EP0151884A2 - Flüssige Reinigungsmittelzusammensetzungen - Google Patents
Flüssige Reinigungsmittelzusammensetzungen Download PDFInfo
- Publication number
- EP0151884A2 EP0151884A2 EP84309004A EP84309004A EP0151884A2 EP 0151884 A2 EP0151884 A2 EP 0151884A2 EP 84309004 A EP84309004 A EP 84309004A EP 84309004 A EP84309004 A EP 84309004A EP 0151884 A2 EP0151884 A2 EP 0151884A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- electrolyte
- stable
- composition according
- active ingredients
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 407
- 239000003599 detergent Substances 0.000 title claims abstract description 75
- 239000007788 liquid Substances 0.000 title claims abstract description 33
- 239000003792 electrolyte Substances 0.000 claims abstract description 154
- 239000004480 active ingredient Substances 0.000 claims abstract description 142
- 239000004094 surface-active agent Substances 0.000 claims abstract description 81
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000011049 filling Methods 0.000 claims abstract description 17
- 238000003860 storage Methods 0.000 claims abstract description 10
- 239000012071 phase Substances 0.000 claims description 84
- 239000007787 solid Substances 0.000 claims description 64
- -1 alkyl sulphate Chemical compound 0.000 claims description 60
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 36
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 32
- 125000000217 alkyl group Chemical group 0.000 claims description 32
- 239000004615 ingredient Substances 0.000 claims description 27
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 27
- 239000012530 fluid Substances 0.000 claims description 25
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 23
- 239000003945 anionic surfactant Substances 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 19
- 239000008346 aqueous phase Substances 0.000 claims description 18
- 238000005406 washing Methods 0.000 claims description 18
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 16
- 150000001412 amines Chemical class 0.000 claims description 16
- 239000006260 foam Substances 0.000 claims description 16
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 16
- 125000000129 anionic group Chemical group 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 14
- 239000011734 sodium Substances 0.000 claims description 14
- 229910052708 sodium Inorganic materials 0.000 claims description 14
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 14
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 13
- 239000004115 Sodium Silicate Substances 0.000 claims description 12
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 239000003112 inhibitor Substances 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 9
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 claims description 9
- 239000004064 cosurfactant Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000010457 zeolite Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000002304 perfume Substances 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 7
- 239000004317 sodium nitrate Substances 0.000 claims description 7
- 235000010344 sodium nitrate Nutrition 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 6
- 229910021536 Zeolite Inorganic materials 0.000 claims description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 claims description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 4
- 235000011180 diphosphates Nutrition 0.000 claims description 4
- 150000005215 alkyl ethers Chemical class 0.000 claims description 3
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims description 3
- 238000004040 coloring Methods 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 125000005908 glyceryl ester group Chemical group 0.000 claims description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- DIORMHZUUKOISG-UHFFFAOYSA-N sulfoformic acid Chemical compound OC(=O)S(O)(=O)=O DIORMHZUUKOISG-UHFFFAOYSA-N 0.000 claims description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims 1
- 229910021485 fumed silica Inorganic materials 0.000 claims 1
- 238000009472 formulation Methods 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 14
- 239000003752 hydrotrope Substances 0.000 description 13
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000000839 emulsion Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 238000004062 sedimentation Methods 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000007792 addition Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000002736 nonionic surfactant Substances 0.000 description 9
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 8
- 229910052700 potassium Inorganic materials 0.000 description 8
- 239000011591 potassium Substances 0.000 description 8
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 150000004760 silicates Chemical class 0.000 description 7
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 7
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 7
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 7
- 239000000872 buffer Substances 0.000 description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- QZXSMBBFBXPQHI-UHFFFAOYSA-N N-(dodecanoyl)ethanolamine Chemical compound CCCCCCCCCCCC(=O)NCCO QZXSMBBFBXPQHI-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000001683 neutron diffraction Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000004665 cationic fabric softener Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 3
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 3
- 239000002280 amphoteric surfactant Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000003019 stabilising effect Effects 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004851 dishwashing Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- UZABCLFSICXBCM-UHFFFAOYSA-N ethoxy hydrogen sulfate Chemical compound CCOOS(O)(=O)=O UZABCLFSICXBCM-UHFFFAOYSA-N 0.000 description 2
- LRMHFDNWKCSEQU-UHFFFAOYSA-N ethoxyethane;phenol Chemical compound CCOCC.OC1=CC=CC=C1 LRMHFDNWKCSEQU-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 125000005341 metaphosphate group Chemical group 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- DQPISTPJWDOSBF-UHFFFAOYSA-N (diacetyloxyamino) acetate Chemical class CC(=O)ON(OC(C)=O)OC(C)=O DQPISTPJWDOSBF-UHFFFAOYSA-N 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- QSUHIERZZQYNPA-UHFFFAOYSA-N 1-dodecyl-2,3-dimethylbenzene;sodium Chemical compound [Na].CCCCCCCCCCCCC1=CC=CC(C)=C1C QSUHIERZZQYNPA-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- SAPQAFOHDOFEOI-UHFFFAOYSA-N 2-[2-(2-phenylethenyl)phenyl]-1h-benzimidazole Chemical compound C=1C=CC=C(C=2NC3=CC=CC=C3N=2)C=1C=CC1=CC=CC=C1 SAPQAFOHDOFEOI-UHFFFAOYSA-N 0.000 description 1
- YRPYTFXEHXXYQW-UHFFFAOYSA-N 2-ethenyl-1h-benzimidazole Chemical group C1=CC=C2NC(C=C)=NC2=C1 YRPYTFXEHXXYQW-UHFFFAOYSA-N 0.000 description 1
- LANDRZNMJOEVQO-UHFFFAOYSA-N 3-ethenoxypropane-1,2-diol Chemical group OCC(O)COC=C LANDRZNMJOEVQO-UHFFFAOYSA-N 0.000 description 1
- BCFOOQRXUXKJCL-UHFFFAOYSA-N 4-amino-4-oxo-2-sulfobutanoic acid Chemical class NC(=O)CC(C(O)=O)S(O)(=O)=O BCFOOQRXUXKJCL-UHFFFAOYSA-N 0.000 description 1
- VKRZNAWSCAUDRQ-UHFFFAOYSA-N 5-methyl-2-[2-(5-methyl-1,3-benzoxazol-2-yl)ethenyl]-1,3-benzoxazole Chemical group CC1=CC=C2OC(C=CC=3OC4=CC=C(C=C4N=3)C)=NC2=C1 VKRZNAWSCAUDRQ-UHFFFAOYSA-N 0.000 description 1
- GZEYLLPOQRZUDF-UHFFFAOYSA-N 7-(dimethylamino)-4-methylchromen-2-one Chemical compound CC1=CC(=O)OC2=CC(N(C)C)=CC=C21 GZEYLLPOQRZUDF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- RONMCPWSECSNGE-UHFFFAOYSA-N N.CCCCCCCCCCCCOS(=O)(=O)OOCC Chemical compound N.CCCCCCCCCCCCOS(=O)(=O)OOCC RONMCPWSECSNGE-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical class O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 1
- WFRXSOIFNFJAFL-UHFFFAOYSA-N P1(OCCCCO1)=O.C(CN)N Chemical class P1(OCCCCO1)=O.C(CN)N WFRXSOIFNFJAFL-UHFFFAOYSA-N 0.000 description 1
- DPWPWRLQFGFJFI-UHFFFAOYSA-N Pargyline Chemical compound C#CCN(C)CC1=CC=CC=C1 DPWPWRLQFGFJFI-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- LGDAGYXJBDILKZ-UHFFFAOYSA-N [2-methyl-1,1-dioxo-3-(pyridin-2-ylcarbamoyl)-1$l^{6},2-benzothiazin-4-yl] 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 LGDAGYXJBDILKZ-UHFFFAOYSA-N 0.000 description 1
- YDHWWBZFRZWVHO-UHFFFAOYSA-H [oxido-[oxido(phosphonatooxy)phosphoryl]oxyphosphoryl] phosphate Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O YDHWWBZFRZWVHO-UHFFFAOYSA-H 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical class OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 101150016253 cmr2 gene Proteins 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical class CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical class CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical class OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- SVMNBAVEQLDZNO-UHFFFAOYSA-M potassium;2-hexadecylbenzenesulfonate Chemical compound [K+].CCCCCCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O SVMNBAVEQLDZNO-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 239000011347 resin Chemical class 0.000 description 1
- 229920005989 resin Chemical class 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical class [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/14—Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0013—Liquid compositions with insoluble particles in suspension
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0026—Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
Definitions
- the present invention relates to novel, aqueous-based, mobile, fluid detergent compositions preferably containing effective quantities of detergent builder.
- builder is sometimes used loosely in the detergent art to include any non-surfactant whose presence in a detergent formulation enhances the cleaning effect of the formulation. More usually, however, the term is restricted to those typical "builders” -which are primarily useful as a means of preventing or ameliorating the adverse effects on washing of calcium and magnesium ions, e.g. by chelation, sequestering, precipitation or absorption of the ions, and secondarily as a source of alkalinity and buffering.
- Builder is used herein in the more restricted sense, and refers to additives which ameliorate the effects of calcium to a substantial extent.
- It includes sodium or potassium tripolyphosphate and other phosphate and condensed phosphate salts such as sodium or potassium orthophosphates, pyrophosphates, metaphosphates or tetraphosphate, as well as phosphonates such as acetodiphosphonates, amino tris methylene phosphonates and ethylenediamine tetramethylene phosphonates. It also includes alkali metal carbonates, zeolites and such organic sequestrants as salts of nitrilotriacetic acid, citric acid and ethylene diamine tetracetic acid, polymeric polycarboxylic acids such as polyacrylates and maleic anhydride based copolymers.
- phosphate and condensed phosphate salts such as sodium or potassium orthophosphates, pyrophosphates, metaphosphates or tetraphosphate, as well as phosphonates such as acetodiphosphonates, amino tris methylene phosphonates and ethylenediamine t
- Builder is used herein to include water soluble alkali metal silicates such as sodium silicate, but excludes additives such as carboxymethyl cellulose, or polyvinyl pyrrolidone whose function is primarily that of soil suspending or anti-redeposition agent.
- Electrode is used herein to denote those ionic compounds which have a solubility in water at 0°C, expressed as wt% of anhydrous compounds, of at least 5, which dissociate at least partially in aqueous solution to provide ions, and which at the concentrations present tend to lower the total solubility (including micellar concentration) of surfactants in such solutions by a “salting out” effect.
- It includes water soluble dissociable, inorganic salts such as, for example, alkali metal or ammonium chlorides, nitrates, phosphates, carbonates, silicates, perborates and polyphosphates, and also certain water soluble organic salts which desolubilise or "salt out” surfactants. It does not include salts of cations which form water insoluble precipitates with the surfactants present or which are only sparingly soluble in the composition, such as calcium chloride or sodium sulphate.
- Electrolyte content or concentration refers to the total dissolved Electrolyte, including any dissolved Builder, if such Builder is also an Electrolyte, but excludes any suspended solid.
- Hydrotrope denotes any water soluble compound which tends to increase the solubility of surfactants in aqueous solution.
- Typical Hydrotropes include urea and the alkali metal or ammonium salts of the lower alkyl benzene sulphonic acids such as sodium toluene sulphonate and sodium xylene sulphonate.
- Electrolyte Whether a particular compound is an Electrolyte or a Hydrotrope may sometimes depend on the Active Ingredients present.
- Sodium chloride is normally considered a typical Electrolyte, but in relation to sultaines; it behaves as a Hydrotrope.
- Electrolyte and Hydrotroprope as used herein, must therefore be construed in the context of the particular Active Ingredients.
- Soap means an at least sparingly water soluble salt of a natural or synthetic aliphatic monocarboxylic acid, which salt has surfactant properties.
- the term includes sodium, potassium, lithium, ammonium and alkanolamine salts of Cg -22 natural and synthetic fatty acids, including stearic, palmitic, oleic, linoleic, ricinoleic, behenic and dodecanoic acids, resin acids and branched chain monocarboxylic acids.
- the "Usual Minor Ingredients” includes those ingredients other than Water, Active Ingredients, Builders and Electrolytes which may be included in laundry detergent compositions, typically in proportions up to 5%, and which are compatible in the relevant Formulation with a Pourable, chemically stable non-sedimenting composition.
- the term includes antiredeposition agents, dispersants, antifoams,perfumes, dyes, optical brightening agents, Hydrotropes, solvents, buffers, bleaches, corrosion inhibitors, antioxidants, preservatives, scale inhibitors, humectants, enzymes and their stabilizers, bleach . activators, and the like.
- “Functional Ingredients” means ingredients which are required to provide a beneficial effect in the wash liquor and includes ingredients which contribute to the washing effectiveness of the composition e.g. surfactants, Builders, bleaches, optical brighteners, alkaline buffers, enzymes and anti- redeposition agents, and also anti-corrosives and anti-foams, but excludes water, solvents, dyes, perfume, Hydrotropes, sodium chloride, sodium sulphate, solubilisers and stabilisers whose sole function is to impart stability, fluidity or other desirable characteristics to a concentrated formulation.
- Payment means the percentage of Functional Ingredients based on the total weight of the composition.
- Active Ingredients means surface active materials.
- Separable Phase is used herein to denote components, or mixtures of components of a pourable detergent composition, which are each separable from the composition to form a distinct layer upon Centrifuging. Unless the context requires otherwise all references to the composition of Separable Phases are references to the compositions of the centrifugally separated phases and references to the structure of a composition relate to the uncentrifuged composition.
- a single Separable Phase may comprise two or more thermodynamically distinct phases, which are not separable from each other on Centrifuging as in, for example, a stable emulsion or floc.
- Dispersed is used herein to describe a phase which is discontinuously distributed as discrete particles or droplets in at least one other phase.
- Co-continuous describes two or more interpenetrating phases each of which extends continuously or as a continuous network through a common volume, or else is formed of discreet or Dispersed elements which interact to form a continuous matrix tending to maintain the position of each element in relation to the matrix when the system is at rest.
- Interspersed describes two or more phases which are either Co-continuous or of which one or more is Dispersed in the other or others.
- references to “Solid Phases” are to substances actually present in the composition in the solid state at ambient temperature, and including any water of crystallization or hydration unless the context requires otherwise.
- References to solids include references to microcrystalline and cryptocrystalline solids, i.e. solids whose crystals are not directly observed by optical microscopy but whose presence can only be inferred.
- a “Solid Layer” is a solid, pasty or non-pourable gelatinous layer formed on Centrifuging.
- Total Water refers to water present as liquid water in a predominantly aqueous phase, together with any other water in the composition, e.g. water of crystallisation or hydration or water dissolved or otherwise present in any predominantly non-aqueous phase.
- “Dry Weight” refers to residual weight after drying to constant weight at 1400 C .
- Formulation is used to describe the combination of ingredients which make up the Dry Weight of a composition.
- formulation may be exemplified by a number of compositions, differing in their Percentage Dry Weight.
- Stable means that no layer containing more than 2% of the total volume separates from the bulk of the composition within 3 months at room temperature under normal gravity.
- the Shear Test means a test in which a sample is passed through a straight 40mm tube having an internal radius of 0.25mm under a pressure of 500 p.s.i.g.
- the Shear Test was carried out in the case of all measurements described herein, by sucking a sample into a 500ml pressure vessel through a broad aperture tube, replacing the broad aperture tube by the 0.25mm radius tube and applying a nitrogen pressure of 500 p.s.i.g. in the pressure vessel until the latter was empty. The 0.25mm tube was then replaced by the broad aperture tube so that the cycle could be repeated.
- the above method generates a shear rate of approximately 127,000 sec- 1.
- Shear Stable means Stable after 3 passes through the Shear Test
- Shear Unstable means non-Stable after exposure to 3 or less passes through the Shear Test, or to a lower shear rate.
- Non-Shear Sensitive means not undergoing loss of stability or substantial increase in Viscosity after exposure to moderate shear. Shear Sensitivity was determined using a Contraves "Rheomat 30" viscometer, cone and plate measuring system 2, at 25°C, increasing the shear linearly from 0 to 280 sec -1 over 1 minute (the "upsweep") and immediately decreasing it linearly to 0 sec- 1 over 1 minute (the “downsweep”). A composition is adjudged Non-Shear Sensitive if it is Stable after the cycle and if the Viscosity at 150 sec- 1 on the downsweep is not more than 10% greater than on the upsweep.
- Temperature Stable means that no layer containing more than 5% of the volume separates from the bulk of the composition within 24 hours of being heated by immersing a 20 g. sample in a water bath maintained at 90°C for 110 minutes, followed by immediate immersion in a water bath maintained at 100°C for 10 minutes.
- references herein to the "pH" of detergent compositions are to the pH as measured by a Pye Unicam 401 combined glass/calomel electrode.
- Conductivity refers to specific conductance measured at 25 0 C at a frequency of 50 KHertz. The results quoted were measured on a CDM3 "RADIOMETER” conductivity bridge using a CDC314 flow and pipette cell.
- the "First Conductivity Minimum” refers to the graph of Conductivity against increasing dissolved Electrolyte concentration in a liquid detergent composition containing a fixed proportion of Active Ingredients to water, wherein the Conductivity, usually having initially risen to a maximum value, declines to a minimum value and then rises again.
- the term signifies the concentration of Electrolyte corresponding to this minimum value, or the lowest concentration of dissolved Electrolyte corresponding to one of a plurality of such minima.
- Viscosity except where otherwise stated are to the viscosity as measured on a cup and bob viscometer at 25 0 C after two minutes running using a 20 mm internal diameter flat bottomed cup, 92 mm long, and a 13.7 mm diameter bob, 44 mm long, with conical ends having a 45° horizontal angle, and 4mm diameter spindle.
- the tip of the bob was 23mm from the base of the cup. This corresponds to Contraves "Rheomat 30" viscometer using measuring system C.
- “Pourable”, as used herein, means having a Viscosity of less than 2 Pascal seconds at a shear rate of 136 sec -1 .
- Viscosity Drop means the difference between the Viscosity of a shear thinning composition measured at 21 sec- I and the Viscosity measured at 136 sec- 1 .
- Yield Points are as measured on an RML Series II Deer Rheometer at 25 0 C, using part No. MG7101.
- Li phase denotes a clear, fluid, optically isotropic, micellar solution of surfactant in water, which occurs at concentrations above the critical micellar concentration, and wherein the surfactant molecules are believed to aggregate to form spherical, oblate (disc) or prolate (rod) micelles.
- Bilayer includes a layer of surfactant approximately two molecules thick, which is formed from two adjacent parallel layers, each comprising surfactant molecules which are disposed such that the hydrophobic portions of the molecules are located in the interior of the Bilayer and the hydrophilic portions are located on its outer surfaces.
- Bilayer is also used herein to include interdigited layers, which are less than two molecules thick. An interdigited layer may be regarded as a Bilayer in which the two layers have interpenetrated allowing at least some degree of overlap between the hydrophobic portions of the molecules of the two layers.
- Spherulite means a spherical or spheroidal body having dimensions, of from 0.1 to 50 microns. Spherulites may sometimes be distorted into prolate, oblate, pear or dumbell shapes.
- “Vesicle” means a Spherulite containing a liquid phase bounded by a Bilayer.
- Multiple Vesicle means a Vesicle which contains one or more smaller Vesicles.
- “Lamellar Phase” means a hydrated solid, or liquid crystal phase in which a plurality of Bilayers are arranged in a substantially parallel array, separated Dy layers or water or an aqueous solution, and having a sufficiently regular lattice spacing of from 25 to 70 A to be readily detectable by neutron diffraction when present as a substantial proportion of a composition.
- the expression excludes concentric Multiple Vesicles.
- G phase refers to a liquid crystal Lamellar Phase, of the type also known in the literature as "neat” phase or “lamellar” phase.
- the "G” phase for any given surfactant or surfactant mixture normally exists in a narrow range of concentrations. Pure “G” phases can normally be identified by examination of a sample under a polarising microscope, between crossed polarisers. Characteristic textures are observed in accordance with the classic paper by Rosevear, JAOCS Vol. 31 P628 (1954) or in J. Colloid and Interfacial Science, Vol. 30 No. 4, P.500 (1969).
- Spherical G Phase means Multiple Vesicles formed from substantially concentric shells of surfactant Bilayer alternating with aqueous phase with a "G" phase spacing. Typically conventional G phases may contain a minor proportion of Spherical G Phase.
- Lye means an aqueous liquid phase containing Electrolyte, which phase separates from, or is Interspersed with, a second liquid phase containing more Active Ingredient and less Electrolyte than the Lye phase.
- Lamellar Composition means a composition in which a major part of the surfactant is present as a Lamellar Phase, or in which a Lamellar Phase is the principal factor inhibiting sedimentation.
- Spherulitic Composition means a composition in which a major part of the surfactant is present as Spherulites, or which is principally stabilised against sedimentation by a spherulitic surfactant phase.
- Liquid detergents have hitherto been used mainly for light duty applications such as dish washing.
- the market for heavy duty detergents e.g. laundry detergents
- Such liquids should in theory be cheaper than powder detergents since they would avoid the need to dry and would in many instances replace the sulphate filler conventionally used in powder detergents with water. They also offer the possibilities of greater convenience and more rapid dissolution in wash water than powder.
- Attempts to provide solutions of the Functional Ingredients have been relatively unsuccessful commercially.
- One reason for this lack of success has been that the most commonly used and cost effective Builders e.g.
- sodium tripolyphosphate are insufficiently soluble in aqueous compositions. Moreover due to salting out effects, increasing the amount of dissolved Builder tends to lower the amount of surfactant that can be dissolved and vice versa. Potassium pyrophosphate Builders, together with amine salts of the Active Ingredients, which are more soluble, have been tried as alternatives to the sodium salts but have not been found cost effective.
- compositions which have been developed commercially many compositions have been proposed in the literature which are not suitable for commercial exploitation in practice. Typically such compositions are unstable, or insufficiently stable to withstand normal storage without undergoing sedimentation, or else are too expensive to manufacture in relation to their washing effectiveness, to be considered for commercial development.
- compositions in which the Active Ingredients form a network of a Lamellar Phase, separable from the aqueous phase by Centrifuging, which provides a gel structure capable of supporting suspended particles of solid Builder.
- the gel structure is obtained by addition of sufficient Electrolyte to salt out the Active Ingredient, so as to form an aqueous Lye phase and a Separable Lamellar Phase, and by maintaining the solids content above a threshold for stability and below a ceiling for Pourability.
- the amount of Electrolyte required depends upon the hydrophilicity and melting point of the surfactant, and whether any solubilising additives such as Hydrotropes or solvents are present.
- the aforesaid gel compositions tend to be higher in Payload and in the ratio of Builder/Active Ingredient, and to be more cost effective than known commercial liquid compositions. Indeed, the best of the aforesaid Lamellar gel compositions are more cost effective soil removing agents than the best laundry powders.
- Lamellar Compositions disclosed hitherto exhibit a mobility which is lower than is desirable for some purposes.
- Preferred embodiments of our invention exhibit at least some of the following advantages compared with products marketed hitherto: High Payload; high Builder to surfactant ratio; improved stability; lower cost due to use of cheaper ingredients and ease of production; high mobility; improved washing performance; high pH and/or alkalinity; good stability at high and/or low storage temperature; and satisfactory behaviour on shearing.
- a Stable Spherulitic Composition which is . capable of suspending solid particles, such as Builder.
- our novel compositions appear to be stabilised by surfactant present in a spherulitic, rather than a Lamellar Phase.
- the second approach is exemplified by G.B. 855893, G.B.948617, G.B.943271, G.B. 1468181, G.B. 1506427, G.B.2028365, E.P.38101, Australian P.522983, U.S.P. 4018720, U.S.P.3232878, U.S.P.3075922 and U.S.P.2920045.
- the compositions described in these patents are either not stable or are not Temperature Stable or Shear Stable.
- Commercial products corresponding to examples of two of these patents have been marketed recently in Australia and Europe.
- a composition corresponding to Australian Patent No. 522983 has enjoyed a measure of commercial success, but has been Shear Sensitive.
- compositions described exhibit a matrix of Lamellar, solid or liquid crystal surfactant . Such compositions may have Viscosities higher than are desirable for certain uses.
- a different approach is to suspend solid Builder in an anhydrous liquid non-ionic surfactant e.g. BP 1600981.
- Such systems are costly, restrictive with regard to choice of surfactant and give unsatisfactory rinsing properties.
- the level of Builder although high in relation to the total composition is low in relation to the Active Ingredients, and the cost effectiveness is therefore very low.
- U.S.P.4057506 describes the preparation of clear emulsions of sodium - tripolyphosphate
- U.S.P.4107067 describes inverse emulsions in which an aqueous solution of Builder is dispersed in a liquid crystal surfactant system.
- U.S.P.3039971 describes a detergent paste containing the Builder in solution
- our invention provides a Stable, Pourable, fluid, detergent composition consisting essentially of Active Ingredients, Electrolyte and water and having solid-suspending properties, wherein the proportion of Electrolyte is sufficient to provide a Temperature Stable, Non-Shear-Sensitive, substantially non-Lamellar composition.
- our invention provides a Stable, Pourable, fluid, detergent composition having solid-suspending properties and comprising water, Active Ingredient and Electrolyte, wherein the proportion of Electrolyte is sufficient to provide a space-filling Spherulitic floc which is Temperature Stable and Non-Shear Sensitive.
- our invention provides a Stable, Pourable, fluid detergent composition having solid suspending- properties and which comprises water, Active Ingredient and sufficient Electrolyte to form a dispersed Stable phase containing at least part of the Active Ingredients, corresponding to a trough in the graph of Conductivity against Electrolyte concentration, which contains the First Conductivity Minimum, the proportion of said Electrolyte being within the range at which the composition is Temperature Stable and Non-Shear Sensitive.
- the Electrolyte concentration is sufficient to provide a Shear Stable composition.
- composition according to each of the foregoing embodiments contain suspended solids, such as Builders and/or abrasives.
- the suspended solid may be insoluble in the aqueous fluid medium, already present in saturation quantities, or encapsulated in a material which prevents it dissolving in the medium.
- our invention provides a Stable, Pourable, fluid detergent composition containing water, Active Ingredients, Electrolyte and suspended solids, wherein the proportion of Electrolyte is sufficient to form a Shear Stable Spherulitic composition having a Yield Point of from 1 to 15 dynes cm- 2 .
- the Yield Point of the composition is greater than 1.5, more preferably greater than 2, most preferably greater than 2.5, e.g. greater than 3, and preferably less than 10 dynes cm- 2 .
- the Viscosity at 136 sec- 1 is less than 1.5, more preferably less than 1, e.g. from 0.2 to 0.6 Pascal Seconds.
- our invention provides a Stable, Pourable, fluid, detergent composition consisting essentially of water, from 5 to 25% based on the weight of the composition of Active Ingredients, Electrolyte and suspended,solid Builder, the total weight proportion of Builder to Active Ingredient being from 1.4:1 to 4:1 and the portion of Electrolyte being sufficient to provide a Shear Stable, Non-Lamellar composition.
- the composition may additionally contain the Usual Minor Ingredients.
- the Active Ingredients are present in a proportion of 10 to 20%, more preferably 10 to 14% by weight and the total weight ratio and the builder to Active Ingredient is from 1.5:1 to 3:1, e.g. 1.9:1 to 2.5:1.
- our invention provides a Stable, Pourable, fluid, detergent composition comprising water, from 5 to 25% based on the weight of the composition of Active Ingredients, Electrolyte and suspended solid Builder, and having a Pay Load of at least 35% by weight, wherein the proportion of Electrolyte is sufficient to provide a Shear Stable, Spherulitic composition.
- our invention provides a Stable, Pourable, fluid, detergent composition containing water from 5 to 25% by weight of Active Ingredients, Electrolyte and suspended solid Builder the total proportion by weight of Builder to Active Ingredients being from 1.5:1 to 4:1-and the proportion of Electrolyte being sufficient to provide a Spherulitic composition Stable to storage at 40 o C.
- the proportion of Electrolyte is sufficient to render the composition Temperature Stable.
- our invention provides a Stable, Pourable, fluid, detergent composition
- a Stable, Pourable, fluid, detergent composition comprising water, 5 to 20% by weight of Active Ingredients, Electrolyte and suspended solid Builder, the total weight ratio of Builder to Active Ingredient being from 1:1 to 4:1 and the proportion of Electrolyte being sufficient to provide a Temperature Stable, Non-Shear Sensitive composition, which on Centrifuging separates into an aqueous layer, containing more than 50% of the total weight of Active Ingredients, and a Solid Layer.
- our invention provides a Stable, Pourable detergent composition consisting essentially of water, dissolved Electrolyte and from 8 to 14% by weight of the composition of Active Ingredients, together with suspended solid Builder, and optionally the Usual Minor Ingredients, which composition, on Centrifuging, separates into a Solid Layer and a single liquid layer having a Yield Point of greater than 1.5 dynes cm -2 .
- our invention provides a composition consisting substantially of water, Active Ingredients and Electrolyte and having solid-suspending properties, wherein the Active Ingredients are capable of forming a Stable composition at the First Conductivity Minimum, and the amount of Electrolyte present is sufficient to provide a composition having a Yield Point of greater than 1.5 dynes cm- 2 and a Viscosity measured at 136 sec- I , of less than 0.28 Pascal Seconds.
- our invention provides a Pourable, Stable, aqueous based detergent composition consisting essentially of water, Electrolyte, Active Ingredient and Builder and comprising a first predominantly aqueous liquid Separable Phase, containing at least part of the Electrolyte in solution and from 50 to 80% of the total weight of Active Ingredients, at least one Dispersed Solid Separable Phase comprising at least part of the Builder as solid.
- the predominantly aqueous Separable Phase comprises at least 40% usually at least 50% e.g. at least 60% of the Total Water.
- our invention provides a Pourable, Stable, aqueous based detergent composition having a Pay Load greater than 35% by weight and a pH greater than 9 and comprising water, a dissolved Electrolyte, at least 5% by weight of Active Ingredients and at least 16% by weight of Builder, which Electrolyte is present in a proportion sufficient to render the composition Shear Stable, but insufficient for the Active Ingredients to form a substantial proportion of a Lamellar Phase.
- our invention provides an aqueous-based, liquid detergent composition, comprising sufficient Active Ingredients to form a space-filling floc of surfactant containing Spherulites Interspersed with an aqueous phase and an amount of Electrolyte not less than that corresponding to the First Conductivity Minimum of the graph of electrical Conductivity against . Electrolyte concentration, but below that which corresponds to the formation of a Lamellar phase, and sufficient to render the composition non-Shear Sensitive.
- our invention provides a Pourable, Stable detergent composition
- a Pourable, Stable detergent composition comprising water, Electrolyte, Active Ingredient and Builder, which separates on Centrifuging as defined herein into at least two layers including: a predominantly aqueous layer containing dissolved Electrolyte, at least 10% by weight of the Total Water, and from 80% to 50% by weight of the total Active Ingredient, and a Solid Layer containing at least a proportion of the Builder.
- our invention provides a Pourable, Stable, fluid, detergent composition consisting essentially of: water; a concentration of from 5 to 25% by weight of the composition of Active Ingredients which consist essentially of (i) at least one non-ethoxylated anionic surfactant and (ii) at least one cosurfactant that is capable of forming stable foams, the proportions of (i) to (ii) being such that if a soluble Electrolyte is added progressively to an aqueous mixture containing said Active Ingredients at said concentration, a First Conductivity Minimum is reached at which the mixture is turbid and Stable; suspended Solid Builder, the total weight ratio of Builder to Active Ingredients being from 1:1 to 4:1; and dissolved Electrolyte in a proportion sufficient to form a Stable composition corresponding to the Conductivity trough containing said First Conductivity Minimum, and greater than any concentration below which the composition is Shear Sensitive but below the maximum concentration at which it is Temperature Stable.
- our invention provides a Stable, Spherulitic Composition comprising Active Ingredients, Electrolyte and water which does not exhibit a separate, clear, aqueous phase after High G centrifuging, at 20,000 G for 90 minutes.
- our invention provides Stable, Pourable, . fluid detergent compositions comprising water, Active Ingredients and Electrolyte, all of which compositions exhibit at least some, but not necessarily all, of the following characteristics: they comprise a Spherulitic phase Interspersed with a Lye or L 1 phase and preferably Co-continuous with the Lye or L 1 phase; they are substantially Non-Lamellar; they comprise a floc system which is preferably space-filling; they comprise a floc system which is formed from particles comprising the Active Ingredients which are preferably surfactant-containing Spherulites, typically having concentric shells of surfactant alternating with an aqueous, e.g.
- Lye phase and having 0 a repeat spacing of from 60 to 100 A, prefered 70 to 90 A, often 75 to 85, e.g. 80 A; they comprise Spherulites of from 0.5-to 5 microns, preferably 0.6 to 5 microns diameter, which show a so-called "Maltese Cross" texture when viewed at suitable magnifications between crossed polarisers; they are shear thinning; they have a Viscosity Drop greater than 0.35, usually greater than 0.4, often greater than 0.45 Pascal seconds, but preferably less than 2 Pascal Seconds, e.g. 0.475 to 1.5, especially 0.48 to 1.1 Pascal seconds; they have a high Payload of Functional Ingredients, typically greater than 20% by weight, e.g.
- 25 to 75% more usually at least 30% preferably at least 35% most preferably at least 40% by weight; they contain a high ratio of Builder to Active Ingredient e.g. greater than 1:1 preferably 1.2:1 to 4:1, more preferably 1.4:1 to 4:1, most preferably 1.5:1 to 3.5:1; they contain more than 5 and preferably more than 8% by weight of composition of Active Ingredients; they contain less than 25X, preferably less than 20%, usually less than 15%, more preferably less than 14.5%, most preferably less than 14%, e.g.
- the composition of Active Ingredients from 10 to 13.5% by weight of the composition of Active Ingredients; they form a single aqueous layer and a Solid Layer on Centrifuging wherein the aqueous layer usually has a Yield Point of at least 1, preferably at least 1.5 dynes cm- 2 , e.g. 2 to 10 dynes cm- 2 and typically a Viscosity of less than 1.5 Pascal Seconds at 136 sec- 1 ; the proportion by weight of Active Ingredient in the predominantly aqueous layer formed after Centrifuging based on total Active Ingredient in the composition is greater than 50%, preferably greater than 55% e.g. greater than 60%, . but is less than 90%, preferably less than 85% e.g.
- the pH of the composition is greater than 8.5, preferably 9 to 13, e.g. 9.5 to 12;
- the composition produces a wash liquor on dilution with water to 0.5% Dry Weight having a pH greater than 9.7, preferably greater than 10, e.g. 10.9 to 11.1; the alkalinity is sufficient to require at least 0.8ml of N/10 HC to reduce the pH of 100mls wash liquor at 0.5% Dry Weight to 9, preferably lm1 e.g.
- the at least one predominantly aqueous liquid phase contains sufficient Electrolyte to provide a concentration of at least 0.3 preferably at least 0.5, more preferably at least 1.2 e.g. 2.0 to 4.5 gram ions per litre of total alkali metal and/or ammonium cations; the concentration of Electrolyte is greater than that corresponding to the First Conductivity Minimum of the graph of Conductivity against Electrolyte concentration; the Conductivity is no more than 2 mS greater than the Conductivity at the First Conductivity Minimum; the concentration of Electrolyte is below that which causes the formation of a substantial proportion of Lamellar phase; the Electrolyte concentration is above the minimum which provides a Stable, and preferably above the minimum which provides a Shear Stable, composition; the composition is Non-Shear Sensitive; the composition is Temperature Stable; the composition is Stable at 40°C; the Conductivity of the composition is below 15 millisiemens per cm; the compositions contain at least 15% by weight,
- the composition has a Yield Point preferably of at least 1, more preferably at least 1.5; e.g. at least 2, preferably less than 30, e.g. less than 20, most preferably less than 15, usually less than 10 dynes/sq cm;
- a phase containing Builder comprises solid particles having a maximum particle size below the limit at which the particles tend to sediment;
- the composition is Shear Stable;
- the Active Ingredients include at least two components . one of which is a non-ethoxylated anionic surfactant and the other a surfactant which forms stable foams such as an ether sulphate, alkanolamide or amine oxide.
- the composition typically passes through a series of easily recognised stages, as follows.
- compositions of Stage I are, in general, clear and stable, but have no capacity to suspend solid particles.
- stage II eutron diffraction studies are consistent with reduced micellar concentrations and an increasing proportion of larger bodies, but not with the presence of any significant proportion of "G" phase.
- the compositions of stage II are turbid, and unstable and sediment rapidly.
- the Conductivity falls to a minimum and then begins to rise.
- the spaces between the Spherulite flocs disappear and the Spherulites form a space-filling floc extending throughout the liquid phase.
- High G Centrifuging does not separate an aqueous phase, even when continued for 90 minutes. A Yield Point is observed, rising to a maximum, and the composition becomes shear thinning with a marked Viscosity Drop.
- compositions in Stage III are Stable and capable of suspending solid particles to form a Stable suspension. Such Stage III compositions constitute our invention.
- a Lamellar Composition is formed of the type described in E.P.0086614. Viscosity, when the water content is adjusted to the extent required to give a Stable composition, is relatively high.
- the foregoing sequence is typical of the interactions of Electrolytes with a wide variety of aqueous surfactant mixtures.
- the composition already contains some dissolved Electrolyte, as in a built detergent containing suspended tripolyphosphate, or where the initial surfactant mixture is not fully soluble in water, the first stage may not be observed.
- solubility of the Electrolyte is limited, as, for example, in the case of sodium tripolyphosphate or sodium carbonate, addition of further Electrolyte above its saturation limit will not take the composition any further in the sequence.
- compositions of the present invention lie within the third stage of the above sequence. Between the third stage and the second and fourth stages, respectively, there exist intermediate compositions which are semi-stable. Such compositions exhibit a floc of surfactant Spherulites, which are not completely space-filling as evidenced by the fact that High G Centrifuging continued for 90 minutes results in the formation of a clear aqueous layer, or in which the Spherulites are capable of being irreversibly disrupted. Such compositions, although they may be Stable when allowed to stand at ambient temperature, are often unstable when exposed to various kinds of stress such as high Shear stress, elevated or depressed temperatures or pH changes. Their capacity to suspend particulate solids is often limited. A number of proposed prior art compositions lie in these semi-stable areas.
- compositions which lie within these semi-stable "borderline” areas may be modified in accordance with the teaching of this patent, by adjusting the Electrolyte and/or Active Ingredient content to bring them more closely into line with the Stable areas of Stage III.
- the Stage III compositions of the present invention separate into an aqueous layer containing Electrolyte and from 90 to 50% by weight of the total Active Ingredients, typically 80%-50%, more usually 75% to 55%, e.g. 70% to 55% of the total Active Ingredients, and at least one other layer, said at least one other layer preferably containing from 20% to 50% by weight of the total Active Ingredient together with a substantial proportion of the Builder.
- Viscosities of our compositions at a shear rate of 136 sec- 1 are typically between 0.1 and 2, preferably 0.2 and 1.5, e.g. 0.25 and 0.6 Pascal Seconds, and the Viscosity Drop is typically between 0.4 and 2, e.g. 0.45 to 1.5 Pascal Seconds.
- Stage III compositions are Non-Shear Sensitive and usually Shear Stable. In contrast, high shear forces tend to render the semi-stable borderline compositions unstable. The viscosity is often substantially increased by even moderate shear and they may undergo rapid sedimentation. This can present practical difficulties during manufacture and bottling.
- Stage III compositions of our invention are generally stable to high pH and to storage at temperatures around 40°C or below 5°C, unlike many semi-stable compositions. They are typically Temperature Stable, when heated to 100°C.
- Stage III compositions typically show no evidence of a Lamellar Phase on analysis by neutron diffraction, although some compositions near the borderline with Stage IV may show evidence of minor amounts of "G" phase.
- aqueous phases exist, an L 1 and a Lye Phase, which latter phase may also be an L l Phase containing fewer micelles and more Electrolyte than the former.
- micellar surfactant without substantially reducing the amount of the Spherulites.
- the lower micellar content reduces the Viscosity, while the Spherulitic phase remains sufficient to maintain stability.
- the Spherulites are sufficiently closely packed to form an aggregated floe which is substantially space-filling, that is it extends throughout the volume of the liquid.
- the Spherulites probably interact to form a weak three dimensional matrix sufficiently strong to support suspended particles, but weak enough to break down and flow readily under the influence of shear forces, and to reform when they are withdrawn.
- the size of the Spherulites appears to correlate with stability compositions with large Spherulites of 5 microns and more being less stable than those in which the majority of surfactant is in Spherulites of from 0.5 to 5 microns.
- compositions of our invention preferably contain at least 5%, less than 30% and generally less than 25% by weight of surfactants. More preferably the surfactant constitutes from 5 to 20% by weight of the composition, e.g. 8 to 15% by weight, typically 10 to 14.5% especially preferably, less than 14, often less than 13%.
- the concentration of Active Ingredients may be a critical factor in obtaining compositions of our invention. Below a certain minimum which varies according to the particular Active system, the composition cannot be stabilised by adding more Electrolyte, however, the maximum is also important in order to avoid instability and/or excessively viscous compositions.
- Prior art semi-stable Spherulitic Compositions have often contained relatively high amounts of Active Ingredients. This has resulted in a relatively high Viscosity of the aqueous suspending medium, which in turn has severely limited the amount of Builder which could be suspended for any given acceptable limit of Viscosity. Thus the overall Builder to Active ratio has been low compared to powders, with consequent poor washing performance.
- the Active Ingredients in such compositions could be reduced without destabilising the systems totally.
- the concentration of Active Ingredient may be substantially reduced, to provide aqueous media of equivalent or even greater stability and yet having lower Viscosity.
- Such media can suspend greater amounts of Builder without losing adequate mobility and the resulting big increases in the ratio of Builder to Active Ingredient produce equally substantial increases in cost effectiveness.
- mixtures of one or more non-ethoxylated anionic surfactant such as alkyl benzene sulphonate and/or alkyl sulphate with one or more cosurfactants which form stable foams such as alkyl ether sulphates and/or alkanolamides or amine oxides, are generally more suitable than any of the surfactants on their own.
- Minor amounts of ethoxylated non-ionic surfactants, or of amphoteric surfactants, or cationic fabric softeners, may additionally be present.
- the surfactant mixture may for example comprise one or more at least sparingly water-soluble salts of sulphonic or mono esterified sulphuric acids e.g. an alkylbenzene sulphonate, alkyl sulphate, alkyl ether sulphate, olefin sulphonate, alkane sulphonate, alkylphenol sulphate, alkylphenol ether sulphate, alkyl ethanol amide sulphate, alkylethanolamide ether sulphate, or alpha sulpho fatty acid or its esters each having at least one alkyl or alkenyl group with from 8 to 22, more usually 10 to 20, aliphatic carbon atoms.
- sulphonic or mono esterified sulphuric acids e.g. an alkylbenzene sulphonate, alkyl sulphate, alkyl ether sulphate, olefin sulphonate, alkane s
- Said alkyl or alkenyl groups are preferably straight chain primary groups but may optionally be secondary, or branched chain groups.
- the expression ether hereinbefore refers to polyoxyethylene, polyoxypropylene, glyceryl and mixed polyoxyethylene-oxy propylene or mixed glyceryl- oxyethylene or glyceryl-oxy propylene groups, typically containing from 1 to 20 oxyalkylene groups.
- the sulphonated or sulphated surfactant may be sodium dodecyl benzene sulphonate, potassium hexadecyl benzene sulphonate, sodium dodecyl dimethyl benzene sulphonate, sodium lauryl sulphate, sodium tallow sulphate, potassium oleyl sulphate, ammonium lauryl monoethoxy sulphate, or monoethanolamine cetyl 10 mole ethoxylate sulphate.
- anionic surfactants useful according to the present invention include paraffin sulphonates, olefin sulphonates, fatty alkyl sulphosuccinates, fatty alkyl ether sulphosuccinates, fatty alkyl sulphosuccinamates, fatty alkyl ether sulphosuccinamates, acyl sarcosinates, acyl taurides, isethionates, Soaps such as stearates, palmitates, resinates, oleates, linoleates, and alkyl ether ' carboxylates.
- Anionic phosphate esters may also be used.
- the anionic surfactant typically contains at least one aliphatic hydrocarbon chain having from 8 to 22 preferably 10 to 20 carbon atoms, and, in the case of ethers one or more glyceryl and/or from to 20 ethyleneoxy and or propyleneoxy groups.
- Preferred anionic surfactants are sodium salts.
- Other salts of commercial interest include those of potassium, lithium, calcium, magnesium, ammonium, monoethanolamine, diethanolamine, triethanolamine and alkyl amines containing up to seven aliphatic carbon atoms.
- the surfactant mixture may optionally contain nonionic surfactants.
- the nonionic surfactant may be e.g. a C IO - 22 alkanolamide of a mono or di-lower alkanolamine,such as coconut monoethanolamide.
- nonionic surfactants which may optionally be present, include ethoxylated alcohols, ethoxylated carboxylic acids, ethoxylated amines, ethoxylated alkylolamides, ethoxylated alkylphenols, ethoxylated glyceryl esters, ethoxylated sorbitan esters, ethoxylated phosphate esters, and the propoxylated or ethoxylated and propoxylated analogues of all the aforesaid ethoxylated nonionics, all having a C 8-22 alkyl or alkenyl group and up to 20 ethyleneoxy and/or propyleneoxy groups, or any other nonionic surfactant which has hitherto been incorporated in powder or liquid detergent compositions e.g. amine oxides.
- the latter typically have at least one C 8-22 , preferably C 10-20 alkyl or alkenyl group and up to two lower (e.g
- the preferred Active Ingredients or mixtures for our invention are for example those having an HLB greater than 7, preferably greater than 8, more preferably greater than 10, most preferably greater than 12 and preferably less than 18, more preferably less than 16, most preferably less than 15.
- Cationic fabric softeners of value in the invention include quaternary amines having two long chains (e.g. C 12 - 22 typically C 16-20 ) alkyl or alkenyl groups and either two short chains (e.g. C 1-4 ) alkyl groups, or one short chain and one benzyl group. They also include imidazoline and quaternised imidazolines having two long chain alkyl or alkenyl groups, and amido amines and quaternised amido amines having two long chain alkyl or alkenyl groups.
- the quaternised softeners are all usually salts of anions which impart a measure of water dispersibility such as formate, acetate, lactate, tartrate, chloride, methosulphate, ethosulphate, sulphate or nitrate.
- Compositions of our invention having fabric softener character may contain smectite clays.
- compositions of our invention may also contain amphoteric surfactant, which may be included typically in surfactants having cationic fabric softener, but may also be included, usually as a minor component of the Active Ingredients, in any of the other detergent types discussed above.
- amphoteric surfactant may be included typically in surfactants having cationic fabric softener, but may also be included, usually as a minor component of the Active Ingredients, in any of the other detergent types discussed above.
- Amphoteric surfactants include betaines, sulphobetaines and phosphobetains formed by reacting a suitable tertiary nitrogen compound having a long chain alkyl or alkenyl group with the appropriate reagent,such as chloroacetic acid or propane sultone.
- suitable tertiary nitrogen containing compounds include: tertiary amines having one or two long chain alkyl or alkenyl groups, optionally a benzyl group and any other substituent a short chain alkyl group; imidazoline having one or two long chain alkyl or alkenyl groups and amidoamines having one or two long chain alkyl or alkenyl groups.
- Electrolyte is essential in order to interact with the surfactant to form a space-filling spherulitic system.
- the Electrolyte concentration is preferably not, however, sufficient to permit substantial stacking of any planar Bilayers, to form non- spherical Lamellar Phases.
- Such Lamellar Phases may provide non-Stable or Shear Unstable compositions, unless the Pay Load is sufficiently high for the Lamellar Phase to form a stable structure according to E.P.008614A, The relatively strong matrix which characterises the latter compositions, however, generally results in undesirably high Viscosity.
- a suitable surfactant system at a suitable concentration we have found that it is possible to stabilise the system in accordance with an our invention by including in the composition a suitable quantity of Electrolyte.
- Electrolyte results in unstable, or shear, or temperature sensitive systems and/or in systems having undesirably high Viscosity.
- the proportion of Electrolyte must therefore be selected according to the nature of the surfactant and the amount of any Hydrotrope present to provide compositions according to the present invention.
- the optimum proportion of Electrolyte may generally be determined by making progressive additions of Electrolyte to an aqueous, micellar solution of the Active Ingredients (typically about 15 to 20% by weight Active) and observing one or more of several characteristic properties of the system such as turbidity, Conductivity, Yield Point, appearance under the polarising microscope or with phase contrast or differential interference contrast, or behaviour on High G Centrifuging.
- the proportion may be optimised within this range by observing the amount required to obtain no clear layer on High G Centrifuging for 90 minutes, and/or to provide Temperature Stable and/or Shear Stable compositions. If the composition is intended for a market in which low Viscosity is of primary importance, the optimised composition may be progressively diluted until a suitable Viscosity is achieved or signs of instability are observed. If the latter occurs, further additions of Electrolyte may be made until a sufficiently stable composition has been obtained.
- the amount of Electrolyte is preferably greater than that at the First Conductivity Minimum in the Conductivity/Electrolyte concentration graph and corresponds to the amount required to provide a composition having a Yield Point greater than 1.5 dynes cm- 2 .
- Electrolytes such as carbonates, silicates, pyrophosphates, polyphosphates, nitriloacetates and citrates, all of which are Builders, but the effective concentration of some such Electrolytes, e.g. carbonates, may be undesirably limited by their solubility. In such cases it may prove necessary to add a more soluble Non-Functional Electrolyte. Sodium chloride and sodium nitrate have been found particularly effective in this respect.
- the proportion of Electrolyte in the at least one predominantly aqueous phase is sufficient to provide a concentration of at least 0.3 preferably at least 1.2 e.g 2.0 to 4.5 gram ions per litre of alkali metal, alkaline earth metal and/or ammonium cations.
- the Builder in preferred compositions of our invention is . believed to be normally present, at least partially, as discrete solid crystallites suspended in the composition.
- the crystallites typically have a size of up to 60 eg 1 to 50 microns.
- Formulations containing sodium tripolyphosphate as Builder exhibit stability and mobility over a wider range of Dry Weight than corresponding Formulations with other Builders. Such formulations are therefore preferred.
- Our invention also provides compositions comprising other Builders such as potassium tripolyphosphate, carbonates, zeolites, nitrilo triacetates, citrates, metaphosphates, pyrophosphates, phosphonates, EDTA and/or polycarboxylates, optionally but preferably, in admixture with tripolyphosphate.
- Orthophosphates may be present, preferably as minor components in admixture with tripolyphosphate, as may alkali metal silicates and carbonates.
- Silicates and carbonates are particularly preferred since they perform several valuable functions. They provide the free alkalinity desirable to saponify fats in the soil, they have an effect as Builders, and in the case of silicates, they inhibit corrosion of aluminium surfaces in washing machines. In addition, they are effective as Electrolytes necessary to form a spherulitic system.
- silicate typically, where silicate is used to prepare our compositions it has an Na 2 O: SiO2 ratio of from 1:1 to 1:2 or 1:1.5 to 1:1.8. It will however be appreciated that any ratio of Na 2 0 (or other base) to Si0 2 , or even silicic acid, could be used to provide the silicate in the composition, and any necessary additional alkalinity provided by addition of another base such as sodium carbonate or hydroxide. Formulations not intended for use in washing machines do not require silicates provided that there is an alternative source of alkalinity.
- compositions wherein the Builder is present substantially entirely in solution, e.g. sodium nitrilo triacetate, sodium citrate, sodium silicate or mixtures thereof.
- the Builder normally constitutes at least 15% by weight of the compositions, preferably at least 20%.
- the ratio of Builder to surfactant is greater than 1:1 preferably 1.2:1 to 4:1.
- the cations present should consist, at least predominantly, of sodium.
- the preferred Builder is sodium tripolyphosphate
- the preferred anionic surfactants are sodium salts of sulphated or sulphonated anionic surfactants and any anti-redeposition agent, e.g. carboxymethyl cellulose, or alkali, e.g. silicate or carbonate are also preferably present as the sodium salts.
- Sodium chloride, sodium nitrate or other soluble inorganic sodium salts may be added to increase the Electrolyte concentration.
- Calcium is only normally present when the Active Ingredients comprise surfactants, such as olefin sulphonates or non-ionics which are tolerant of its presence. Magnesium salts may be present, and are more compatible with surfactants than is calcium.
- compositions containing high proportions of such cations are, however, unlikely to be cost effective in comparison with conventional laundry powders.
- compositions of our invention are preferably alkaline, being desirably buffered with an alkaline buffer to provide a pH in the composition as measured on a glass electrode, above 8.5 preferably above 9, most preferably above 9.2, e.g. 9.5 to 12 especially 10 to 11.
- our compositions should be adapted to provide a pH of greater than 9.7, e.g. greater than 10, especially 10.5 to 11.5 in a wash liquor containing the composition diluted to 0.5% Dry Weight.
- They desirably have sufficient free alkalinity to require at least 0.4 mls, preferably at least 0.8 mls, most preferably 1 to 12 mls, e.g.
- compositions having higher alkalinity may also be commercially acceptable.
- lower alkalinities are less acceptable in commercial practice, although not excluded from the scope of our invention.
- the alkaline buffer is preferably sodium tripolyphosphate and the alkalinity is preferably provided at least in part by sodium carbonate.
- Other preferred alkaline buffers include sodium silicate.
- liquid detergent compositions have commonly contained substantial concentrations of Hydrotropes and/or organic, water- miscible hydroxylic solvents such as methanol, ethanol, isopropanol, glycol, glycerol, polyethylene glycol and polypropylene glycol. They are, however, costly and not Functional Ingredients. They may, in certain circumstances promote pourability or permit a surfactant to form a spherulitic phase more readily. 1e do not therefore totally exclude them from all compositions of our invention, but we prefer that their presence be limited to the minimum required to ensure a Spherulitic Composition of adequate Pourability. If not so required we prefer that they be absent. Solvents may sometimes need to be accommodated as components of perfumes or other of the Usual Minor Ingredients.
- Hydrotropes and/or organic, water- miscible hydroxylic solvents such as methanol, ethanol, isopropanol, glycol, glycerol, polyethylene glycol and polypropylene glycol.
- solvents such as
- the Dry Weight of the composition affects stability and Pourability. Optimum Dry Weight may vary considerably from one type of Formulation to another and may be selected to provide the required Viscosity. Generally speaking it has not been found possible to guarantee Stable compositions below about 35% by weight Dry Weight, although some types of Formulation can be obtained in a Stable form below 30% Dry Weight, and sometimes as low as 25% Dry Weight. We do not exclude the possibility of making Stable Compositions at Dry Weights down to 20%.
- a range of Dry Weights can be identified within which the composition is both Stable and Pourable. Generally below this range, sedimentation occurs and above the range, the Formulation is either unstable or too viscous.
- the acceptable range may be routinely determined for any given Formulation by preparing the suspension using the minimum water required to maintain a stirrable composition, diluting a number of samples to progressively higher dilutions, and observing the samples for signs of sedimentation over a suitable period.
- the acceptable range of Dry Weights may extend from 30% or 35% to 60 or even 70% by weight for others it may be much narrower, e.g. 40 to 45% by weight.
- the Formulation should be modified according to the teaching herein e.g. by the addition of more sodium carbonate, sodium silicate solution or other Electrolyte if the composition exhibits Stage or II properties, or by reducing the Electrolyte content or adding Hydrotrope if the composition exhibits Stage IV or V properties.
- the Active Ingredients may be modified by adding a foam stabilising surfactant, such as alkyl ether sulphate, alkanolamide or amine oxide, if the composition tends to form Stage IV or V, or by adding alkyl benzene sulphonate or alkyl sulphate or other non-ethoxylated anionic surfactant if Stage I or Stage II properties predominate.
- a foam stabilising surfactant such as alkyl ether sulphate, alkanolamide or amine oxide
- compositions of our invention can, in many instances be readily prepared by normal stirring together of the ingredients. It is a characteristic of our preferred compositions, however, that they are not destabilised or thickened by subjection to high shear forces.
- Compositions according to our invention may be typically obtained for any suitable Active Ingredients by first preparing a clear aqueous L 1 solution of the Active Ingredients at a suitable concentration (e.g. 15 to 30% by weight Active) with warming, if necessary, and dissolving Electrolyte in the L 1 solution or adding concentrated Electrolyte solution (preferably Functional Electrolyte) until the mixture becomes opaque. A sample of the mixture is then centrifuged at 20,OOOG for 5 minutes. If a clear aqueous phase is observed, more Electrolyte is added to the mixture until High G Centrifuging no longer gives evidence of a separate, substantially clear, aqueous phase. The weight ratio of Active Ingredient to dissolved Electrolyte is then noted.
- a suitable concentration e.g. 15 to 30% by weight Active
- concentrated Electrolyte solution preferably Functional Electrolyte
- a composition containing all the desired Ingredients and having the Active Ingredient to Electrolyte weight ratio already determined may then be prepared at the desired Percentage Dry Weight (typically 40 to 50%). Formation of a clear aqueous Lye phase on High G Centrifuging indicates the presence of Lamellar or non-space filling Spherical "G" Phase and the amount of Electrolyte is then reduced until no clear phase is observed on High G Centrifuging. Samples of the latter Formulation at different Dry Weights may be prepared to determine the optimum balance of Pay Load/mobi l ity/stabi l ity characteristics. If, on dilution to a desired, low Viscosity, the stability is inadequate, it may often be restored by adding more Electrolyte.
- the desired Percentage Dry Weight typically 40 to 50%.
- the -procedure may be repeated using a more soluble Electrolyte, e.g. a non-Functional Electrolyte such as sodium chloride or sodium nitrate.
- a more soluble Electrolyte e.g. a non-Functional Electrolyte such as sodium chloride or sodium nitrate.
- the Active system may be modified by addition of surfactants which favour stable dispersions according to our invention, e.g. ether sulphates, amine oxides or alkanolamides, if Stage IV or V properties are observed, or a non-ethoxylated anionic surfactant if Stage I or II properties are more readily obtained.
- the proportions of surfactant may be adjusted until a mixture is obtained that forms a Stable, turbid, mixture at the First Conductivity Minimum.
- Formulations are typically based on mixtures of one or more non-ethoxylated anionic surfactant, preferably a sulphated or sulphonated surfactant, with one or more cosurfactant which forms a stable foam such as an ethoxylated anionic surfactant, an amine oxide or a fatty alkanolamide.
- the first component of the Active Ingredients i.e. the the non ethoxylated anionic surfactant may for example be a C l o - 18 alkyl sulphate and/or C 10-14 alkyl benzene sulphonate.
- the second component or cosurfactant may be a sodium C 10-20 straight or branched chain alkyl C 1-10 mole ether sulphate or an alkyl phenol ether sulphate, amine ether sulphate, alkanolamide ether sulphate or fatty acid ether sulphate.
- the second component may comprise an amine oxide or fatty alkylolamide.
- the total proportion by weight of non-ethoxylated anionic to cosurfactant may typically be from 5:1 to 1:3, preferably 4:1 to 1:2, e.g. 3:1 to 1:1. Small amounts (e.g. up to 1% of the weight of the compositions) of Soap may be present to aid rinsing of the fabric.
- Nonionic ethoxylates may be present in minor proportions, typically up to 20% by wt. of the total Active Ingredients, preferably less than 15%, usually less than 10%.
- the sodium alkyl sulphate or alkyl benzene sulphonate may be totally or partially replaced, in the above Formulations by other sulphonated, non-ethoxylated surfactants including fatty alkyl xylene or toluene sulphonates, or by paraffin sulphonates, olefin sulphonates, sulphocarboxylates, and their esters and amides, including sulphosuccinates and sulphosuccinamates.
- the alkyl ether sulphate may be wholly or partially replaced by other ether sulphates such as alkyl phenyl ether sulphates, fatty acyl monoethanolamide ether sulphates or mixtures thereof.
- our invention provides a Stable, Pourable, Non-Shear Sensitive Spherulitic Composition having a Pay Load of at least 35% by weight and comprising: water; from 12 to 40% Dry Weight of Active Ingredient based on the Dry Weight of the composition and from 20 to 80% Dry Weight of Builder based on the Dry Weight of the composition, at least partly present as suspended solid and partly as at least part of said dissolved Electrolyte, in a total weight ratio of Builder to Active Ingredients of 1.3:1 to 4:1; and wherein said Active Ingredients consists of (A) from 30 to 80% by weight thereof of a non-alkoxylated anionic sulphated or sulphonated surfactant, and (B) from 20% to 70% by weight of the total surfactant of at least one foam stabilising cosurfactant such as an alkoxylated anionic surfactant, an alkanolamide or an amine oxide.
- a foam stabilising cosurfactant such as an alkoxylated anionic surfactant, an alkan
- the aforesaid composition may additionally contain up to 6% by Dry Weight of the composition of Soap.
- the non-alkoxylated sulphated or sulphonated anionic surfactant consists substantially of alkyl sulphate or alkyl benzene sulphonate, . preferably sodium alkyl benzene sulphonate, e.g. C 10 - 14 alkyl benzene sulphonate.
- the anionic surfactant may comprise a mixture of alkyl benzene sulphonate, and/or alkyl sulphate with alkyl ether sulphate and/or alkyl phenol ether sulphate in weight proportions of e.g. from 1:3 to 5:1 typically 1:2 to 4:1 preferably 1:1 to 3:1 e.g. 2:1.
- Low foaming compositions according to our invention may be prepared by using suitable foam-inhibitors.
- foam-inhibitor requires some care, since certain commercially available foam-inhibitors may lose their effectiveness on storage in compositions of our invention, while others are only effective at concentrations high enough to affect the Viscosity or Stability of the composition.
- a Stable, Pourable, fluid, aqueous-based, detergent composition comprising: from 12 to 40% based on Dry Weight ther of of Active Ingredients which comprise from 30 to 90% based on the Dry weight of the Active Ingredients of non-alkoxylated sulphated and/or sulphonated anionic surfactant and the balance of alkyl ether sulphate, alkanolamide and/or amine oxide; an aqueous phase containing sufficient Electrolyte in solution to form a space-filling Spherulitic floc comprising at least part of said Active Ingredients and Interspersed with said aqueous phase; suspended particles of Builder; an effective amount of at least one foam inhibitor and optionally the Usual Minor Ingredients.
- our invention provides a Pourable, Stable, Non-Lamellar detergent composition having a Payload of from 30% to 50% consisting essentially of from 12 to 40% Dry Weight, based on the Dry Weight of the composition, of Active Ingredients, at least 30% Builder, based on the Dry Weight of the composition, a ratio of Builder to Active Ingredient greater than 1.1 to 1, said Active Ingredient consisting essentially of alkyl benzene sulphonate having 8 to 18 aliphatic carbon atoms and an alkyl ethanolamide selected from Cio -18 alkyl monoethanolamides and diethanolamides, in a weight ratio of alkyl benzene sulphonate to ethanolamide of from 1.5:1 to 4:1, said Builder being selected from sodium tripolyphosphate, sodium carbonate, zeolite, sodium nitrilo triacetate, sodium silicate and mixtures thereof, such that the amount of dissolved Builder is sufficient to provide a Yield Point of greater than 1.5 dynes cm- 2 .
- a particularly preferred embodiment of our invention provides a Pourable, Stable, liquid detergent composition, consisting essentially of:
- the sodium cation in the above composition may optionally, but less preferably, be replaced wholly or in part by potassium, lithium or ammonium.
- the sodium tripolyphosphate constitutes from 40 to 95% of the total weight of Builder, e.g. 45% to 80%.
- the composition contains at least one foam-inhibitor if required for automatic washing.
- composition may optionally contain minor proportions of alkanolamide, such as coconut monoetholamide or diethanolamide, or of ethoxylated non-ionic surfactant, e.g. up to 15% of the total Active Ingredients, preferably less than 10%.
- alkanolamide such as coconut monoetholamide or diethanolamide
- ethoxylated non-ionic surfactant e.g. up to 15% of the total Active Ingredients, preferably less than 10%.
- compositions of the invention may contain the Usual Minor Ingredients. Principal of these are antiredeposition agents, dispersants, optical brightening agents and bleaches.
- SCMC sodium carboxymethyl cellulose
- Alternative antiredeposition and/or soil releasing agents include potassium, ammonium and other soluble CMC salts, phosphonates, methylcellulose, poiyvinylpyrrolidone, carboxymethyl starch and similar poly electrolytes, including synthetic polycarboxylates such as polyacrylates all of which may be used in place of SCMC.
- Optical Brighteners are optional, but preferred, ingredients of the compositions of our invention. Unlike some prior art formulations, our compositions are not dependent on OBA's for stability and we are therefore free to select any convenient and cost effective OBA, or to omit them altogether.
- OBA may be present in conventional amounts. Typically concentrations of OBA between 0.05 and 0.5% are sufficient e.g. 0.075 to 0.3% typically 0.1 to 0.2%. Lower concentrations could be used but are unlikely to be effective, while higher concentrations, while we do not exclude them, are unlikely to prove cost effective and may, in some instances give rise to problems of compatibility.
- OBA's which may be used in the present invention include : ethoxylated 1, 2-(benzimidazolyl) ethylene; 2- styrylnaphth[1,2d-loxazole; 1,2-bis(5' methyl-2-benzoxazolyl) ethylene; disodium-4,4'-bis(6-methylethanoiamine-3-anilino-1,3,5-triazin-2"-yl)-2,2'-stilbene sulphonate; N-(2-hydroxyethyl-4;4'-bis (benzimidazolyl)stilbene; tetrasodium 4,4'-bis [4"-bis(2"- hydroxyethyl)-amino-6"(3"-sulphophenyl) amino-1", 3", 5"-triazin-2"-yl amino]-2,2'-stilbenedisulphonate; disodium-4-(6"-sulphonaphtho[1',2'-d
- Bleaches may optionally be incorporated in liquid detergent compositions of our invention subject to chemical stability and compatibility. Encapsulated bleaches may form part of the suspended solid. The action of peroxy bleaches in compositions of our invention may be enhanced by the presence of bleach activators such as tetra acetyl ethylenediamine, in effective amounts. Photoactive bleaches such as zinc or aluminium sulphonated phthalocyanin, may also be present.
- Perfumes and colourings are conventionally present in laundry detergents in amounts up to 1 or 2%, and may similarly be present in compositions of our invention. Care is sometimes necessary in selecting a suitable perfume since the solvents present may modify the behaviour of the Active Ingredients.
- Proteolytic and amylolitic enzymes may optionally be present in conventional amounts, together optionally with enzyme stabilizers and carriers. Encapsulated enzymes may be suspended in the composition.
- Minor Ingredients include defoamers, alkalis, buffers, germicides such as formaldehyde, opacifiers such as vinyl latex emulsion, inert abrasives, such as silica and anticorrosives such as benzotriazole.
- compositions of our invention are, in general, suitable for laundry use and our invention provides a method of washing clothes by agitating them in a wash liquor containing any composition of the invention as described herein.
- Low foam compositions herein described are in particular of use in automatic washing machines.
- the compositions may also be used in the washing of dishes, or the cleaning of hard surfaces, the low foam products being particularly suitable for use in dishwashing machines.
- High foaming compositions may be of value for shampoo formulations.
- compositions of our invention may, generally, be used for washing clothes in boiling water, or for washing at medium or cool temperatures, e.g. 50 to 80°C, especially 55 to 68 0 C, or 20 to 50°C especially 30 to 40°C, respectively.
- the compositions may be added to the washwater at concentrations of between 0.05 and 3% Dry Weight based on the wash water preferably 0.1 to 2%, more usually 0.3 to 1% e.g. 0.4 to 0.8%.
- the invention is illustrated by the examples set out in the following Tables.
- the Examples were stable and Pourable. They were stable to storage at 40°C and were Non-Shear Sensitive. They were Temperature Stable and, except for Example 83, were Shear Stable.
- Figure 1 is a graph showing conductivity of an aqueous 20.6% solution of Active Ingredients consisting of 2 parts by weight sodium dodecyl benzene sulphonate and 1 part sodium C 12-18 alkyl 3 mole ethoxy sulphate, with various concentrations of added sodium silicate of Na 2 O:SiO 2 mole ratio 1:1.6.
- the figures on the horizontal axis refer to the amount of silicate in the composition expressed as weight percent of solids.
- Stage II compositions are obtained, which are turbid, unstable and comprise non-Space Filling Flocs of Spherulites.
- Stage III compositions are obtained, according to the invention. These are turbid, Stable compositions containing substantially Space Filling Flocs of Spherulites, exhibiting a Yield Point and showing only a single liquid phase on High G Centrifuging.
- Stage IV compositions are obtained, containing non-Space Filling Flocs of Spherical G Phase, which are non-Stable. It will be seen that the Stable Stage III compositions are obtained in the Conductivity trough around the First Conductivity Minimum.
- Figure 2 shows the effect of adding sodium nitrate to the same aqueous Active system. Beyond the point "C” in Stage IV a second Conductivity Maximum is passed, followed by a Second Conductivity Minimum, corresponding to the formation of a Lamellar composition according to Stage V at approximately "D".
- Figure 3 shows variations in Viscosity, Conductivity and Yield Point when sodium carbonate is added to the same Active system.
- the left-hand axis indicates Viscosity at 136 sec- l in Pascal Seconds, the figures in parenthesis referring to Conductivity in millisiemens cm- 1 ; the right-hand scale refers to Yield Point in dynes cm- 2 ; the horizontal axis represents the total percentage of sodium carbonate present expressed as Dry Weight of sodium carbonate based on the total weight of the composition
- Figure 4 illustrates the effect of varying the relative proportions of sodium dodecyl benzene sulphonate and coconut monoethanolamide in a composition containing sodium dodecyl benzene sulphonate, sodium tripolyphosphate, sodium carbonate and water in a ratio of 0.2:0.5:0.1:1.0.
- the horizontal scale represents the Wt. ratio of coconut monoethanolamide to sodium dodecyl benzene sulphonate.
- the vertical scale represents Conductivity in mS cm- 1 (circles) and also Viscosity in Pascal Seconds X 10 (triangles) .
- Figure 5 shows a similar relationship wherein the cococnut monoethanolamide is replaced with sodium C 12-18 alkyl 3 mole ethoxy sulphate.
- the horizontal scale is the weight ratio of the ether sulphate to the alkyl benzene sulphonate.
- Figures 4 and 5 illustrate how it is possible to prepare compositions of the invention by modifying the Active Ingredients.
- Figure 6 shows the variation in Conductivity in mS cm -1 when sodium nitrate is added in various proportions to a detergent composition containing suspended Builder and having the formulation:
- Figure 7 shows the Yield Point for the same system, in dynes cmr2 and Figure 8 shows the Viscosity at 136 cmr 1 (lower curve), 21 curl (upper curve) and the Viscosity drop (middle curve) in Pascal Seconds X10.
- Figure 9 illustrates the change in Conductivity with varying proportions of sodium silicate in a 20.6% by wt. aqueous solution of sodium dodecyl benzene sulphonate in admixture with coconut monoethanolamide in a weight ratio of 10:4.
- Figures 10 and 11 are transmission micrographs of Pt/C replicas, after freeze fracturing, at magnifications of X78,000 and X150,000 (lin) respectively.
- the micrograph shows Spherulites of between 0.2 and 1 micron diameter, which show evidence of being Multiple Vesicles with a concentric structure, having a repeat spacing (including the thickness of one surfactant shell and one adjacent aqueous layer) of 80 + A.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT84309004T ATE52106T1 (de) | 1983-12-22 | 1984-12-21 | Fluessige reinigungsmittelzusammensetzungen. |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8334250 | 1983-12-22 | ||
GB838334250A GB8334250D0 (en) | 1983-12-22 | 1983-12-22 | Liquid detergent compositions |
US57663284A | 1984-02-03 | 1984-02-03 | |
US576632 | 1984-02-03 | ||
GB848415783A GB8415783D0 (en) | 1984-06-20 | 1984-06-20 | Liquid detergent compositions |
GB8415783 | 1984-06-20 | ||
GB8421759 | 1984-08-28 | ||
GB848421759A GB8421759D0 (en) | 1984-08-28 | 1984-08-28 | Liquid detergent compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0151884A2 true EP0151884A2 (de) | 1985-08-21 |
EP0151884A3 EP0151884A3 (en) | 1987-09-23 |
EP0151884B1 EP0151884B1 (de) | 1990-04-18 |
Family
ID=27449526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84309004A Expired EP0151884B1 (de) | 1983-12-22 | 1984-12-21 | Flüssige Reinigungsmittelzusammensetzungen |
Country Status (26)
Country | Link |
---|---|
EP (1) | EP0151884B1 (de) |
KR (1) | KR900000897B1 (de) |
AR (1) | AR244329A1 (de) |
AT (1) | ATE52106T1 (de) |
BG (1) | BG60382B1 (de) |
BR (1) | BR8406827A (de) |
CA (1) | CA1325946C (de) |
DE (1) | DE3481996D1 (de) |
DK (1) | DK166030C (de) |
ES (1) | ES8605570A1 (de) |
FI (1) | FI80473C (de) |
FR (1) | FR2587355B1 (de) |
GB (2) | GB8432487D0 (de) |
GR (1) | GR82576B (de) |
HK (1) | HK148294A (de) |
HU (1) | HU214669B (de) |
IE (1) | IE58044B1 (de) |
IL (2) | IL73903A0 (de) |
IN (1) | IN163276B (de) |
IT (1) | IT1179891B (de) |
MX (1) | MX167884B (de) |
NO (1) | NO166724C (de) |
NZ (1) | NZ210707A (de) |
PL (1) | PL146679B1 (de) |
PT (1) | PT79744B (de) |
YU (1) | YU46364B (de) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328176A2 (de) * | 1988-02-10 | 1989-08-16 | Unilever N.V. | Wässrige Reinigungsmittel und Verfahren zu deren Herstellung |
EP0331370A2 (de) * | 1988-02-26 | 1989-09-06 | Unilever Plc | Detergentzusammensetzung |
EP0346993A2 (de) * | 1988-06-13 | 1989-12-20 | Unilever N.V. | Flüssige Waschmittelzusammensetzungen |
EP0346994A2 (de) * | 1988-06-13 | 1989-12-20 | Unilever N.V. | Flüssige Waschmittelzusammensetzungen |
EP0354010A2 (de) * | 1988-08-05 | 1990-02-07 | Albright & Wilson Limited | Flüssige Reinigungsmittelzusammensetzungen |
EP0385522A2 (de) * | 1989-02-27 | 1990-09-05 | Unilever N.V. | Flüssiges Reinigungsmittel |
WO1991005844A1 (en) * | 1989-10-12 | 1991-05-02 | Unilever N.V. | Liquid detergents |
GB2245262A (en) * | 1990-06-22 | 1992-01-02 | Unilever Plc | Aluminosilicate slurries l |
EP0530708A2 (de) * | 1991-08-30 | 1993-03-10 | ALBRIGHT & WILSON UK LIMITED | Flüssiges Wäschewaschmittel |
US5264143A (en) * | 1989-02-22 | 1993-11-23 | The Procter & Gamble Company | Stabilized, bleach containing, liquid detergent compositions |
EP0658620A1 (de) * | 1993-12-15 | 1995-06-21 | ALBRIGHT & WILSON UK LIMITED | Strukturierte Tenside |
WO1995031528A1 (en) * | 1994-05-13 | 1995-11-23 | Unilever N.V. | Detergent composition |
WO1996024658A1 (en) * | 1995-02-06 | 1996-08-15 | Unilever N.V. | Liquid compositions |
US5597508A (en) * | 1989-10-31 | 1997-01-28 | Lever Brothers Company, Division Of Conopco, Inc. | Liquid detergent composition containing deflocculating polymer with ionic monomers |
EP0776965A2 (de) | 1995-11-30 | 1997-06-04 | Unilever N.V. | Polymerzusammetzungen |
WO1997047725A1 (en) * | 1996-06-13 | 1997-12-18 | Colgate-Palmolive Company | Liquid crystal detergent compositions |
WO2000036079A1 (en) * | 1998-12-16 | 2000-06-22 | Unilever N.V. | Structured liquid detergent composition |
US6083897A (en) * | 1998-08-28 | 2000-07-04 | Huntsman Petrochemical Corporation | Solubilization of low 2-phenyl alkylbenzene sulfonates |
US6133217A (en) * | 1998-08-28 | 2000-10-17 | Huntsman Petrochemical Corporation | Solubilization of low 2-phenyl alkylbenzene sulfonates |
US6166095A (en) * | 1993-12-15 | 2000-12-26 | Albright & Wilson Uk Limited | Method of preparing a drilling fluid comprising structured surfactants |
US6617303B1 (en) | 1999-01-11 | 2003-09-09 | Huntsman Petrochemical Corporation | Surfactant compositions containing alkoxylated amines |
WO2004056957A1 (en) * | 2002-12-19 | 2004-07-08 | Unilever Plc | Detergent composition |
WO2004056950A1 (en) * | 2002-12-19 | 2004-07-08 | Unilever Plc | Detergent composition |
US6897188B2 (en) | 2001-07-17 | 2005-05-24 | Ecolab, Inc. | Liquid conditioner and method for washing textiles |
WO2007001341A2 (en) | 2005-06-24 | 2007-01-04 | Rhodia, Inc. | Structured surfactant compositions |
WO2007085410A1 (en) * | 2006-01-24 | 2007-08-02 | Henkel Ag & Co. Kgaa | Structured cleaning compositions |
WO2008047148A1 (en) * | 2006-10-20 | 2008-04-24 | Innovation Deli Limited | Skin cleansing compositions |
WO2008076693A3 (en) * | 2006-12-15 | 2008-08-07 | Colgate Palmolive Co | Liquid detergent composition |
US7682403B2 (en) | 2004-01-09 | 2010-03-23 | Ecolab Inc. | Method for treating laundry |
US8110537B2 (en) | 2003-01-14 | 2012-02-07 | Ecolab Usa Inc. | Liquid detergent composition and methods for using |
WO2013016031A1 (en) | 2011-07-27 | 2013-01-31 | The Procter & Gamble Company | Multiphase liquid detergent composition |
WO2013064356A1 (de) * | 2011-11-02 | 2013-05-10 | Henkel Ag & Co. Kgaa | STRUKTURIERTES WASCH- ODER REINIGUNGSMITTEL MIT FLIEßGRENZE |
WO2013119908A1 (en) | 2012-02-10 | 2013-08-15 | Stepan Company | Structured surfactant suspending systems |
WO2012082154A3 (en) * | 2010-12-14 | 2013-10-31 | Agape Patent Holdings, Llc | Remedial composition and treatment methods |
WO2014064005A1 (de) * | 2012-10-22 | 2014-05-01 | Henkel Ag & Co. Kgaa | Tensid-haltige schäume |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EG18543A (en) * | 1986-02-20 | 1993-07-30 | Albright & Wilson | Protected enzyme systems |
GB8713574D0 (en) * | 1987-06-10 | 1987-07-15 | Albright & Wilson | Liquid detergent compositions |
GB8906234D0 (en) * | 1989-03-17 | 1989-05-04 | Albright & Wilson | Agrochemical suspensions |
GB2247028B (en) * | 1990-08-15 | 1994-06-08 | Albright & Wilson | Dye suspensions |
FR2666344B1 (fr) * | 1990-09-03 | 1992-12-18 | Total France | Procede d'adoucissement en lit fixe de distillats petroliers acides de temperatures de coupe comprises entre environ 125 et environ 350 degre c. |
GB9102757D0 (en) * | 1991-02-08 | 1991-03-27 | Albright & Wilson | Biocidal and agrochemical suspensions |
GB2259519B (en) * | 1991-08-30 | 1996-03-06 | Albright & Wilson | Concentrated aqueous surfactant compositions |
SK53294A3 (en) | 1993-05-07 | 1995-04-12 | Albright & Wilson | Concentrated aqueous mixture containing surface active matter and its use |
WO2003055456A1 (en) | 2001-12-21 | 2003-07-10 | Rhodia Inc. | Stable surfactant compositions for suspending components |
ES2967798T3 (es) | 2017-06-22 | 2024-05-03 | Ecolab Usa Inc | Blanqueo utilizando a¿cido peroxfo¿rmico y un catalizador de oxi¿geno |
CN112900081B (zh) * | 2021-02-02 | 2022-05-24 | 天津大学 | 一种疏水球晶、疏水材料、疏水复合材料、Janus复合材料及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB948617A (en) * | 1959-10-30 | 1964-02-05 | Unilever Ltd | Stabilised liquid detergent compositions |
CH522031A (de) * | 1967-06-26 | 1972-04-30 | Procter & Gamble | Beständiges, flüssiges, bleichendes Wasch- und Reinigungsmittel |
EP0038101A1 (de) * | 1980-04-09 | 1981-10-21 | Unilever N.V. | Flüssige Reinigungsmittelzusammensetzungen auf der Basis von Komplexbildnern und Verfahren zur Herstellung |
EP0080221A1 (de) * | 1981-11-13 | 1983-06-01 | Unilever N.V. | Stabile flüssige Detergenssuspensionen |
EP0081908A1 (de) * | 1981-11-13 | 1983-06-22 | Unilever Plc | Schwachschäumende flüssige Detergenszusammensetzungen |
EP0086614B1 (de) * | 1982-02-05 | 1989-10-18 | Albright & Wilson Limited | Flüssige Detergens-Zusammensetzungen |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1468181A (en) * | 1973-10-11 | 1977-03-23 | Unilever Ltd | Liquid detergent composition |
GB1506427A (en) * | 1975-04-29 | 1978-04-05 | Unilever Ltd | Liquid detergent |
NZ191283A (en) * | 1978-08-21 | 1982-03-09 | Colgate Palmolive Co | Stable pourable heavy-duty built liquid detergent comprising optical brightening agent or water soluble dye |
DE3240088A1 (de) * | 1982-10-29 | 1984-05-03 | Henkel KGaA, 4000 Düsseldorf | Stabile waessrige reinigungsmittel und verfahren zu ihrer herstellung |
-
1984
- 1984-12-19 MX MX20380584A patent/MX167884B/es unknown
- 1984-12-20 AR AR84299043A patent/AR244329A1/es active
- 1984-12-21 IL IL73903A patent/IL73903A0/xx unknown
- 1984-12-21 ES ES84539001A patent/ES8605570A1/es not_active Expired
- 1984-12-21 PL PL1984251139A patent/PL146679B1/pl unknown
- 1984-12-21 GR GR82576A patent/GR82576B/el unknown
- 1984-12-21 GB GB848432487A patent/GB8432487D0/en active Pending
- 1984-12-21 PT PT79744A patent/PT79744B/pt not_active IP Right Cessation
- 1984-12-21 BR BR8406827A patent/BR8406827A/pt not_active IP Right Cessation
- 1984-12-21 YU YU217784A patent/YU46364B/sh unknown
- 1984-12-21 NZ NZ210707A patent/NZ210707A/xx unknown
- 1984-12-21 NO NO845211A patent/NO166724C/no unknown
- 1984-12-21 BG BG68023A patent/BG60382B1/bg unknown
- 1984-12-21 FI FI845098A patent/FI80473C/fi not_active IP Right Cessation
- 1984-12-21 CA CA000470874A patent/CA1325946C/en not_active Expired - Fee Related
- 1984-12-21 GB GB08432387A patent/GB2153380B/en not_active Expired
- 1984-12-21 EP EP84309004A patent/EP0151884B1/de not_active Expired
- 1984-12-21 DE DE8484309004T patent/DE3481996D1/de not_active Expired - Lifetime
- 1984-12-21 AT AT84309004T patent/ATE52106T1/de not_active IP Right Cessation
- 1984-12-21 DK DK626284A patent/DK166030C/da not_active IP Right Cessation
- 1984-12-22 IN IN957/DEL/84A patent/IN163276B/en unknown
- 1984-12-22 HU HU844827A patent/HU214669B/hu not_active IP Right Cessation
- 1984-12-22 KR KR1019840008280A patent/KR900000897B1/ko not_active IP Right Cessation
- 1984-12-23 IL IL73917A patent/IL73917A/xx not_active IP Right Cessation
- 1984-12-24 FR FR848419788A patent/FR2587355B1/fr not_active Expired - Lifetime
- 1984-12-24 IT IT68278/84A patent/IT1179891B/it active
- 1984-12-28 IE IE334684A patent/IE58044B1/en not_active IP Right Cessation
-
1994
- 1994-12-30 HK HK148294A patent/HK148294A/xx not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB948617A (en) * | 1959-10-30 | 1964-02-05 | Unilever Ltd | Stabilised liquid detergent compositions |
CH522031A (de) * | 1967-06-26 | 1972-04-30 | Procter & Gamble | Beständiges, flüssiges, bleichendes Wasch- und Reinigungsmittel |
EP0038101A1 (de) * | 1980-04-09 | 1981-10-21 | Unilever N.V. | Flüssige Reinigungsmittelzusammensetzungen auf der Basis von Komplexbildnern und Verfahren zur Herstellung |
EP0080221A1 (de) * | 1981-11-13 | 1983-06-01 | Unilever N.V. | Stabile flüssige Detergenssuspensionen |
EP0081908A1 (de) * | 1981-11-13 | 1983-06-22 | Unilever Plc | Schwachschäumende flüssige Detergenszusammensetzungen |
EP0086614B1 (de) * | 1982-02-05 | 1989-10-18 | Albright & Wilson Limited | Flüssige Detergens-Zusammensetzungen |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0328176A2 (de) * | 1988-02-10 | 1989-08-16 | Unilever N.V. | Wässrige Reinigungsmittel und Verfahren zu deren Herstellung |
EP0328176A3 (en) * | 1988-02-10 | 1990-07-18 | Unilever Nv | Aqueous detergent compositions and methods of forming them |
EP0331370A2 (de) * | 1988-02-26 | 1989-09-06 | Unilever Plc | Detergentzusammensetzung |
EP0331370A3 (en) * | 1988-02-26 | 1990-07-25 | Unilever Plc | Detergent compositions |
EP0346993A3 (de) * | 1988-06-13 | 1990-08-16 | Unilever N.V. | Flüssige Waschmittelzusammensetzungen |
EP0346993A2 (de) * | 1988-06-13 | 1989-12-20 | Unilever N.V. | Flüssige Waschmittelzusammensetzungen |
EP0346994A2 (de) * | 1988-06-13 | 1989-12-20 | Unilever N.V. | Flüssige Waschmittelzusammensetzungen |
EP0346994A3 (en) * | 1988-06-13 | 1990-08-22 | Unilever Nv | Liquid detergent compositions |
EP0354010A2 (de) * | 1988-08-05 | 1990-02-07 | Albright & Wilson Limited | Flüssige Reinigungsmittelzusammensetzungen |
EP0354010A3 (de) * | 1988-08-05 | 1990-04-04 | Albright & Wilson Limited | Flüssige Reinigungsmittelzusammensetzungen |
US5264143A (en) * | 1989-02-22 | 1993-11-23 | The Procter & Gamble Company | Stabilized, bleach containing, liquid detergent compositions |
EP0385522A2 (de) * | 1989-02-27 | 1990-09-05 | Unilever N.V. | Flüssiges Reinigungsmittel |
EP0385522B1 (de) * | 1989-02-27 | 2001-08-29 | Unilever N.V. | Flüssiges Reinigungsmittel |
WO1991005844A1 (en) * | 1989-10-12 | 1991-05-02 | Unilever N.V. | Liquid detergents |
US5597508A (en) * | 1989-10-31 | 1997-01-28 | Lever Brothers Company, Division Of Conopco, Inc. | Liquid detergent composition containing deflocculating polymer with ionic monomers |
GB2245262A (en) * | 1990-06-22 | 1992-01-02 | Unilever Plc | Aluminosilicate slurries l |
EP0530708B2 (de) † | 1991-08-30 | 2002-07-03 | Huntsman International Llc | Flüssiges Wäschewaschmittel |
TR27553A (tr) * | 1991-08-30 | 1995-06-08 | Albright & Wilson Uk Ltd | Konsantre sulu sürfaktan bilesimleri. |
EP0530708A2 (de) * | 1991-08-30 | 1993-03-10 | ALBRIGHT & WILSON UK LIMITED | Flüssiges Wäschewaschmittel |
EP0530708A3 (en) * | 1991-08-30 | 1993-06-09 | Albright & Wilson Limited | Liquid laundry detergent compositions |
US6166095A (en) * | 1993-12-15 | 2000-12-26 | Albright & Wilson Uk Limited | Method of preparing a drilling fluid comprising structured surfactants |
EP0658620A1 (de) * | 1993-12-15 | 1995-06-21 | ALBRIGHT & WILSON UK LIMITED | Strukturierte Tenside |
WO1995031528A1 (en) * | 1994-05-13 | 1995-11-23 | Unilever N.V. | Detergent composition |
WO1996024658A1 (en) * | 1995-02-06 | 1996-08-15 | Unilever N.V. | Liquid compositions |
EP0776965A2 (de) | 1995-11-30 | 1997-06-04 | Unilever N.V. | Polymerzusammetzungen |
WO1997047725A1 (en) * | 1996-06-13 | 1997-12-18 | Colgate-Palmolive Company | Liquid crystal detergent compositions |
US6133217A (en) * | 1998-08-28 | 2000-10-17 | Huntsman Petrochemical Corporation | Solubilization of low 2-phenyl alkylbenzene sulfonates |
US6083897A (en) * | 1998-08-28 | 2000-07-04 | Huntsman Petrochemical Corporation | Solubilization of low 2-phenyl alkylbenzene sulfonates |
EP1141221B2 (de) † | 1998-12-16 | 2011-11-30 | Unilever N.V. | Strukturierte flüssige waschmittelzusammensetzung |
WO2000036079A1 (en) * | 1998-12-16 | 2000-06-22 | Unilever N.V. | Structured liquid detergent composition |
US6617303B1 (en) | 1999-01-11 | 2003-09-09 | Huntsman Petrochemical Corporation | Surfactant compositions containing alkoxylated amines |
US6897188B2 (en) | 2001-07-17 | 2005-05-24 | Ecolab, Inc. | Liquid conditioner and method for washing textiles |
WO2004056957A1 (en) * | 2002-12-19 | 2004-07-08 | Unilever Plc | Detergent composition |
WO2004056950A1 (en) * | 2002-12-19 | 2004-07-08 | Unilever Plc | Detergent composition |
US8110537B2 (en) | 2003-01-14 | 2012-02-07 | Ecolab Usa Inc. | Liquid detergent composition and methods for using |
US7682403B2 (en) | 2004-01-09 | 2010-03-23 | Ecolab Inc. | Method for treating laundry |
EP1988985A4 (de) * | 2005-06-24 | 2011-11-09 | Rhodia | Strukturierte tensidzusammensetzungen |
WO2007001341A2 (en) | 2005-06-24 | 2007-01-04 | Rhodia, Inc. | Structured surfactant compositions |
EP1988985A2 (de) * | 2005-06-24 | 2008-11-12 | Rhodia, Inc. | Strukturierte tensidzusammensetzungen |
WO2007085410A1 (en) * | 2006-01-24 | 2007-08-02 | Henkel Ag & Co. Kgaa | Structured cleaning compositions |
WO2008047148A1 (en) * | 2006-10-20 | 2008-04-24 | Innovation Deli Limited | Skin cleansing compositions |
GB2456965A (en) * | 2006-10-20 | 2009-08-05 | Innovation Dell Ltd | Skin cleansing compositions |
AU2007334119B2 (en) * | 2006-12-15 | 2011-04-21 | Colgate-Palmolive Company | Liquid detergent composition |
AU2011201283B2 (en) * | 2006-12-15 | 2011-08-04 | Colgate-Palmolive Company | Liquid detergent composition |
US7977296B2 (en) | 2006-12-15 | 2011-07-12 | Colgate-Palmolive Company | Liquid detergent composition comprising an acrylic polymer/viscosity control agent mixture |
EP2308957A1 (de) * | 2006-12-15 | 2011-04-13 | Colgate-Palmolive Company | Flüssiges Wasch- oder Reinigungsmittel |
WO2008076693A3 (en) * | 2006-12-15 | 2008-08-07 | Colgate Palmolive Co | Liquid detergent composition |
EP2453003A1 (de) * | 2006-12-15 | 2012-05-16 | Colgate-Palmolive Company | Flüssige Reinigungsmittelzusammensetzung |
WO2012082154A3 (en) * | 2010-12-14 | 2013-10-31 | Agape Patent Holdings, Llc | Remedial composition and treatment methods |
WO2013016030A1 (en) | 2011-07-27 | 2013-01-31 | The Procter & Gamble Company | Multiphase liquid detergent composition |
WO2013016031A1 (en) | 2011-07-27 | 2013-01-31 | The Procter & Gamble Company | Multiphase liquid detergent composition |
WO2013064356A1 (de) * | 2011-11-02 | 2013-05-10 | Henkel Ag & Co. Kgaa | STRUKTURIERTES WASCH- ODER REINIGUNGSMITTEL MIT FLIEßGRENZE |
US20140243253A1 (en) * | 2011-11-02 | 2014-08-28 | Henkel Ag & Co. Kgaa | Structured detergent or cleaning agent having a flow limit |
US9187714B2 (en) | 2011-11-02 | 2015-11-17 | Henkel Ag & Co. Kgaa | Structured liquid detergent or cleaning agent having a flow limit and inorganic salt |
WO2013119908A1 (en) | 2012-02-10 | 2013-08-15 | Stepan Company | Structured surfactant suspending systems |
WO2014064005A1 (de) * | 2012-10-22 | 2014-05-01 | Henkel Ag & Co. Kgaa | Tensid-haltige schäume |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0151884B1 (de) | Flüssige Reinigungsmittelzusammensetzungen | |
US4618446A (en) | Spherulitic liquid detergent composition | |
US4793943A (en) | Liquid detergent compositions | |
EP0086614B2 (de) | Flüssige Detergens-Zusammensetzungen | |
CA2040150C (en) | Concentrated aqueous surfactants | |
CA2056365C (en) | Stably suspended organic peroxy bleach in a structured aqueous liquid | |
US5952285A (en) | Concentrated aqueous surfactant compositions | |
CA1321339C (en) | Liquid cleaning products | |
JPS6169895A (ja) | 液体洗剤組成物 | |
US5529724A (en) | Structured liquid compositions comprising selected secondary alcohol sulfates and a deflocculating polymer | |
EP0170091B1 (de) | Flüssige Detergenszusammensetzungen | |
TW294720B (de) | ||
KR880001859B1 (ko) | 액체 세정제 조성물 | |
US5573701A (en) | Liquid detergent composition | |
CA1227719A (en) | Liquid detergent compositions | |
CA1234733A (en) | Pourable fluid detergent compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19841221 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19880624 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 52106 Country of ref document: AT Date of ref document: 19900515 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3481996 Country of ref document: DE Date of ref document: 19900523 |
|
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19910114 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19910114 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
EPTA | Lu: last paid annual fee | ||
27O | Opposition rejected |
Effective date: 19931119 |
|
NLR2 | Nl: decision of opposition | ||
EAL | Se: european patent in force in sweden |
Ref document number: 84309004.4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Free format text: ALBRIGHT & WILSON UK LIMITED |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: ALBRIGHT & WILSON UK LIMITED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: RHODIA CONSUMER SPECIALTIES LIMITED TRANSFER- HUNT Ref country code: CH Ref legal event code: PFA Free format text: ALBRIGHT & WILSON UK LIMITED TRANSFER- RHODIA CONSUMER SPECIALTIES LIMITED |
|
BECH | Be: change of holder |
Free format text: 20010919 *HUNTSMAN INTERNATIONAL LLC |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
NLS | Nl: assignments of ep-patents |
Owner name: HUNTSMAN INTERNATIONAL LLC |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: RHODIA CONSUMER SPECIALTIES LIMITED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020923 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020924 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20021004 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20021029 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021128 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021205 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20030102 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031105 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031201 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031221 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031231 |
|
BERE | Be: lapsed |
Owner name: *HUNTSMAN INTERNATIONAL LLC Effective date: 20031231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040701 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040701 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041220 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN Effective date: 19910114 |