EP0144621A2 - Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt - Google Patents

Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt Download PDF

Info

Publication number
EP0144621A2
EP0144621A2 EP84112145A EP84112145A EP0144621A2 EP 0144621 A2 EP0144621 A2 EP 0144621A2 EP 84112145 A EP84112145 A EP 84112145A EP 84112145 A EP84112145 A EP 84112145A EP 0144621 A2 EP0144621 A2 EP 0144621A2
Authority
EP
European Patent Office
Prior art keywords
units
current
electrolytic cell
unit
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP84112145A
Other languages
English (en)
French (fr)
Other versions
EP0144621A3 (de
Inventor
Helmuth Dipl.-Ing. Schurig
Helmut Ing.(Grad.) Schmitt
Bernd Dr. Dipl.-Ing. Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP0144621A2 publication Critical patent/EP0144621A2/de
Publication of EP0144621A3 publication Critical patent/EP0144621A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the invention relates to an electrolytic cell for the electrolysis of aqueous halegonide-containing electrolyte with monopolar start and end units and respective current guiding elements between busbars and start or end units and with a multiplicity of bipolar electrode units, each with an anodic and cathodic sub-element as an electrode pair in aligned, connected Arrangement, wherein the anode sub-element and the cathode sub-element are electrically conductively connected at their ends to their active length by means of a bipolar current-carrying element.
  • Electrolytic cells of this type are used to produce an aqueous alkali metal hydroxide solution (cell liquid), halogen and hydrogen from the electrolyte. In particular, these cells are used for the electrolysis of sodium chloride solutions.
  • An electrolysis cell is known from DE-OS 30 25 662, which consists of a plurality of anode and cathode sub-elements and in which an anode and a cathode sub-element are connected in alignment. The connection is made via a bipolar unit that hangs on the vertical frame rails of the anodic sub-element and the adjacent cathodic sub-element. According to the prior art, the bipolar unit, also referred to as the bipolar element, is in contact with the anodic and cathodic sub-elements.
  • FIG. 10 of DE-OS 30 25 662 shows in section the bipolar unit 3 different materials such as titanium or rectifier metal, copper and iron or steel as a strip material.
  • connection or creation of the necessary contact is not disclosed. It is known that copper and titanium or rectifier metal cannot be connected thermally, for example by welding, but only mechanically. However, a mechanical connection is never complete and there is always the risk of contact corrosion. In addition, every mechanical connection is expensive.
  • an electrolysis cell in which the anodes and cathodes are also connected to one another in an electrically conductive manner in an aligned arrangement, specifically via a bipolar electrical connection.
  • anodes and cathodes can be screwed, soldered or welded, but no teaching is given as to how this should be done with per se non-weldable metals.
  • only a screwed connection is listed, with a projecting flange on each electrode, the flanges having to overlap.
  • Such screw connections only create a locally limited contact area in the area of the screw connection and leave areas in the remaining gap area of the double flange areas free for the formation of corrosion products which prevent perfect electrical current conduction.
  • the object of the invention is to connect longitudinally aligned anode and cathode sub-elements of the described electrolytic cell to one another in an electrically conductive manner over their entire active length.
  • a current-carrying element which is a bimetallic unit which is produced by plastic deformation in the contact area of the two metals, and the Bimetal unit is electrically conductively connected in a known manner to the start and end units and to the respective two aligned partial elements.
  • the advantages achieved by the invention are, in particular, that the various elements of the electrolytic cell can be connected in an electrically conductive manner over the entire available area, without leaving gap contacts in which corrosion can occur. This avoids loss of power due to poor contact surfaces. Corrosion is avoided due to the lack of contact gaps. The cost of materials is also minimal, since material duplications such as flanges etc. and screws are not required for these flange connections.
  • the disadvantages of previously known electrolytic cells are completely eliminated and even completely new advantages are obtained. In this way, the electrolytic cell can be made even flatter.
  • the subsequent cell elements can be thermally connected without any problems, i.e. Weld what is the best metallic connection.
  • the pair of electrodes in FIGS. 1 and 2 consists of the anode 1, the cathode 2 and the bimetal unit 3.
  • the bimetal unit 3 with the contact area 4 was obtained by, for example, explosive plating of anode material 5 on cathode material 6.
  • the bimetal strip 3 used was obtained from a bimetal plate that was cut into strips.
  • the bimetallic unit with the anode material 5 made of titanium or rectifier metal and the cathode material & made of steel, stainless steel or nickel is welded on one side to the anode and on the other side to the cathode, so that an intimate, purely metallic contact is obtained .
  • the welding process used is not the subject of the property right request.
  • the membrane 7 is a separator between the anode surface and the cathode surface.
  • the bimetal unit 3 can also be welded on transversely for the purpose of good current distribution.
  • a multiplicity of bipolar electrode units so-called electrode pairs, are constructed together with the corresponding start and end electrodes within a module-membrane electrolysis cell.
  • the current is fed to the anodes 1 via the busbar 6.
  • the electrical current flows through the membrane 7 into the cathode 2, and then via the bimetal unit 3 into the next anode reach.
  • a large number of electrode pairs, offset in the current flow direction, each separated by a membrane, are arranged one behind the other inside the cell.
  • the electrical current is passed to the next module membrane electrolysis cell via the cathode 2 and busbar 9. '
  • the starting or end unit which is either anode 1 or cathode 2, has a direct contact via the bimetal unit anode 10 or bimetal unit cathode 11 to the busbar 8, 9 according to FIGS. 5, 6.
  • the bimetal unit anode 10 consists of titanium or rectifier metal and copper
  • the bimetal unit cathode 11 consists of steel, stainless steel or nickel and copper. They are connected along their entire length to the material-identical anode or cathode by means of welding processes. This type of connection is so good that there is no increase in resistance.
  • the connection of the bimetallic unit anode 10 or bimetallic unit cathode 11 to the respective busbar 8 or 9 must be detachable and flexible and is therefore carried out in a known manner via copper flexible strips 12 and screw connections 13.
  • a plurality of anodes or cathodes can be connected to a busbar at the beginning or end of the cell unit.

Abstract

In einer elektrolytischen Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt mit monopolaren Anfangs- und Endeinheiten und jeweiligen Stromführungselementen zwischen Stromsammelschienen und Anfangs- bzw. Endeinheiten und mit einer Vielzahl von bipolaren Elektrodeneinheiten je mit einem anodischen und kathodischen Teilelement als Elektrodenpaar in fluchtender, verbundener Anordnung sind Anodenteilelement und Kathodenteilelement an den zugewandten Ende auf ihre aktiven Länge mittels eines bipolaren Stromführungselementes elektrisch leitend verbunden. Die Verbindung für die Leitung des elektrischen Stromes muß eine beständige elektrische Verbindung sein bei möglichst kurzen Verbindungswegen.
Die geschieht erfindungsgemäß dadurch, daß die Stromführungselemente Bimetall-Einheiten sind, die durch plastische Verformung im Kontaktbereich der beiden Metalle hergestellt sind.

Description

  • Die Erfindung betrifft eine elektrolytische Zelle für die Elektrolyse von wässrigem halegonidhaltigem Elektrolyt mit monopolaren Anfangs- und Endeinheiten und jeweiligen Stromführungselementen zwischen Stromsammelschienen und Anfangs- bzw. Endeinheiten und mit einer Vielzahl von bipolaren Elektrodeneinheiten je mit einem anodischen und kathodischen Teilelement als Elektrodenpaar in fluchtender, verbundener Anordnung, wobei Anodenteilelement und Kathodenteilelement an den zugewandten Enden auf ihre aktiven Länge mittels eines bipolaren Stromführungselementes elektrisch leitend verbunden sind. Elektrolytische Zellen dieser Art werden verwendet, um aus dem Elektrolyt eine wässrige Alkalimetallhydroxidlösung (Zellenflüssigkeit), Halogen und Wasserstoff herzustellen. Insbesondere dienen diese Zellen der Elektrolyse von Natriumchloridlösungen.
  • Bei der Elektrolyse solcher Lösungen ist es erforderlich, an der Vielzahl der Kontaktstellen für die Leitung des elektrischen Stromes beständige elektrische Verbindungen aufrecht zu erhalten bei möglichst kurzen Verbindungswegen.
  • Es ist eine Elektrolysezelle aus DE-OS 30 25 662 bekannt, die aus .einer Vielzahl von Anoden- und Kathodenteilelementen besteht und bei der jeweils ein Anoden- und ein Kathodenteilelement in fluchtender Anordnung verbunden sind. Die Verbindung erfolgt über eine bipolare Einheit, die an den senkrechtep Rahmenschienen des anodischen Teilelementes und des benachbarten kathodischen Teilelementes hängt. Die bipolare Einheit, auch als bipolares Element bezeichnet, steht gemäß Stand der Technik in Kontakt mit den anodischen und kathodischen Teilelementen. Die Figur 10 der DE-OS 30 25 662 weist im Schnitt der bipolaren Einheit 3 unterschiedliche Werkstoffe wie Titan- oder Gleichrichtermetall, Kupfer und Eisen oder Stahl als Bandmaterial auf. Die Art der Verbindung bzw. Schaffung des notwendigen Kontaktes wird nicht offenbart. Dabei ist bekannt, daß sich Kupfer und Titan- oder Gleichrichtermetall nicht thermisch, so z.B. durch Schweißen, sondern nur mechanisch verbinden lassen. Eine mechanische Verbindung ist jedoch nie vollflächig und es besteht stets die Gefahr der Kontaktkorrosion. Darüber hinaus ist jede mechanische Verbindung materialaufwendig.
  • Nach EPA-0 040 920 ist eine Elektrolysezelle bekannt, bei der Anoden und Kathoden ebenfalls in fluchtender Anordnung elektrisch leitend miteinander verbunden sind und zwar über eine bipolare elektrische Verbindung. Dabei wird zwar erwähnt, daß Anoden und Kathoden verschraubt, verlötet oder verschweißt sein können, jedoch wird keine Lehre gegeben, wie dies bei ansich unverschweißbaren Metallen erfolgen soll. Als beispielhafte Darstellung wird lediglich eine verschraubte Verbindung aufgeführt mit je einem vorspringenden Flansch an jeder Elektrode, wobei die Flansche sich überdecken müssen. Solche Verschraubungen schaffen lediglich eine örtlich begrenzte Kontaktfläche im Bereich der Verschraubung und lassen im übrigen Spaltbereich der Doppelflansche Bereiche frei für die Bildung von Korrosionsprodukten, die eine einwandfreie elektrische Stromleitung verhindern.
  • Der Erfindung liegt die Aufgabe zugrunde, längs fluchtende Anoden- und Kathodenteilelemente der beschriebenen Elektrolysezelle auf ihre gesamten aktiven Länge elektrisch leitend miteinander zu verbinden.
  • Die Aufgabe wird gelöst durch ein Stromführungselement, das eine Bimetalleinheit ist, die durch plastische Verformung im Kontaktbereich der beiden Metalle hergestellt ist und wobei die Bimetalleinheit in bekannter Weise mit den Anfangs- und Endeinheiten und mit den jeweiligen beiden fluchtenden Teilelementen elektrisch leitend verbunden ist.
  • Die Ausgestaltung der Erfindung erfolgt zweckmäßigerweise gemäß den Merkmalen der Unteransprüche.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß die verschiedenartigen Elemente der elektrolytischen Zelle elektrisch leitend und zwar auf der gesamten verfügbaren Fläche verbunden werden können, ohne daß Spaltberührungen übrig bleiben, in denen Korrosionen auftreten können. Dadurch werden Stromverluste durch mangelhafte Kontaktflächen vermieden. Wegen des Fehlens von Kontaktspalten wird Korrosion vermieden. Der Materialaufwand ist ebenfalls minimal, da Materialdoppelungen, wie Flansche etc. und Schrauben für diese Flanschverbindungen nicht erforderlich sind. Die Nachteile bisher bekannter elektrolytischer Zellen werden vollständig aufgehoben und sogar völlig neue Vorteile erhalten. So kann die elektrolytische Zelle noch flacher gebaut werden. Infolge der erfindungsgemäßen Bimetall- einheit lassen sich die anschließenden Zellenelemente einwandfrei thermisch anschließen, d.h. Verschweißen, was die beste metallische Verbindung darstellt.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt. Es zeigen:
    • Fig. 1: ein Elektrodenpaar im Querschnitt
    • Fig. 2: vergrößert dargestellte Bimetalleinheit im Schnitt
    • Fig. 3: eine Bimetalleinheit in Queranordnung
    • Fig. 4: eine Modul-Membran-Elektrolysezelle mit mehreren Einzelzellen hintereinander in Explosionsdarstellung.
    • Fig. 5: Anfangseinheit einer Elektrode mit Sammelschienenanschluß.
    • Fig. 6: Endeinheit einer Elektrode mit Sammelschienenanschluß.
  • Das Elektrodenpaar in Fig. 1 und Fig. 2 besteht aus der Anode 1, der Kathode 2 und der Bimetalleinheit 3. Die Bimetalleinheit 3 mit dem Kontaktbereich 4 wurde erhalten durch beispielsweise eine Sprengplattierung von Anodenmaterial 5 auf Kathodenmaterial 6. Der verwendete Bimetallstreifen 3 wurde erhalten aus einer Bimetallplatte, die in Streifen geschnitten wurde. Die Bimetall- einheit mit dem Anodenmaterial 5 aus Titan oder Gleichrichtermetall und dem Kathodenmaterial & aus Stahl, Edelstahl oder Nickel wird an der einen Seite mit der Anode und an der anderen Seite mit der Kathode verschweißt, so daß ein inniger, rein metallischer Kontakt erhalten wird. Das angewendete Schweißverfahren ist dabei nicht Gegenstand des Schutzrechtsbegehrens. Die Membran 7 ist Trennglied zwischen Anodenfläche und Kathodenfläche.
  • Nach Fig. 3 kann die Bimetalleinheit 3 zwecks guter Stromverteilung auch quer angeschweißt werden.
  • In Fig. 4 sind eine Vielzahl von bipolaren Elektrodeneinheiten sogenannte Elektrodenpaare zusammen mit den entsprechenden Anfangs- und Endelektroden innerhalb einer Modul-Membran-Elektrolysezelle aufgebaut. Dabei wird über die Sammelschiene 6 der Strom den Anoden 1 zugeführt. Vor. diesen Anodenelementen fließt der elektrische Strom durch die Membran 7 in die Kathode 2, um dann über die Bimetalleinheit 3 in die nächste Anode zu gelangen. Im Innern der Zelle sind eine Vielzahl von Elektrodenpaaren, in Stromfließrichtung versetzt, jeweils durch eine Membrane getrennt, hintereinander angeordnet. Am Ende der Zelle wird über die Kathode 2 und Sammelschiene 9 der elektrische Strom zur nächsten Modul-Membran-Elektrolysezelle geleitet. '
  • Die Anfangs- bzw. Endeinheit, die entweder Anode 1 oder Kathode 2 ist, hat nach Figur 5, 6 einen direkten Kontakt über die Bimetalleinheit-Anode 10 bzw. Bimetalleinheit-Kathode 11 zu der Sammelschiene 8, 9.
  • Die Bimetalleinheit-Anode 10 besteht aus Titan oder Gleichrichtermetall und Kupfer, die Bimetalleinheit-Kathode 11 besteht aus Stahl, Edelstahl oder Nickel und Kupfer. Sie werden auf ihrer gesamten Länge mittels Schweißverfahren mit der Material-gleichen Anode bzw. Kathode verbunden. Diese Art der Verbindung ist so gut, daß keine Widerstandserhöhung eintritt. Der Anschluß der Bimetalleinheit Anode 10 bzw. Bimetalleinheit-Kathode 11 an die jeweilige Sammelschiene 8 oder 9 muß lösbar und flexibel sein und erfolgt daher in bekannter Weise über Kupfer-Flexbänder 12 und Verschraubungen 13.
  • Je nach Größe und Leistung einer Modul-Membran-Elektrolysezelle kann eine Mehrzahl von Anoden bzw. Kathoden am Anfang bzw. Ende der Zelleneinheit mit einer Sammelschiene verbunden werden.

Claims (5)

1. Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt mit monopolaren Anfangs- und Endeinheiten und jeweiligen Stromführungselementen zwischen Stromsammelschienen und Anfangs- bzw. Endeinheiten und mit einer Vielzahl von bipolaren Elektrodeneinheiten je mit einem anodischen und kathodischen Teilelement als Elektrodenpaar in fluchtender, verbundener Anordnung, wobei Anodenteilelement und Kathodenteilelement an den zugewandten Enden auf ihrer aktiven Länge mittels eines bipolaren Stromführungselements elektrisch leitend verbunden sind,
dadurch gekennzeichnet, daß die Stromführungselemente Bimetall-Einheiten (3) sind, die durch plastische Verformung im Kontaktbereich (4) der beiden Metalle (5, 6) hergestellt sind und daß die Stromführungselemente Bindeglieder sind zwischen den Stromsammelschienen und den Anfangs- bzw. Endeinheiten und zwischen jeweils einem anodischen und kathodischen Teilelement als Elektrodenpaar in fluchtender Anordnung.
2. Elektrolytische Zelle nach Anspruch 1, dadurch gekennzeichnet, daß die Bimetall-Einheit (10) für die anodische Endeinheit aus Titan- oder Gleichrichtermetall und aus Kupfer besteht.
3. Elektrolytische Zelle nach Anspruch 1, dadurch gekennzeichnet, daß die Bimetalleinheit (11) für die kathodische Endeinheit aus Stahl, Edelstahl oder Nickel und aus Kupfer besteht.
4. Elektrolytische Zelle nach Anspruch 1, dadurch gekennzeichnet, daß die Bimetall-Einheit (3) für die bipolaren Elektrodeneinheiten (1, 2) aus Titan- oder Gleichrichtermetall und aus Stahl, Edelstahl oder Nickel besteht.
5. Elektrolytische Zelle nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Bimetall-Einheiten zweier oder mehrerer Endeinheiten mit einer ein- oder mehrteiligen Stromsammelschiene verbunden sind.
EP84112145A 1983-11-24 1984-10-10 Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt Withdrawn EP0144621A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3342449 1983-11-24
DE19833342449 DE3342449A1 (de) 1983-11-24 1983-11-24 Elektrolytische zelle fuer die elektrolyse von waessrigem halogenidhaltigem elektrolyt

Publications (2)

Publication Number Publication Date
EP0144621A2 true EP0144621A2 (de) 1985-06-19
EP0144621A3 EP0144621A3 (de) 1985-07-10

Family

ID=6215119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112145A Withdrawn EP0144621A3 (de) 1983-11-24 1984-10-10 Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt

Country Status (2)

Country Link
EP (1) EP0144621A3 (de)
DE (1) DE3342449A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343274A1 (de) * 1988-05-26 1989-11-29 Hundt & Weber Schaltgeräte GmbH Hochstromschalter, insbesondere für aggressive umgebung, wie Kurzschliesser für Elektrolyseanlagen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902985A (en) * 1973-11-30 1975-09-02 Ppg Industries Inc Alakali metal chlorate cell having metal bipolar electrodes
FR2287528A1 (fr) * 1974-10-09 1976-05-07 Asahi Chemical Ind Cellule electrolytique a montage bipolaire
US4217199A (en) * 1979-07-10 1980-08-12 Ppg Industries, Inc. Electrolytic cell
EP0107135A1 (de) * 1982-10-26 1984-05-02 Heraeus Elektroden GmbH Bipolare Elektrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1270675A (fr) * 1960-07-22 1961-09-01 Electrochimie Soc Perfectionnement aux amenées de courant solides en contact avec l'aluminium liquide dans les cuves d'électrolyse
GB1006396A (en) * 1964-06-09 1965-09-29 Ici Ltd Electrical conductor
DE2148337A1 (de) * 1971-09-28 1973-04-05 Uhde Gmbh Friedrich Bipolare mehrfach-elektrolysezelle mit diaphragma
BE793282A (fr) * 1971-12-23 1973-06-22 Rhone Progil Perfectionnements aux cellules electrolytiques a diaphragmes
US3900384A (en) * 1972-11-24 1975-08-19 Ppg Industries Inc Method of assembling a bipolar electrode having friction welded conductor/connector means and bipolar electrode formed thereby
US3813326A (en) * 1972-11-24 1974-05-28 Ppg Industries Inc Bipolar electrolytic diaphragm cell having friction welded conductor/connector means
US3895210A (en) * 1973-06-11 1975-07-15 Diamond Shamrock Corp Apparatus for forming a dimensionally stable anode
DE2349151A1 (de) * 1973-09-29 1975-04-10 Vaw Ver Aluminium Werke Ag Vorrichtung zum verbinden von stromschienen aus aluminium oder kupfer mit stromleitern aus stahl bei vorzugsweise aluminiumelektrolyseoefen
GB1522622A (en) * 1975-01-30 1978-08-23 Ici Ltd Electrolytic cells
CA1067573A (en) * 1975-03-17 1979-12-04 Theodore R. Beatty Seals for alkaline electrochemical devices
US4055291A (en) * 1975-12-15 1977-10-25 Diamond Shamrock Corporation Explosion bonding of bipolar electrode backplates
US4137144A (en) * 1976-03-19 1979-01-30 Hooker Chemicals & Plastics Corp. Hollow bipolar electrolytic cell anode-cathode connecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902985A (en) * 1973-11-30 1975-09-02 Ppg Industries Inc Alakali metal chlorate cell having metal bipolar electrodes
FR2287528A1 (fr) * 1974-10-09 1976-05-07 Asahi Chemical Ind Cellule electrolytique a montage bipolaire
US4217199A (en) * 1979-07-10 1980-08-12 Ppg Industries, Inc. Electrolytic cell
EP0107135A1 (de) * 1982-10-26 1984-05-02 Heraeus Elektroden GmbH Bipolare Elektrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343274A1 (de) * 1988-05-26 1989-11-29 Hundt & Weber Schaltgeräte GmbH Hochstromschalter, insbesondere für aggressive umgebung, wie Kurzschliesser für Elektrolyseanlagen

Also Published As

Publication number Publication date
EP0144621A3 (de) 1985-07-10
DE3342449A1 (de) 1985-06-05

Similar Documents

Publication Publication Date Title
DD243516A5 (de) Monopolare und bipolara chlorzellen und elektrodenstrukturen fuer diese
DE2262173C3 (de)
DE2656650A1 (de) Bipolare elektrode fuer eine elektrolysezelle
EP0189535A1 (de) Elektrolyseapparat
DE3025662A1 (de) Elektrolytische zelle
DE2821984A1 (de) Elektrodenelement fuer monopolare elektrolysezellen
CH635369A5 (de) Bipolare elektrode und verfahren zu deren herstellung.
DE3011643A1 (de) Elektrolysezelle
DE2022696C3 (de) Elektrolysezelle zur Herstellung von Adipinsäuredinitril
DE2357550B2 (de) Bipolare Elektrolysiervorrichtung
DE2538000B2 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
DE1592012A1 (de) Verbesserungen an Elektrolyse-Diaphragmazellen
DE2923818A1 (de) Elektrodenabteil
DE2125941C3 (de) Bipolare Einheit und damit aufgebaute elektrolytische Zelle
DE3640584A1 (de) Elektrodenanordnung fuer gasbildende elektrolyseure mit vertikal angeordneten plattenelektroden
DE3406797C2 (de) Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
EP0144621A2 (de) Elektrolytische Zelle für die Elektrolyse von wässrigem halogenidhaltigem Elektrolyt
DE2909640A1 (de) Elektrolyseapparat
DE2653538C3 (de) Elektrolytische Diaphragma-Zelle und Verfahren zu ihrer Montage
DE4241485C1 (de) Kathode zum galvanischen Abscheiden von Kupfer und Verfahren zu ihrer Herstellung
DE2821979A1 (de) Elektrolysezellen-anlage
DE2737086B2 (de) Elektrolysierverfahren und Elektrolysiervorrichtung
DE3406777C2 (de) Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
DE19959079A1 (de) Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik
DE3941056C2 (de) Verfahren zur Herstellung einer elektrisch gutleitenden Verbindung durch Reibschweißung und Stromleiter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860311

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMITT, HELMUT, ING.(GRAD.)

Inventor name: STRASSER, BERND, DR., DIPL.-ING.

Inventor name: SCHURIG, HELMUTH, DIPL.-ING.