kaltluftklappe (91) so lange geschlossen bleibt, bis die Temperatur am Umlufttemperaturmelder (99m) kleiner oder gleich der Temperatur am Zulufttemperaturmelder (9m) ist, und dass dann die Pumpe (82) abgeschaltet und die Kaltluftklappe (91) geöffnet wird, wodurch auch die Umluft- und Zuluftpendelklappen (92, 93) die jeweils andere Stellung einnehmen.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Geschwindigkeit oder Leistung des Ventilators (61b, 61c) bei geschlossener Kaltluftklappe (91) derart geregelt wird, dass die Temperatur an dem Zulufttemperaturmelder (99m) einen vorgegebenen Wert hat, und bei geöffneter Kaltluftklappe derart geregelt wird, dass zwischen den Temperaturmeldungen an dem Zulufttemperaturmelder (9m) und dem Umlufttemperaturmelder (19m) eine vorgegebene Differenz herrscht.
10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Rauchgaswärmetauscher (8) oberhalb eines an den Heizkessel (1) angeschlossenen Kamins (88a) angeordnet ist und das austretende Abgas (A) horizontal abgeführt ist und das Rauchgas (R) zentral zugeführt ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Rauchgaswärmetauscher (8a, 8b, 8c, 8d) mit einer Kaminmuffe (101) an den Kamin (88a) angeschlossen ist, auf der sich eine Kondensatwanne (102) befindet, auf der um eine Kaminöffnung (88) herum der Rauchgaswärmetauscher (8a, 8b, 8c, 8d) montiert ist, über den eine Abdeckhaube (104), die auch die Kaminöffnung
(88) abdeckt, mit Stützen (103) an der Kondensatwanne (102) montiert ist.
EP84104616A 1984-04-25 1984-04-25 Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler Expired EP0159379B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8484104616T DE3470595D1 (en) 1984-04-25 1984-04-25 Heat pump heating device with a flue gas or an exhaust gas cooler
AT84104616T ATE33707T1 (de) 1984-04-25 1984-04-25 Waermepumpenheizvorrichtung mit rauch- oder abgaskuehler.
EP84104616A EP0159379B1 (de) 1984-04-25 1984-04-25 Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP84104616A EP0159379B1 (de) 1984-04-25 1984-04-25 Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler

Publications (2)

Publication Number Publication Date
EP0159379A1 EP0159379A1 (de) 1985-10-30
EP0159379B1 true EP0159379B1 (de) 1988-04-20

Family

ID=8191897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84104616A Expired EP0159379B1 (de) 1984-04-25 1984-04-25 Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler

Country Status (3)

Country Link
EP (1) EP0159379B1 (de)
AT (1) ATE33707T1 (de)
DE (1) DE3470595D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222335A (zh) * 2014-06-18 2016-01-06 郭洪雨 回收烟气热泵设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9304144L (sv) * 1993-12-13 1995-06-14 Aaps En Ab Värmeanläggning
AT13731U1 (de) * 2011-09-14 2014-07-15 Heloro S R O Verfahren und System zur Verarbeitung von Verbrennungsgasen einer Wärmequelle
AT515323B1 (de) * 2014-01-30 2015-11-15 Bioenergy 2020 & Gmbh Wärmepumpe und/oder Heizeinrichtung
CN109507009A (zh) * 2018-11-16 2019-03-22 江苏卓正环保科技有限公司 一种烟气监测系统用冷凝器
CN113719852B (zh) * 2021-08-30 2023-06-23 安徽华铂再生资源科技有限公司 一种锅炉用风冷装置
CN113994834B (zh) * 2021-12-08 2023-01-10 北京四良科技有限公司 一种温室大棚用加湿型暖气片
CN114877735B (zh) * 2022-05-09 2023-03-24 南京航空航天大学 一种带有储能装置的定型机含油废气余热回收系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401386A1 (fr) * 1977-08-26 1979-03-23 Zaegel Held Sa Recuperateur a transfert de chaleur air-eau
DE2855485A1 (de) * 1978-12-22 1980-07-03 Hartmut Behrens Heizeinrichtung, insbesondere zur durchfuehrung des verfahrens
DE3149183A1 (de) * 1981-12-11 1983-06-30 Otto 2880 Brake Janßen Heizanlage
US4409796A (en) * 1982-03-05 1983-10-18 Rutherford C. Lake, Jr. Reversible cycle heating and cooling system
SE455880B (sv) * 1982-04-14 1988-08-15 Graenges Aluminium Ab Vermeanleggning innefattande en vermepanna, vermepump, vermevexlare for att utvinna verme ur rokgas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222335A (zh) * 2014-06-18 2016-01-06 郭洪雨 回收烟气热泵设备

Also Published As

Publication number Publication date
ATE33707T1 (de) 1988-05-15
DE3470595D1 (en) 1988-05-26
EP0159379A1 (de) 1985-10-30

Similar Documents

Publication Publication Date Title
EP2342511B1 (de) Haushaltskältegerät sowie haushaltskältegerät-modulanordnung
EP1606564B1 (de) Verfahren und vorrichtung zur energierückgewinnung
EP0159379B1 (de) Wärmepumpenheizvorrichtung mit Rauch- oder Abgaskühler
DE112013002432T5 (de) Vorrichtung zur Steuerung der Kühlleistung, Prüfgerät und die Vorrichtung verwendendes Kühlsteuerungsverfahren
DE102005048660A1 (de) Vorrichtung und Verfahren zur Regulierung der Temperatur der Fahrgastzelle eines Kraftfahrzeugs
DE3601973A1 (de) Vorrichtung zum klimatisieren eines wintergartens
EP3165838B1 (de) Vorrichtung zum belüften von räumen
WO2011086036A1 (de) Wärmeübertrageranordnung
CH693466A5 (de) Raumluft- und wärmetechnische Vorrichtung.
DE102010014431B4 (de) Verfahren und Vorrichtung zur Nutzung der Wärmeenergieresourcen eines Gebäudes
DE10323287A1 (de) Verfahren und Vorrichtung zur Energierückgewinnung
DE3834440C2 (de) Vorrichtung mit Wärmerückgewinnung zur Be- und Entlüftung von Räumen mit Wärmeüberschuß
CH623915A5 (en) Hot-water circulating heating system
AT411190B (de) Heizanlage und/oder kühlanlage mit mindestens einer wärmequelle
EP0029219A2 (de) Einrichtung zur Erzeugung von Heisswasser mittels einer Wärmepumpe und Verfahren zum Betreiben dieser Einrichtung
EP2837275B1 (de) Kühlgerät für einen schaltschrank sowie ein entsprechendes verfahren
DE102013102347A1 (de) Raumlufttechnische Baugruppe
DE10315802B4 (de) Anordnung zur Versorgung von Räumen eines Gebäudes mit temperierter Luft
DE2954402C2 (de)
EP1348911B1 (de) Luftaufbereitungsgerät zur Regulierung der Wärme und der Luftfeuchtigkeit in geschlossenen Räumen
DE2721521A1 (de) Vorrichtung zum abtauen eines kuehlsystems
DE3607356C2 (de)
DE3736133C2 (de) Lufterwärmungseinheit zur frost- und vereisungssicheren Erwärmung von Außenluft, bei welcher der Außenluft erwärmte Luft beigemischt wird
DE102016202568A1 (de) Kältegerät mit beheizbarer Lagerkammer
EP3425300B1 (de) Verfahren zur klimatisierung eines gebäudes und ein gebäude mit einer vorrichtung zur durchführung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROSENOW, ALBERT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSENOW, ALBERT

17P Request for examination filed

Effective date: 19860409

17Q First examination report despatched

Effective date: 19860709

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880420

Ref country code: LI

Effective date: 19880420

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19880420

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19880420

Ref country code: CH

Effective date: 19880420

Ref country code: BE

Effective date: 19880420

REF Corresponds to:

Ref document number: 33707

Country of ref document: AT

Date of ref document: 19880515

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880430

REF Corresponds to:

Ref document number: 3470595

Country of ref document: DE

Date of ref document: 19880526

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900921

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920201

EUG Se: european patent has lapsed

Ref document number: 84104616.2

Effective date: 19890621