EP0156702A1 - Installation de production de froid à moyen de stockage et de destockage du travail des motocompresseurs - Google Patents

Installation de production de froid à moyen de stockage et de destockage du travail des motocompresseurs Download PDF

Info

Publication number
EP0156702A1
EP0156702A1 EP85400399A EP85400399A EP0156702A1 EP 0156702 A1 EP0156702 A1 EP 0156702A1 EP 85400399 A EP85400399 A EP 85400399A EP 85400399 A EP85400399 A EP 85400399A EP 0156702 A1 EP0156702 A1 EP 0156702A1
Authority
EP
European Patent Office
Prior art keywords
compressors
motor
cold
exchanger
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85400399A
Other languages
German (de)
English (en)
Other versions
EP0156702B1 (fr
Inventor
Alain Laude Bousquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bonnet Refrigeration
Original Assignee
Bonnet Refrigeration
Bonnet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bonnet Refrigeration, Bonnet SA filed Critical Bonnet Refrigeration
Publication of EP0156702A1 publication Critical patent/EP0156702A1/fr
Application granted granted Critical
Publication of EP0156702B1 publication Critical patent/EP0156702B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container

Definitions

  • the present invention relates to a cold production installation by means of storage and destocking of the work of motor-compressors.
  • the known cold production installations with multi-compressors are usually installations comprising several motor-compressors mounted in parallel, either of identical powers or of different powers.
  • the compressors have either an identical power each representing 25% of the total power of the installation and allowing four combinations giving respectively 25%, 50%, 75%, 100% of this total power or different powers each representing a fraction of the total power of the installation, for example 15%, 20%, 30%, 50%, and making it possible to obtain twelve combinations, a number of combinations greater than that of the case precedent to give powers that are as close as possible to the requested refrigeration needs expressed in equivalent power of motor-compressors started to meet these needs.
  • the present invention makes it possible, by providing an excellent solution to these problems of wasting electrical energy and of good management of this energy in the production of cold, to produce an economic installation for producing cold, constantly working according to an operation and a yield. optimum with optimal low pressure at the inlet of its motor-compressors.
  • a cold production installation having in its refrigeration circuit, several motor-compressors mounted in parallel, sucking refrigerant from a liquid refrigerant tank and expanded in cold stations, compressing it and discharging it into a condenser then turning it over in this liquid refrigerant tank, and an assembly for storing the work of the motor compressors by constituting a reserve of refrigerating or cold energy in the form of ice or of a cooled or frozen eutectic mixture called accumulator fluid and destocking of this reserve of refrigerating energy or accumulated cold or accumulating fluid mounted between a common suction manifold of these motor compressors and the outlet of this liquid refrigerant tank, upstream of these cold stations, is characterized in that the assembly storage and destocking of the work of the motor-compressors includes a "exchanger-fluid accumulator-under cooler" dan s which the exchanger or evaporator and the sub-cooler both operate continuously during the operation of the installation by receiving
  • This cold production installation comprises several motor-compressors mounted in parallel which can either be motor-compressors of identical powers or motor-compressors of different powers, or a combination of these two types of motor-compressors.
  • the cold production installation 1 comprises in its refrigeration circuit four motor compressors of identical powers 2 each representing 25% of their total power and mounted in parallel, a common suction manifold 3, a common delivery manifold 4, a condenser 5, a liquid refrigerant tank 6, cold stations 7 mounted in parallel in which the supplied cold is intended to maintain premises or furniture at predetermined temperatures where products to be stored are stored, the regulators and the evaporators fitted to these cold stations are not shown.
  • the installation 1 comprises an assembly 8 for storing the work of the motor compressors 2 by constituting a reserve of refrigerating or cold energy in the form of ice or of a cooled or frozen eutectic mixture called accumulator fluid, and of destocking. of this reserve of refrigerating energy or accumulated cold or accumulating fluid, disposed between the common suction manifold 3 of the motor compressors 2 and the outlet of the liquid refrigerant tank 6, upstream of the cold stations 7.
  • the set for storing and removing the work of the motor-compressors 8 comprises an "exchanger-accumulator-sub-cooler fluid" 9, an expansion valve 12, solenoid valves or valves for controlling the supply of refrigerant 10, 11 and a solenoid valve or pressostatic downstream regulation 13.
  • the exchanger-accumulator-sub-cooler 9 consists of an evaporator or exchanger coil 14, a sub-cooling coil of liquid refrigerant or sub-cooler exchanger called sub-cooler 15, and a tank 16 filled with a eutectic mixture or water called accumulator fluid 17 in which these coils 14 and 15 are immersed.
  • the regulator 12 mounted at the inlet of the evaporator coil 14 and the downstream control valve 13 is connected between the outlet of this evaporator coil 14 and the inlet of the common suction manifold 3 of the motor compressors 2.
  • the first control valve d coolant supply 10 connects the inlet of the coolant sub-cooling coil 15 to the inlet of the evaporator coil 14, upstream of the expansion valve 12, while the second control valve 11 communicates the outlet of the sub-coil cooling of coolant 15 with the inlet of the evaporator coil 14, upstream of the expansion valve 12.
  • the evaporator or exchanger coil 14 is, in its operation, intended to cool or freeze the eutectic mixture or the water 17 of the tank 16 by storing or accumulating therein cold or cooling energy.
  • sub-cooler 15 is, in its operation intended to cool the liquid refrigerant which passes through it before going to relax in the cold stations 7, which makes it possible to increase the cooling efficiency of the installation.
  • the liquid refrigerant then transfers the heat to the eutectic mixture or to the water or accumulator fluid 17.
  • the vapor of the refrigerant expanded in the cold stations 7 is sucked through the common suction manifold 3 by the motor compressors 2 then compressed and discharged by them through their common discharge manifold 4 in the condenser 5 where the compressed hot refrigerant turns into liquid which will accumulate in the liquid refrigerant tank 6.
  • the hot liquid refrigerant leaving the tank passes through the coil of under cooling 15 to cool before going to relax in the cold stations 7 to provide the required cold.
  • the vapor of the refrigerant expanded in these cold stations is sucked by the motor compressors2 through the common suction manifold 3 and a new operating cycle of the installation begins again.
  • the first control valve for the refrigerant supply 10 is open, and the second control valve 11 is closed.
  • the hot liquid refrigerant leaving the liquid refrigerant tank 6 is then divided into two parts, a first part passing through the first supply control valve 10 and the expansion valve 12 and expanding in the evaporator coil 14 to cool or freeze the eutectic mixture or the water 17 of the tank 16 and constitute a cold reserve therein or store cold, before crossing the downstream regulating valve 13 and entering the common suction manifold 3, and a second part passing through sant the cold stations 7 and relaxing there to produce cold in order to satisfy the demanded cold needs, before entering the common suction manifold 3 of the compressors 2.
  • the downstream regulating valve 13 at point of adjustable setpoint contributes to keeping the evaporation pressure of the refrigerant at suction constant, in other words the low pressure in the refrigeration circuit of the installation 1, the high pressure being the pressure of the hot compressed refrigerant, discharged by the motor-compressors.
  • the downstream regulation valve 13 is preferably chosen from the valves of the type controlled by the high pressure, illustrated in the drawing so that its operation is relatively more flexible and its reactions faster than those of simple downstream regulation valves.
  • the downstream regulating valve 13 can be motorized to automatically change its set point. In this way, the low pressure adjustment threshold of the refrigeration circuit of installation 1 can be varied and permanently adjusted to the optimal economic value.
  • the cold requirements demanded by the cold stations 7 represent for example 55% of the total power of the compressors and that a reserve of cold in the whole storage and destocking of the work of the compressors 8 has been constituted, only two motor compressors 2 which give a total of 50% of this total power can be started, and the 5% of the power of the missing motor compressors is compensated by a destocking of the cold reserve in assembly 8.
  • the first refrigerant supply control valve 10 is closed and the second control valve 11 is open.
  • the hot refrigerant leaving the reservoir 6 passes through the sub-cooling coil 15 to cool and is then divided into two parts, a first part passing through the cold stations 7 to supply cold therein in order to satisfy the cold requirements demanded before enter the common suction manifold 3, a second part passing through the second supply control valve 11 and the regulator 12, and expanding into the coil 14 to cool the eutectic mixture 7 before passing through the downstream control valve 13 and entering the common suction manifold 3 of the compressors.
  • the amount of cold produced in this case by the evaporator coil 14 is less than that removed by the coil under cooler 15 and a destocking of the cold reserve in the assembly 8, which results in a heating of the eutectic mixture or l water 17, thus takes place.
  • Such a destocking of the cold reserve in the assembly 8 makes it possible, through good regulation of the evaporation pressure of the refrigerant at the inlet of the motor compressors, to obtain correct operation of the installation with only two motor compressors which do not represent that 50% of the total power of the two compressors to meet cooling requirements evaluated in equivalent power of compressors at 55% of this total power.
  • the price of distributed electrical energy usually varies according to the hours of use. This rate is high during peak hours when energy demand is high, and low during off-peak hours when such demand is low.
  • a cold production installation in particular that supplying cold to the refrigerated premises and furniture of a food business, normally requires a large consumption of electrical energy during opening hours when the price of the distributed electrical energy is usually high, and a low consumption of this energy during the closing hours when the price of the latter is low.
  • the cost of maintaining the required temperatures of these refrigerated rooms and furniture by a known installation for producing cold is therefore relatively high.
  • the installation produced according to the invention makes it possible to avoid these disadvantages, by operating the compressor 2 as much as possible during the hours when the price of the distributed electrical energy is low or economical and by storing by building up a reserve.
  • a cold production installation 1 by its capacity for storing the work of the compressors in the form of a cold reserve, as a whole 8 can be produced advantageously with a total power of motor-compressors lower than that of a known installation built to meet the same cold needs and which is unable to store the work of its motor-compressors.
  • the cold production installation produced according to the invention is therefore particularly economical.
  • the cold production installation 1 can be controlled by any control assembly of known types not shown to trigger the opening of the first control valve for the supply of refrigerant 10 and the closing of the second control valve during a storage of the work of the motor compressors by constitution of a reserve of refrigerating energy in the form of ice or eutectic mixture cooled or frozen in the assembly 8, then the closing of the first control valve 10 and the opening of the second control valve 11 during a destocking of this cold reserve in the assembly 8, and if necessary modify the set point of the downstream regulating valve 13 to constantly obtain optimal operation of the installation lation with optimal low pressure at the inlet of the motor compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Une installation de production de froid ayant plusieurs motocompresseurs (2) montés en parallèle, aspirant du réfrigérant venant d'un réservoir de réfrigérant liquide (6) et détendu dans les postes de froid (7), le comprimant et le refoulant dans ce réservoir (6), comprend dans son circuit frigorifique un ensemble (8) de stockage du travail des motocompresseurs par constitution d'une réserve de l'énergie frigorifique ou de froid sous forme de glace ou de mélange eutectique refroidi ou congelé appelé fluide accumulateur et de déstockage de cette réserve ou fluide accumulateur, monté entre le collecteur commun d'aspiration (3) des motocompresseurs (2) et la sortie du réservoir de réfrigérant liquide (6), en amont de ces postes de froid (7), le déstockage étant effectué par le sous-refroidissement du réfrigérant à l'état liquide et le réchauffement du fluide accumulateur.

Description

  • La présente invention concerne une installation de production de froid à moyen de stockage et de déstockage du travail des motocompresseurs. Les installations de production de froid connues à multimotocompresseurs sont habituellement des installations comportant plusieurs motocompresseurs montés en parallèle, soit de puissances identiques soit de puissances différentes. Par exemple dans une installation de froid à quatre motocompresseurs, les motocompresseurs ont soit une puissance identique représentant chacune 25% de la puissance totale de l'installation et permettant quatre combinaisons donnant respectivement 25%, 50%, 75%, 100%, de cette puissance totale soit des puissances différentes représentant chacune une fraction de la puissance totale de l'installation par exemple 15%, 20%, 30%, 50%, et permettant d'obtenir douze combinaisons, un nombre de combinaisons plus grand que celui du cas précédent pour donner des puissances qui se rapprochent au plus près des besoins frigorifiques demandés exprimés en puissance équivalente de motocompresseurs mis en marche pour satisfaire ces besoins.
  • Il est constaté que pour un besoin frigorifique demandé à un moment donné correspondant par exemple à 40% de la puissance de l'installation, dans le cas ci-dessus de motocompresseurs à puissances identiques, deux motocompresseurs representant respectivement 25% de la puissance totale soit un total de 50% de cette puissance doivent être mis en marche et dans le cas de motocompresseurs à puissances différentes deux motocompresseurs représentant respectivement 15% et 30% de la puissance totale soit un total de 45% de cette puissance doivent être mis en marche.
  • Il en résulte que le travail mis en jeu inutilement dans le cas des motocompresseurs à puissances identiques est de 10% et dans le cas des motocompresseurs à puissances différentes est de 5%.
  • Une autre constatation faite est que dans un commerce de produits alimentaires la demande de froid est relativement importante pendant les heures d'ouverture c'est à dire le jour, et faible pendant les heures de fermeture c'est à dire la nuit. Or le tarif de fourniture de l'énergie électrique est habituellement plus élevé durant le jour que celui durant la nuit.Les installations connues de production de froid sont incapables de régler leur fonctionnement en fonction du tarif de distribution de l'énergie électrique.
  • La présente invention permet, en apportant une excellente solution à ces problèmes de gaspillage d'énergie électrique et de bonne gestion de cette énergie dans la production de froid, de réaliser une installation de production de froid économique, travaillant constamment selon un fonctionnement et un rendement optimum avec une basse pression optimale à l'entrée de ses motocompresseurs.
  • Selon l'invention, une installation de production de froid ayant dans son circuit frigorifique, plusieurs motocompresseurs montés en parallèle, aspirant du réfrigérant venant d'un réservoir de réfrigérant liquide et détendu dans des postes de froid, le comprimant et le refoulant dans un condenseur puis le retournant dans ce réservoir de réfrigérant liquide, et un ensemble de stockage du travail des motocompresseurs par constitution d'une réserve d'énergie frigorifique ou de froid sous forme de glace ou de mélange eutectique refroidi ou congelé appelé fluide accumulateur et de déstockage de cette réserve d'énergie frigorifique ou de froid accumulée ou fluide accumulateur monté entre un collecteur commun d'aspiration de ces motocompresseurs et la sortie de ce réservoir de réfrigérant liquide, en amont de ces postes de froid, est caractérisée en ce que l'ensemble de stockage et de déstockage du travail des motocompresseurs comprend un "échangeur-fluide accumulateur-sous refroidisseur" dans lequel l'échangeur ou évaporateur et le sous-refroidisseur fonctionnent tous les deux en continu durant la marche de l'installation en recevant dans les deux en continu du réfrigérant liquide venant du réservoir de réfrigérant liquide.
  • Pour mieux faire comprendre l'invention, on décrit ci-après un exemple de réalisation illustré par un dessin ci-annexé qui représente un schéma du circuit frigorifique d'une installation de production de froid réalisée selon l'invention.
  • Cette installation de production de froid comprend plusieurs motocompresseurs montés en parallèle qui peuvent être soit des motocompresseurs de puissances identiques soit des motocompresseurs de puissances différentes, soit une combinaison de ces deux types de motocompresseurs.
  • Dans l'exemple illustré l'installation de production de froid 1 comprend dans son circuit frigorifique quatre motocompresseurs de puissances identiques 2 représentant chacun 25% de leur puissance totale et montés en parallèle, un collecteur commun d'aspiration 3, un collecteur commun de refoulement 4, un condenseur 5, un réservoir de réfrigérant liquide 6, des postes de froid 7 montés en parallèle dans lesquels le froid fourni est destiné à maintenir à des températures prédéterminées des locaux ou meubles où sont entreposés des produits à conserver, les détendeurs et les évaporateurs équipant ces postes de froid ne sont pas représentés.
  • Selon une caractéristique importante l'installation 1 comprend un ensemble 8 de stockage du travail des motocompresseurs 2 par constitution d'une réserve d'énergie frigorifique ou de froid sous forme de glace ou de mélange eutectique refroidi ou congelé appelé fluide accumulateur, et de déstockage de cette réserve d'énergie frigorifique ou de froid accumulé ou fluide accumulateur, disposé entre le collecteur commun d'aspiration 3 des motocompresseurs 2 et la sortie du réservoir de réfrigérant liquide 6, en amont des postes de froid 7.
  • L'ensemble de stockage et déstockage du travail des motocompresseurs 8 comprend un "échangeur-fluide accumulateur-sous refroidisseur" 9, un détendeur 12, des électrovannes ou vannes de commande d'alimentation en réfrigérant 10, 11 et une électrovanne ou vanne pressostatique à régulation aval 13.
  • L'échangeur-accumulateur-sous-refroidisseur 9 est constitué par un serpentin évaporateur ou échangeur 14, un serpentin de sous-refroidissement de réfrigérant liquide ou échangeur sous-refroidisseur appelé sous-refroidisseur 15, et une cuve 16 remplie d'un mélange eutectique ou de l'eau appelé fluide accumulateur 17 dans lequel ou laquelle sont immergés ces serpentins 14 et 15.
  • Le détendeur 12 monté à l'entrée du serpentin évaporateur 14 et la vanne à régulation aval 13 est branchée entre la sortie de ce serpentin évaporateur 14 et l'entrée du collecteur commun d'aspiration 3 des motocompresseurs 2. La première vanne de commande d'alimentation en réfrigérant 10 relie l'entrée du serpentin de sous refroidissement de liquide réfrigérant 15 à l'entrée du serpentin évaporateur 14, en amont du détendeur 12, tandis que la deuxième vanne de commande 11 met en communication la sortie du serpentin de sous refroidissement de liquide réfrigérant 15 avec l'entrée du serpentin évaporateur 14, en amont du détendeur 12.
  • Le serpentin évaporateur ou échangeur 14 est, dans son fonctionnement, destiné à refroidir ou congeler le mélange eutectique ou l'eau 17 de la cuve 16 en y emmagasinant ou accumulant du froid ou de l'énergie frigorifique.
  • Le serpentin de sous-refroidissement appelé sous-refroidisseur 15 est, dans son fonctionnement destiné à refroidir le réfrigérant liquide qui le traverse avant d'aller se détendre dans les postes de froid 7, ce qui permet d'augmenter le rendement frigorifique de l'installation . Le réfrigérant liquide cède alors la chaleur au mélange eutectique ou à l'eau ou fluide accumulateur 17.
  • Dans le fonctionnement de l'installation de production de froid 1, la vapeur du réfrigérant détendu dans les postes de froid 7 est aspiré à travers le collecteur commun d'aspiration 3 par les motocompresseurs 2 puis comprimée et refoulée par ceux-ci à travers leur collecteur commun de refoulement 4 dans le condenseur 5 où le réfrigérant chaud comprimé se transforme en liquide qui va s'accumuler dans le réservoir à réfrigérant liquide 6. Le réfrigérant liquide chaud sortant du réservoir traverse le serpentin de sous refroidissement 15 pour se refroidir avant d'aller se détendre dans les postes de froid 7 pour y fournir du froid demandé. La vapeur du réfrigérant détendu dans ces postes de froid est aspirée par les motocompresseurs2 à travers le collecteur commun d'aspiration 3 et un nouveau cycle de fonctionnement de l'installation recommence.
  • Quand les besoins en froid demandés à un moment donné par les postes de froid 7, représentent 40% par exemple de la puissance totale des motocompresseurs 2, deux des motocompresseurs 2 à puissances identiques qui, chacun représentant 25% de leur puissance totale, donnent un total de 50% de cette puissance totale, sont alors mis en marche.
  • Une constatation a été faite dans un paragraphe précédent que dans un tel cas 10% d'excès de puissance ou de travail inutile fourni par les motocompresseurs sont ainsi mis en jeu. Cependant dans l'installation de production de froid 1 de l'invention, ces 10% d'excès de puissance ou de travail éxcédentaire des motocompresseurs sont stockés par constitution d'une réserve d'énergie frigorifique ou de froid sous forme de glace ou de mélange eutectique refroidi ou congelé dans l'ensemble de stockage et de déstockage du travail des motocompresseurs 8. Cette réserve de froid sera déstockée lors d'une compensation de la puissance insuffisante des motocompresseurs mis en marche pour obtenir une bonne gestion de l'énergie électrique de l'installation.
  • Pour cet effet la première vanne de commande de l'alimentation en réfrigérant 10 est ouverte, et la deuxième vanne de commande 11 est fermée.
  • Le réfrigérant liquide chaud sortant du réservoir de réfrigérant liquide 6 se divise alors en deux parties, une première partie traversant la première vanne de commande d'alimentation 10 et le détendeur 12 et se détendant dans le serpentin évaporateur 14 pour refroidir ou congeler le mélange eutectique ou l'eau 17 de la cuve 16 et y constituer une réserve de froid ou stocker du froid, avant de traverser la vanne à régulation aval 13 et de pénétrer dans le collecteur commun d'aspiration 3, et une deuxième partie traversant les postes de froid 7 et s'y détendant pour y produire du froid afin de satisfaire les besoins en froid demandés, avant d'entrer dans le collecteur commun d'aspiration 3 des motocompresseurs 2. La vanne à régulation aval 13 à point de consigne réglable contribue à maintenir constante la pression d'évaporation du réfrigérant à l'aspiration autrement dit la basse pression dans le circuit frigorifique de l'installation 1, la haute pression étant la pression du réfrigérant comprimé chaud, refoulé par les motocompresseurs. La vanne de régulation aval 13 est de préférence choisie parmi les vannes du type piloté par la haute pression, illustré dans le dessin pour que son fonctionnement soit relativement plus souple et ses réactions plus rapides que ceux des vannes à régulation aval simples. La vanne à régulation aval 13 peut-être motorisée pour changer de façon automatique son point de consigne. Par ce biais le seuil de réglage de la basse pression du circuit frigorifique de l'installation 1 peut être varié et ajusté en permanence à la valeur optimale économique.
  • Quand les besoins en froid demandés par les postes de froid 7 représentent par exemple 55% de la puissance totale des motocompresseurs et qu'une réserve de froid dans l'ensemble du stockage et de déstockage du travail des motocompresseurs 8 a été constituée, deux seulement des motocompresseurs 2 qui donnent un total de 50% de cette puissance totale peuvent être mis en marche, et les 5% de la puissance des motocompresseurs manquants sont compensés par un déstockage de la réserve de froid dans l'ensemble 8. Pour cet effet, la première vanne de commande d'alimentation en réfrigérant 10 est fermée et la deuxième vanne de commande 11 est ouverte. Le réfrigérant chaud sortant du réservoir 6 traverse le serpentin sous-refroidisseur 15 pour se refroidir et se divise ensuite en deux parties, une première partie traversant les postes de froid 7 pour y fournir du froid afin de satisfaire les besoins en froid demandés avant d'entrer dans le collecteur commun d'aspiration 3, une deuxième partie traversant la deuxième vanne de commande d'alimentation 11 et le détendeur 12, et se détendant dans le serpentin 14 pour refroidir le mélange eutectique 7 avant de traverser la vanne à régulation aval 13 et d'entrer dans le collecteur commun d'aspiration 3 des motocompresseurs. La quantité de froid produit dans ce cas par le serpentin évaporateur 14 est inférieure à celle enlevée par le serpentin sous refroidisseur 15 et un déstockage de la réserve de froid dans l'ensemble 8, qui se traduit par un réchauffement du mélange eutectique ou de l'eau 17, a ainsi lieu. Un tel déstockage de la réserve de froid dans l'ensemble 8 permet à travers une bonne régulation de la pression d'évaporation du réfrigérant à l'entrée des motocompresseurs, d'obtenir un bon fonctionnement de l'installation avec seulement deux motocompresseurs qui ne représentent que 50% de la puissance totale des deux motocompresseurs pour répondre à des besoins en froid évalués en puissance équivalente de motocompresseurs à 55% de cette puissance totale.
  • Par ailleurs le tarif de l'énergie électrique distribuée varie habituellement selon les heures d'utilisation. Ce tarif est élevé aux heures de pointe où la demande en énergie est importante, et bas aux heures creuses où une telle demande est faible.
  • Une installation de production de froid notamment celle alimentant en froid les locaux et meubles frigorifiques d'un commerce alimentaire, exige normalement une grande consommation d'énergie électrique pendant les heures d'ouverture où le tarif de l'énergie électrique distribuée est habituellement élevé, et une faible consommation de cette énergie durant les heures de fermeture où le tarif de celle-ci est bas. Le coût de maintien en températures requises de ces locaux et meubles frigorifiques par une installation connue de production de froid est de ce fait relativement elevé.
  • L'installation réalisée selon l'invention permet par contre d'éviter ces désavantages, en faisant fonctionner au maximum les motocompresseurs 2 pendant les heures où le tarif de l'énergie électrique distribuée est bas ou économique et en stockant par constitution d'une réserve d'énergie frigorifique de froid sous forme de glace ou de mélange eutectique refroidi ou congelé dans l'ensemble 8 le travail des motocompresseurs excédant les faibles besoins immédiats en froid demandés, et en faisant travailler au minimum les motocompresseurs durant les heures ou le tarif de l'énergie électrique distribué est élevé et en répondant correctement aux grands besoins immédiats en froid demandés par ce travail minimal des motocompresseurs et par prélèvement des compléments en énergie frigorifique par déstockage de la réserve de froid dans l'ensemble 8 constitué sous forme de glace ou de mélange eutectique refroidi ou congelé.
  • Une bonne gestion de l'énergie électrique peut ainsi être réalisée dans le fonctionnement de l'installation de l'invention de production de froid 1.
  • Pour répondre correctement à des besoins en froid préétablis dans des heures prédeterminées de la journée, une installation de production de froid 1, par sa capacité de stockage du travail des motocompresseurs sous forme d'une réserve de froid, dans son ensemble 8 peut être réalisée avantageusement avec une puissance totale de motocompresseurs inférieure à celle d'une installation connue construite pour répondre aux mêmes besoins de froid et qui est incapable de stocker du travail de ses motocompresseurs.
  • L'installation de production de froid réalisée selon l'invention est donc particulièrement économique.
  • L'installation de production de froid 1 peut être commandée par tous ensembles de commande de types connus non représentés pour déclencher l'ouverture de la première vanne de commande d'alimentation en réfrigérant 10 et la fermeture de la deuxième vanne de commande lors d'un stockage du travail des motocompresseurs par constitution d'une réserve d'énergie frigorifique sous forme de glace ou de mélange eutectique refroidi ou congelé dans l'ensemble 8, puis la fermeture de la première vanne de commande 10 et l'ouverture de la deuxième vanne de commande 11 lors d'un déstockage de cette réserve de froid dans l'ensemble 8, et modifier le cas échéant le point de consigne de la vanne à régulation aval 13 pour obtenir constamment un fonctionnement optimal de l'installation avec une pression optimale basse pression à l'entrée des motocompresseurs.
  • Quand l'installation de production de froid 1 est réalisé avec des motocompresseurs de puissances différentes, son fonctionnement reste analogue à celui de l'exemple illustré décrit ci-dessus dans lequel les motocompresseurs 2 ont des puissances identiques.

Claims (6)

1. Installation de production de froid ayant dans son circuit frigorifique, plusieurs motocompresseurs (2) montés en parallèle, aspirant du réfrigérant venant d'un réservoir de réfrigérant liquide (6) et détendu dans des postes de froid (7), le comprimant et le refoulant dans un condenseur (5), puis le retournant dans ce réservoir de réfrigérant liquide (6), et un ensemble (8) de stockage du travail des motocompresseurs par constitution d'une réserve d'énergie frigorifique ou de froid sous forme de glace ou de mélange eutectique refroidi ou congelé appelé fluide accumulateur (17) et de déstockage de cette réserve d'énergie frigorifique ou de froid accumulée ou fluide accumulateur (I7) monté entre un collecteur commun d'aspiration (3) de ces motocompresseurs (2) et la sortie de ce réservoir de réfrigérant liquide (6), en amont de ces postes de froid (7) caractérisée en ce que l'ensemble de stockage et de déstockage du travail des motocompresseurs (8) comprend un "échangeur-fluide accumulateur - sous-refroidisseur" (9) dans lequel l'échangeur ou évaporateur (14) et le sous-refroidisseur (15) fonctionnent tous les deux en continu durant la marche de l'installation en recevant dans les deux, en continu, du réfrigérant liquide venant du réservoir de réfrigérant liquide (6).
2. Installation selon la revendication 1, caractérisée en ce que l'ensemble de stockage et de déstockage du travail des motocompresseurs (8) comprend deux vannes (10, 11) de commande sélective d'alimentation de l'échangeur ou évaporateur (14) en réfrigérant liquide, l'une (10) pour l'alimenter avec du réfrigérant venant directement du réservoir (6), et l'autre (11) pour l'alimenter avec du réfrigérant sortant du sous-refroidisseur (15).
3. Installation selon l'une des revendications 1 et 2, caractérisée en ce que l'ensemble de stockage et de déstockage du travail des motocompresseurs (8) comprend au niveau de I"'échangeur-fluide accumulateur - sous réfroidisseur" (9), un détendeur (12) à l'entrée de réchangeur ou évaporateur (14), et une vanne pressostatique à régulation aval (13), en aval de cet échangeur ou évaporateur (14).
4. Installation selon l'une des revendications 1 à 3, caractérisée en ce que, dans l"'échangeur-fluide accumulateur-sous refroidisseur" (9) de l'ensemble de stockage et de déstockage du travail des motocompresseurs (8), le fluide accumulateur (17) est constitué par un mélange eutectique ou de l'eau tandis que l'échangeur et le sous-refroidisseur (14,15) sont constitués par des serpentins immergés dans ce fluide accumulateur (17).
5. Installation selon la revendication 3, caractérisée en ce que dans l'ensemble de stockage et de déstockage du travail de motocompresseurs (8), la vanne pressostatique à régulation aval (13) est une vanne pressostatique pilotée par la haute pression du circuit frigorifique de l'installation (1).
6. Installation selon la revendication 5, caractérisée en ce que durant un stockage volontaire du travail des motocompresseurs, la première vanne d'alimentation en réfrigérant (10) est ouverte et la deuxième vanne d'alimentation en réfrigérant (11) est fermée tandis que lors d'un déstockage volontaire de la réserve de l'énergie frigorifique constituée, la première vanne d'alimentation en réfrigérant (10) est fermée et la deuxième vanne d'alimentation en réfrigérant (11) est ouverte.
EP85400399A 1984-03-06 1985-03-01 Installation de production de froid à moyen de stockage et de destockage du travail des motocompresseurs Expired EP0156702B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8403423A FR2560974B1 (fr) 1984-03-06 1984-03-06 Installation de production de froid a moyen de stockage et de destockage du travail des motocompresseurs
FR8403423 1984-03-06

Publications (2)

Publication Number Publication Date
EP0156702A1 true EP0156702A1 (fr) 1985-10-02
EP0156702B1 EP0156702B1 (fr) 1988-05-18

Family

ID=9301729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400399A Expired EP0156702B1 (fr) 1984-03-06 1985-03-01 Installation de production de froid à moyen de stockage et de destockage du travail des motocompresseurs

Country Status (2)

Country Link
EP (1) EP0156702B1 (fr)
FR (1) FR2560974B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631510A (zh) * 2017-10-19 2018-01-26 天津商业大学 基于余压回收的co2中低温冷冻冷藏系统
CN109579336A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 冰箱降噪制冷系统及具有该系统的冰箱
CN109579334A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 低噪音制冷系统及具有该系统的冰箱
CN109579335A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 制冷系统及具有该系统的冰箱
EP3667201A1 (fr) * 2018-12-13 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Système de production de froid comprenant une machine à compression, une machine à absorption et un système de stockage thermique assurant leur couplage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100028400A1 (it) * 2021-11-08 2023-05-08 Rtp S R L S Impianto di refrigerazione

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2096065A (en) * 1932-03-23 1937-10-19 Ruppricht Siegfried Refrigerating system
US2185022A (en) * 1935-07-31 1939-12-26 Gen Motors Corp Refrigerating apparatus
DE723053C (de) * 1940-05-17 1942-07-27 Bergedorfer Eisenwerk Ag Verfahren und Einrichtung zum Tiefkuehlen
US2707869A (en) * 1955-05-10 dennison
DE1015019B (de) * 1953-06-11 1957-09-05 Ideal Standard Kaelteanlage fuer direkte Verdampfung mit Speicherung
FR2341109A1 (fr) * 1976-02-13 1977-09-09 Doomernik Cornelis Accumulateur de froid
DE3019471A1 (de) * 1980-05-21 1981-11-26 Hellmut 7413 Gomaringen Dinkel Verfahren zum anheben von waermeenergie auf ein hoeheres temperaturniveau sowie vorrichtung zur durchfuehrung des verfahrens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707869A (en) * 1955-05-10 dennison
US2096065A (en) * 1932-03-23 1937-10-19 Ruppricht Siegfried Refrigerating system
US2185022A (en) * 1935-07-31 1939-12-26 Gen Motors Corp Refrigerating apparatus
DE723053C (de) * 1940-05-17 1942-07-27 Bergedorfer Eisenwerk Ag Verfahren und Einrichtung zum Tiefkuehlen
DE1015019B (de) * 1953-06-11 1957-09-05 Ideal Standard Kaelteanlage fuer direkte Verdampfung mit Speicherung
FR2341109A1 (fr) * 1976-02-13 1977-09-09 Doomernik Cornelis Accumulateur de froid
DE3019471A1 (de) * 1980-05-21 1981-11-26 Hellmut 7413 Gomaringen Dinkel Verfahren zum anheben von waermeenergie auf ein hoeheres temperaturniveau sowie vorrichtung zur durchfuehrung des verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRANSACTIONS A.S.M.E. SERIE A: JOURNAL OF ENGINEERING FOR POWER, vol. 96, no. 3, juillet 1974; J.C. DUDLEY et al.: "Power reduction in air conditioning by means of off-peak operation and coolness storage" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631510A (zh) * 2017-10-19 2018-01-26 天津商业大学 基于余压回收的co2中低温冷冻冷藏系统
CN109579336A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 冰箱降噪制冷系统及具有该系统的冰箱
CN109579334A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 低噪音制冷系统及具有该系统的冰箱
CN109579335A (zh) * 2018-10-26 2019-04-05 青岛海尔股份有限公司 制冷系统及具有该系统的冰箱
CN109579336B (zh) * 2018-10-26 2022-05-20 海尔智家股份有限公司 冰箱降噪制冷系统及具有该系统的冰箱
EP3667201A1 (fr) * 2018-12-13 2020-06-17 Commissariat à l'Energie Atomique et aux Energies Alternatives Système de production de froid comprenant une machine à compression, une machine à absorption et un système de stockage thermique assurant leur couplage

Also Published As

Publication number Publication date
FR2560974B1 (fr) 1987-02-27
EP0156702B1 (fr) 1988-05-18
FR2560974A1 (fr) 1985-09-13

Similar Documents

Publication Publication Date Title
US7827807B2 (en) Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
US7363772B2 (en) Thermal energy storage and cooling system with secondary refrigerant isolation
US20090205345A1 (en) Thermal energy storage and cooling system utilizing multiple refrigerant and cooling loops with a common evaporator coil
FR2611383A1 (fr) Appareils de refrigeration utilisant un materiau d'accumulation de froid
CA2058720A1 (fr) Appareil de conditionnement d'air multimodal et systeme d'emmagasinage de l'energie negative
US2720084A (en) Energy storage for air conditioning systems
JPH0771829A (ja) 蓄熱装置を有する液体冷凍回路の予備冷却装置及び比例制御装置
EP0125944A2 (fr) Ensemble frigorifique à compartimets à températures différentes
EP0156702B1 (fr) Installation de production de froid à moyen de stockage et de destockage du travail des motocompresseurs
CN106016795A (zh) 一种提高制冷或热泵系统效率的方法及运行方法
US5247811A (en) Production and heat storage system for low-temperature chilled water
CN110145917B (zh) 一种多温区冷库系统
JP6937608B2 (ja) 超電導ケーブル用冷却装置及びそれを用いた超電導ケーブルの冷却方法
US2555161A (en) Refrigerating system with defrosting arrangement
KR20150115320A (ko) 제빙기의 제어방법
RU2199706C2 (ru) Холодильная установка
CN113970227A (zh) 一种三系统冰箱和控制方法
OA20234A (fr) Installation de réfrigération.
EP0148062A2 (fr) Installation frigorifique produisant du froid et du chaud
CN110160310B (zh) 一种多温区冷库系统的制冷方法
FR3089603A1 (fr) Installation de réfrigération
FR2469678A1 (fr) Perfectionnements apportes aux installations frigorifiques
CN209230071U (zh) 一种自然冷源蓄冷系统
JP2000065401A (ja) 蓄熱システム
EP0020332A1 (fr) Procede pour faire fonctionner une pompe chauffante-refroidissante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19860208

17Q First examination report despatched

Effective date: 19860821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BONNET REFRIGERATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010328

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST