EP0135687B1 - Gasentwickelnde Metallelektrode - Google Patents

Gasentwickelnde Metallelektrode Download PDF

Info

Publication number
EP0135687B1
EP0135687B1 EP84107873A EP84107873A EP0135687B1 EP 0135687 B1 EP0135687 B1 EP 0135687B1 EP 84107873 A EP84107873 A EP 84107873A EP 84107873 A EP84107873 A EP 84107873A EP 0135687 B1 EP0135687 B1 EP 0135687B1
Authority
EP
European Patent Office
Prior art keywords
profiles
electrode
curvature
gas
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107873A
Other languages
English (en)
French (fr)
Other versions
EP0135687A1 (de
Inventor
Hans Dr. Roos
Dieter Dr. Schlaefer
Hugo Boehn
Knut Dr. Bittler
Heinz Kilthau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19833325187 external-priority patent/DE3325187A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP0135687A1 publication Critical patent/EP0135687A1/de
Application granted granted Critical
Publication of EP0135687B1 publication Critical patent/EP0135687B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the present invention relates to a gas-evolving metal electrode, e.g. can be used in particular as an anode in amalgam cells for chlor-alkali electrolysis.
  • the use of titanium as the electrode base material allows a large number of different geometrical designs in comparison to graphite in order to fulfill the required function as a gas-generating electrode.
  • the production of very flat electrode surfaces (+ 1 mm difference / m 2 electrode surface) has become possible. This in turn allows the distance from the anode to the cathode to be significantly reduced.
  • the electrolyte solution in the case of chloralkali electrolysis the NaCI solution, has an electrical resistance, the aim is to reduce the voltage or energy losses caused thereby to a minimum by keeping the distance between the electrodes as small as possible.
  • OE-AS 20 41 250 an electrode construction is described in which the working electrode surface, that of the cathode, e.g. in chlorine production using the amalgam process, the mercury cathode, made of expanded metal, perforated sheet metal, wire mesh or the like. is formed.
  • a U-shaped conductor rail is used for uniform current distribution, which must also give the expanded metal the necessary mechanical rigidity in order to achieve the required planarity. It is easy to see that the production of such a conductor rail is very problematic, since titanium sheets have to be pressed into a U-shape and titanium tends to “spring back” after such a pressing process.
  • notches have to be incorporated into this conductor rail , which reduce the stresses that occur when the expanded metal is welded to the rail, and also allow subsequent correction of the working surface of the anode in order to achieve a better planarity of the electrode surface
  • the gas bubbles formed are now discharged upwards through the openings in the expanded metal, perforated plate, etc.
  • openings must therefore also be worked into the relatively large conductor rail
  • Conductor rails can also be fixed with stable cross struts.
  • the titanium sheathing of the aluminum must be absolutely tight at all points, in particular also at the weld seams, since with the slightest damage to the titanium sheath, the electrode is rapidly destroyed by the anodic dissolution of the aluminum which takes place in the presence of chloride.
  • US Pat. No. 4,055,847 describes a complicated structure for achieving the necessary strength of the electrode surface and for achieving a good current distribution. It consists of a spider-shaped power distribution system, in which additional support ribs are required. As stated in the patent specification, melting and casting processes are necessary to produce the corresponding structures. However, as is generally known, these are complex and expensive in the processing of metals, in particular titanium or valve metals, since valve metals can only be melted in an argon atmosphere with a strict exclusion of air for metallurgical reasons. Another possible solution is shown in DE-OS 29 49 495. However, this construction also requires a primary and secondary power distribution system, which - analogous to that of DE-OS 1814 567 - require high manufacturing and material costs. Due to the relatively open construction of this system from flat profiles, however, gas bubble tearing and mass transfer on the electrode surface are to be improved.
  • DE-OS 30 08 116 describes an electrode construction which has only a primary distribution system, but which is also relatively complex.
  • the oval profiles used here are created by flattening the round bars. This should achieve a ratio of working to projected electrode area of> 1.
  • no attention is paid here cf. J. Cramer, Chem. Ing. Techn. 52, 1980, pp. 48-51 that the solution to be electrolyzed opposes the passage of the electric current, so that the electrode surfaces are all the less to the course of the electrolysis reaction, ie Gas evolution contribute the further away they are from the counter electrode.
  • the reason for this is the fact that the streamlines are looking for the shortest possible route as they pass through the solution to be electrolyzed.
  • German utility model 72 07 894 describes a gas-developing electrode which consists of a plate which is interspersed with channels which widen near and to a surface of the electrode. These channels can be continuously conical or venturi-like. This is intended to achieve an improved electrolyte circulation. Apart from the fact that this electrode can only be produced with complex manufacturing technology, this electrode has not found any technical use, since plate-shaped electrodes in particular have disadvantages with regard to gas removal.
  • a gas-developing metal electrode for electrolysis cells in particular anode for amalgam cells for chloralkali electrolysis, which consists of profiles arranged parallel to one another in a horizontal plane, the effective electrode surface facing the counterelectrode being curved and the profiles having a transverse profile with it a power supply provided power supply are connected to each other, which is characterized in that the curvature of the effective electrode surface in the area of the gaps into one with a smaller radius (r) passes, the radius (R) determining the curvature of the effective electrode surface being from 7 to 180 mm and the smaller radius (r) being 0.5 to 4 mm, and the profiles being closed off at the top by two side surfaces which emerge tangentially from the curvature (22, 25), which form an angle (alpha) of 20 to 120 ° at their intersection.
  • Solid or hollow profiles can be used as profiles for the electrodes according to the invention.
  • full profiles more titanium is required than with hollow profiles, but this disadvantage is offset by the advantage that the resistance is reduced and the voltage drop is reduced.
  • full profiles are easier to process.
  • the effective electrode area i.e. the surface which can be projected onto the counterelectrode is curved in such a way that the curvature increases from the center towards the edges.
  • FIG. 1 is a perspective view
  • FIG. 2 in which two profiles are shown enlarged from viewing direction X.
  • the effective electrode surface consists of profiles arranged parallel to each other.
  • the mechanical and electrical connection of these electrode profiles to one another is carried out by welding with one or more titanium webs (2) which have a shape specially developed for the purpose described. Titanium bodies (5) with an internal thread are attached to these webs.
  • the internal thread serves to receive a power supply (4), e.g. a copper bolt. If necessary, this can be protected from the electrolyte solution (and thus anodic dissolution) by a welded-on titanium tube (5).
  • the power supply to the individual electrode profiles takes place exclusively through a simple primary conductor system made of titanium webs (2). This is easy to manufacture from commercially available titanium sheets of appropriate thickness (matched to the current load) by simply punching them out.
  • FIG. 2 two hollow electrode profiles according to the invention, according to viewing direction X from FIG. 1, are shown schematically, enlarged compared to FIG.
  • the work surface 21, i.e. the surface which can be projected onto the counterelectrode is curved according to the invention in such a way that the curvature on the sides, i.e. to the neighboring profile or to the cell wall becomes stronger.
  • the curvature is determined by the radius R and the two smaller radii r.
  • the hollow profile is closed at the top by the two meeting side surfaces 22 and 25, which are continued tangentially from the curved working surface.
  • the cross section of the gap zone between two profiles is given the profile of a nozzle-shaped rounded inlet zone and a calming zone which widens upward like a diffuser.
  • the gas bubbles formed on the work surface move towards the edges of the profiles and, due to the intensifying curvature, experience a desired uniform acceleration in contrast to an abrupt tearing off of the gas bubbles on an edge-shaped profile, which results in a higher pressure loss connected is.
  • the gas is brought to the speed required to pass the narrowest point of the gap between two profiles with a minimal pressure loss. Due to the lower pressure drop, the gas bubbles reach a higher speed, which entrains a larger amount of liquid.
  • the profiles should have certain geometric dimensions have, which are selected depending on the cell conditions.
  • the work surface has less curvature in the middle than at the edges.
  • the curvature in the central part is determined by a circular line whose radius R is 7-180 mm, preferably 15 to 25 mm, while on both sides the curvature becomes stronger and in a circular line with a radius r of 0.5 to 4 mm passes.
  • the two radii should be chosen so that R / r i: 5.
  • the inventive design of the work surface ensures that, due to the relatively large radius of the circular line in the central region, an almost optimal, uniform distance of the work surface from the counter-cathode is ensured, the relatively small curvature of which, however, is already sufficient for rapid removal of the gas bubbles formed. Due to the stronger rounding at the transition of the work surface into the tangential side surfaces, edges are avoided at this point, which, as is known, are subject to increased wear.
  • the height of the circular arc results (ie the greatest distance between the web width S and the working surface 21), which, however, should meet the condition that is from 5 to 1800.
  • the inclination of the side surfaces can also be varied within wide limits. This inclination is determined by the angle with which they meet and which can expediently be from 20 ° to 120 °.
  • the technical outlay for producing the metal electrodes according to the invention is low.
  • the individual electrode profiles (5) need only be welded continuously to the distributor webs (2). Notches into which the profiles are inserted can be incorporated into these webs for better fixation.
  • the relatively long weld seam ensures good current transfer from the distributor web to the profiles.
  • the electrode construction according to the invention is characterized by an extraordinarily simple structure, its mechanical strength is excellent, essentially also due to the cross-sectional shape of the profiles according to the invention.
  • the electrodes are also very easy to repair. If a profile is damaged, e.g. by short-circuiting, the respective electrode profiles can easily be exchanged individually or brought to the required planarity by corresponding messages.
  • the claimed electrode From the description of the claimed electrode it also follows that only the actually effective surface of the electrode base body has to be provided with an active layer, since here there is a construction in which different partial areas of the profiles are each optimized with regard to the task to be performed.
  • the side opposite the counterelectrode is so designed that the working electrode surface can optimally fulfill its function in the electrolysis process.
  • the other sections of the electrode profile are optimized according to hydrodynamic criteria and simple manufacture.
  • the construction is therefore very suitable for applying the activation solution by dipping, rolling or brushing. Since it is relatively easy to coat only the working electrode surface (which is desirable but not a requirement), the amount of activation solution required is reduced to a minimum. This is particularly advantageous when using activation solutions which contain expensive noble metals or noble metal compounds, for example in the case of the known Ru0 2- containing active layers for anodic chlorine deposition.
  • this construction can be coated very well with the aid of spraying processes - in particular thermal spraying processes - since the working electrode surface has no sharp edges and since it is not necessary to coat side surfaces which are difficult to access.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

  • Die vorliegende Erfindung betrifft eine gasentwickelnde Metallelektrode, die z.B. insbesondere als Anode in Amalgamzellen für die Chloralkali-Elektrolyse eingesetzt werden kann.
  • Bei der Herstellung von z.B. Chlor durch Elektrolyse wäßriger Alkalichloridlösungen werden heute im allgemeinen Titananoden mit edelmetallhaltigen Aktivschichten eingesetzt. Diese sogenannten dimensionsstabilen Anoden haben gegenüber den vorher hauptsächlich eingesetzten Graphitelektroden den Vorteil, daß sich die äußeren Abmessungen während des Betriebs nicht ändern. Der Nachteil dieser Anoden liegt in den relativ hohen Herstellungskosten, bedingt durch den hohen Preis des Titans und dessen aufwendige Bearbeitung sowie auch durch die Verwendung von Edelmetall in der Aktivschicht.
  • Die Verwendung von Titan als Elektrodengrundmaterial erlaubt jedoch im Vergleich zu Graphit eine Vielzahl unterschiedlicher geometrischer Konstruktionen, um die erforderliche Funktion als gaserzeugende Elektrode zu erfüllen. Insbesondere ist die Herstellung sehr ebener Elektrodenflächen (+ 1 mm Differenz/m2 Elektrodenfläche) möglich geworden. Dies erlaubt wiederum, den Abstand von Anode zu Kathode deutlich zu verringern. Da die Elektrolytlösung, im Fall der Chloralkalielektrolyse die NaCI-Lösung, einen elsktrischen Widerstand besitzt, strebt man danach, die hierdurch verursachten Spannungs- bzw. Energieverluste auf ein Mindestmaß zu reduzieren, indem der Abstand zwischen den Elektroden möglichst klein gehalten wird.
  • Gleichzeitig muß jedoch ein gewisser Mindestabstand zur Durchführung der Elektrolysereaktion gewährleistet werden, der auch sicherstellt, daß nach Möglichkeit keine Kurzschlüsse erfolgen können.
  • In der OE-AS 20 41 250 wird eine Elektrodenkonstruktion beschrieben, bei der die arbeitende Elektrodenfläche, die der Kathode, z.B. bei der Chlorherstellung nach dem Amalgamverfahren der Quecksilberkathode, gegenübersteht, aus Streckmetall, Lochblech, Orahtnetz o.a. gebildet wird. Zur gleichmäßigen Stromverteilung dient eine U-förmige Leiterschiene, die dem Streckmetall auch die notwendige mechanische Steifigkeit verleihen muß, um die geforderte Planarität zu erreichen. Es ist leicht ersichtlich, daß die Herstellung einer derartigen Leiterschiene sehr problematisch ist, da zu deren Herstellung Titanbleche in eine U-Form gepreßt werden müssen und Titan nach einem solchen Preßvorgang gerne 'zurückfedert". Darüber hinaus ist es erforderlich, in diese Leiterschiene Kerben einzuarbeiten, die eine Verringerung der Spannungen, die beim Anschweißen des Streckmetalls an die Schiene entstehen, bewirken. Sie sollen auch eine nachträgliche Korrektur der Arbeitsfläche der Anode zur Erzielung einer besseren Planarität der Elektrodenfläche erlauben. Nachteilig ist außerdem, daß für diese Konstruktion der Leiterschiene große Mengen an Titan verbraucht werden. Während der Elektrolysereaktion werden nun die gebildeten Gasblasen durch die Öffnungen im Streckmetall, Lochblech usw. nach oben abgeleitet. Zur weiteren Gasableitung müssen deshalb auch in die relativ großflächige Leiterschiene Öffnungen eingearbeitet werden. Bei größeren Elektrodenflächen müssen die einzelnen Leiterschienen zusätzlich durch stabile Querverstrebungen fixiert werden.
  • Ein gutes Entweichen der Gasblasen soll bei der in der DE-OS 1814 567 beschriebenen Konstruktion durch ein aufwendiges System aus Primär- und Sekundärleiterschienen bewirkt werden, wobei dieses System auch der arbeitenden Elektrodenfläche die nötige Festigkeit (und somit Planarität) verleihen soll. Diese Lösung muß mit hohem Material- und Herstellungsaufwand erkauft werden, vor allen Dingen, da viele Schweißvorgänge und eine exakte Justierung der Einzelteile erforderlich sind.
  • Eine ähnliche Konstruktion wird in der DE-OS 20 45 560 beschrieben. Hier wird die Festigkeit der Elektrodenfläche, die aus einer im wesentlichen sich horizontal erstreckenden durchbrochenen Titanstruktur besteht, durch parallel im Abstand auf der Struktur angeordnete runde Stäbe erhöht, die auch die Stromverteilung sicherstellen. Diese Rundstäbe sind mit quer hierzu angeordneten rechteckigen Schienen verbunden, die die Aufgabe der Stromzuführung übernehmen. Der Kern dieser Stäbe und Schienen besteht aus Aluminium, das wiederum von Titan umgeben ist. Auch diese Anodenzusammenstellung basiert auf einem aufwendigen Herstellungsverfahren. Darüber hinaus muß die Titanummantelung des Aluminiums an allen Stellen, insbesondere auch an den Schweißnähten, absolut dicht sein, da bei der geringsten Beschädigung des Titanmantels eine rasche Zerstörung der Elektrode durch die in Gegenwart von Chlorid ablaufende anodische Auflösung des Aluminiums erfolgt.
  • Eine ähnliche Konstruktion wird in der DE-DS 27 21 958 beschrieben, bei der zur Verbesserung der Stromleitung und Einsparung von teurem Titan wesentliche Bestandteile der Elektrode aus Titanteilen bestehen, deren Kern aus Stäben aus anderen Metallen gefüllt ist, die in einem unter Betriebstemperatur vorwiegend flüssigen, stromleitenden Material eingebettet sind.
  • Um eine gute Gasableitung zu erzielen, werden in der DE-OS 25 25 497 vertikal angeordnete Titanstege mit rechteckigem Querschnitt in einem bestimmten Abstand so miteinander verbunden, daß der Gasblasenabzug durch die resultierenden Spalte erfolgen kann. Darüber hinaus wird gefordert, daß diese Stege auch an den Seiten aktiviert werden, damit auch hier eine Chlorabscheidung stattfinden kann. Dies soll die effektiv wirksame Elektrodenfläche erhöhen, da die der Hg-Kathode gegenüberliegenden horizontalen Abschnitte der Stege - verglichen mit der geometrischen Fläche der gesamten Elektrode - nur einen geringen Flächenanteil ausmachen. Wie neuere Untersuchungen ergeben haben (Chem. Ing. Techn. 52 (1980), 48-51), kann jedoch als gesichert angesehen werden, daß diese Seitenflächen aufgrund ihres größeren Abstandes von der Gegenelektrode keine relevanten Beiträge zur Chlorabscheidung liefern können. Außerdem müssen die an der horizontalen Fläche abgeschiedenen, elektrisch isolierende Gasblasen diese Zwischenräume passieren, was den Stromfluß in diesem Bereich zusätzlich behindert.
  • In der US-Patentschrift 4 055 847 wird eine komplizierte Struktur zur Erzielung der notwendigen Festigkeit der Elektrodenfläche und zur Erzielung einer guten Stromverteilung beschrieben. Sie besteht aus einem spinnenförmigen Stromverteilersystem, bei dem noch zusätzlich Trägerrippen notwendig sind. Wie in der Patentschrift ausgeführt, sind zur Herstellung der entsprechenden Strukturen Schmelz- und Gießvorgänge notwendig. Diese sind jedoch, wie allgemein bekannt, bei der Verarbeitung von Metallen, insbesondere Titan bzw. Ventilmetallen, aufwendig und teuer, da Ventilmetalle aus metallurgischen Gründen nur unter strengem Luftausschluß in Argonatmosphäre geschmolzen werden können. Eine weitere Lösungsmöglichkeit wird in der DE-OS 29 49 495 aufgezeigt. Diese Konstruktion erfordert jedoch ebenfalls ein primäres und sekundäres Stromverteilungssystem, die - analog zu demjenigen der DE-OS 1814 567 - hohen Herstellungs- und Materialaufwand erfordern. Durch die relativ offene Konstruktion dieses Systems aus Flachprofilen soll jedoch der Gasblasenabriß und Stoffaustausch an der Elektrodenoberfläche verbessert werden.
  • In der DE-OS 30 08 116 wird eine Elektrodenkonstruktion beschrieben, die nur ein primäres Verteilersystem besitzt, das jedoch ebenfalls relativ aufwendig ist. Die hier verwendeten Ovalprofile entstehen durch Abplatten der Rundstäbe. Hierdurch soll ein Verhältnis von arbeitender zu projezierter Elektrodenfläche von > 1 erreicht werden. Hierbei wird jedoch nicht beachtet (vgl. J. Cramer, Chem. Ing. Techn. 52,1980, S. 48-51), daß die zu elektrolysierende Lösung dem Durchtritt des elektrischen Stromes einen Widerstand entgegensetzt, so daß die Elektrodenflächen um so weniger zum Ablauf der Elektrolysereaktion, d.h. Gasentwicklung beitragen, je weiter sie von der Gegenelektrode entfernt sind. Begründung hierfür ist die Tatsache, daß sich die Stromlinien bei ihrem Durchgang durch die zu elektrolysierende Lösung nach Möglichkeit den kürzesten Weg suchen. Dieser Sachverhalt soll in folgenden Ausführungen noch weiter verdeutlicht werden: Sicher erfolgt bei dieser Konstruktion die Gasblasenabführung von der arbeitenden Elektrodenfläche infolge der starken Krümmung rascher als bei den in der DE-OS 29 49 495 verwendeten Flachprofilen, jedoch haben diese relativ kleinen Krümmungsgradien den Nachteil, daß in den Bereichen, die der Kathode am nächsten liegen, bei der Elektrolyse sehr hohe Stromdichten herrschen. Dies verursacht höhere Abscheidepotentiale und somit auch eine höhere Zellspannung bzw. Energieverbrauch. Die von der Kathode weiter entfernt liegenden Bereiche sind durch eine dickere Elektrolytschicht mit entsprechend höherem elektrischen Widerstand benachteiligt. Auch dies wirkt sich auf die Zellspannung ungünstig aus.
  • In dem deutschen Gebrauchsmuster 72 07 894 ist schließlich eine gasentwickelnde Elektrode beschrieben, die aus einer Platte besteht, die mit nahe der und zu einer Oberfläche der Elektrode hin sich erweiternden Kanälen durchsetzt ist. Diese Kanäle können durchgehend konisch oder venturiartig ausgebildet sein. Hierdurch soll eine verbesserte Elektrolytzirkulation erzielt werden. Abgesehen davon, daß diese Elektrode fertigungstechnisch nur aufwendig zu realisieren ist, hat diese Elektrode keine technische Verwendung gefunden, da gerade plattenförmige Elektroden bezüglich der Gasabführung prinzipielle Nachteile aufweisen.
  • Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, eine Form für eine gasentwickelnde Metallelektrode zu entwickeln, die folgende Eigenschaften besitzen sollte:
    • - Möglichst geringer Materialeinsatz zur Herstellung des Elektrodenkörpers.
    • - Trotz vereinfachter Konstruktion gute mechanische Festigkeit bei gleichzeitig hoher Reparaturfreundlichkeit und guter Planarität der Elektrodenoberfläche.
    • - Die Elektrodenprofile sollten nach Möglichkeit keine Kanten aufweisen, da an diesen Stellen erhöhter Verschleiß der Aktivschicht auftritt.
    • - Der Gasblasenabriß sollte durch neue Profilquerschnitte, die nach hydrodynamischen Gesichtspunkten gestaltet sind, verbessert werden. Da Gasblasen für den Stromdurchgang 'Isolatoren" darstellen, dient deren rascher Abtransport einer Erniedrigung des Energiebedarfs für die Elektrolyse.
    • - Die Verteilung der Stromlinien auf der arbeitenden Elektrodenfläche sollte möglichst gleichmäßig sein.
  • Diese Aufgabe wird gelöst durch eine gasentwickelnde Metallelektrode für Elektrolysezellen, insbesondere Anode für Amalgamzellen für die Chloralkalielektrolyse, die aus in einer horizontalen Ebene parallel zueinander angeordneten Profilen besteht, wobei die der Gegenelektrode zugekehrte wirksame Elektrodenfläche gekrümmt ist und die Profile mit quer da zu verlaufenden, mit einer Stromzuführung versehenen Stromverteilern miteinander verbunden sind, die dadurch gekennzeichnet ist, daß die Krümmung der wirksamen Elektrodenfläche im Bereich der Spalte in eine solche mit kleinerem Radius (r) übergeht, wobei der die Krümmung der wirksamen Elektrodenfläche bestimmende Radius (R) von 7 bis 180 mm und der kleinere Radius (r) 0,5 bis 4 mm beträgt, und daß die Profile nach oben abgeschlossen werden durch zwei aus der Krümmung tangential hervorgehenden Seitenflächen (22, 25), die an ihrem Schnittpunkt einen Winkel (alpha) von 20 bis 120° einschließen.
  • Bei den erfindungsgemäßen Elektroden können als Profile Voll- oder Hohlprofile eingesetzt werden. Bei Verwendung von Vollprofilen wird zwar mehr Titan benötigt als bei Hohlprofilen, diesem Nachteil steht jedoch der Vorteil gegenüber, daß der Widerstand herabgesetzt und der Spannungsabfall verringert wird. Darüber hinaus lassen sich Vollprofile leichter verarbeiten.
  • Weiterhin ist erfindungsgemäß die wirksame Elektrodenfläche, d.h. die auf die Gegenelektrode projizierbare Fläche in der Weise gekrümmt, daß die Krümmung von der Mitte zu den Rändern hin zunimmt.
  • Bei der Krümmung des mittleren Teiles sind zwei gegenläufige Forderungen zu erfüllen, nämlich
    • 1) einerseits sollte die Arbeitsfläche möglichst eben sein, wodurch ein gleichmäßiger Abstand Anodenfläche zu Gegenelektrode gewährleistet ist, was für eine gleichmäßige Stromdichteverteilung günstig, für den erforderlichen Gasblasenabtransport jedoch ungünstig ist und
    • 2) andererseits sollte die Arbeitsfläche möglichst gekrümmt sein, wodurch sich die oben beschriebenen Vor- bzw. Nachteile umkehren.
  • Im folgenden sei die erfindungsgemäße gasentwickelnde Metallelektrode an Hand der Figuren 1, die eine perspektivische Ansicht und der Figur 2, in der zwei Profile aus Blickrichtung X vergrößert dargestellt sind, erläutert.
  • Die wirksame Elektrodenfläche besteht aus parallel zueinander angeordneten Profilen. Die mechanische und elektrische Verbindung dieser Elektrodenprofile untereinander erfolgt durch Verschweißen mit einem oder mehreren Titanstegen (2), die eine speziell für den beschriebenen Zweck entwickelte Form besitzen. Auf diesen Stegen werden Titankörper (5) mit einem Innengewinde angebracht. Das Innengewinde dient zur Aufnahme einer Stromzuführung (4), z.B. einem Kupferbolzen. Dieser kann bei Bedarf durch ein aufgeschweißtes Titanrohr (5) vor der Elektrolytlösung (und somit anodischer Auflösung) geschützt werden. Die Stromzuführung zu den einzelnen Elektrodenprofilen erfolgt ausschließlich durch ein einfaches primäres Leitersystem aus Titanstegen (2). Dieses ist aus käuflichen Titanblechen entsprechender Dicke (abgestimmt auf die Strombelastung) durch einfaches Ausstanzen leicht herzustellen. Da mit zunehmendem Abstand von der Kontaktierung durch dieses Leitersystem immer weniger Strom zu den Elektrodenprofilen transportiert werden muß, da die Anzahl der noch zu versorgenden Profile sich verringert, nimmt auch der Leitungsquerschnitt dieses Bauteils ab. In Figur 1 ist dies daran erkenntlich, daß sich die Breite des Titanstegs (2) verringert. Dies trägt ebenfalls zur Minimierung des Materialaufwandes bei.
  • In Figur 2 sind zwei erfindungsgemäße, entsprechend Blickrichtung X aus Figur 1 nebeneinanderliegende Elektrodenhohlprofile, gegenüber Figur 1 vergrößert, schematisch dargestellt.
  • Die Arbeitsfläche 21, d.h. die auf die Gegenelektrode projizierbare Fläche, ist erfindungsgemäß in der Weise gekrümmt, daß die Krümmung an den Seiten, d.h. zum Nachbarprofil bzw. zur Zellenwandung stärker wird. Die Krümmung wird bestimmt durch den Radius R und die beiden kleineren Radien r. Nach oben wird das Hohlprofil abgeschlossen durch die beiden sich zusammentreffenden Seitenflächen 22 und 25, die aus der gekrümmten Arbeitsfläche tangential fortgeführt werden.
  • Auf diese Weise erhält der Querschnitt der Spaltzone zwischen zwei Profilen das Profil einer düsenförmig abgerundeten Einlaufzone und nach oben diffusorartig sich erweiternden Beruhigungszone. Die an der Arbeitsfläche gebildeten Gasblasen bewegen sich infolge der leichten Krümmung zu den Rändern der Profile hin und erfahren dort, durch die sich verstärkende Krümmung, eine erwünschte gleichmäßige Beschleunigung im Gegensatz zu einem abrupten Abreißen der Gasblasen an einem kantenförmigen Profil, was mit einem höheren Druckverlust verbunden ist. Hierdurch wird das Gas mit einem minimalen Druckverlust auf die zum Passieren der engsten Stelle des Spaltraumes zwischen zwei Profilen erforderliche Geschwindigkeit gebracht. Bedingt durch den geringeren Druckverlust erreichen die Gasblasen eine höhere Geschwindigkeit, wodurch eine größere Flüssigkeitsmenge mitgerissen wird. Dies führt zu einem verbesserten Austausch der Elektrolytlösung vor der Arbeitsfläche. Unmittelbar anschließend an die engste Stelle strömt das Gas in die sich erweiternde Beruhigungszone, deren Öffnungswinkel so ausgelegt ist, daß die Gasblasen weitgehend ohne Druckverlust ihre normale Auftriebsgeschwindigkeit erreichen.
  • Durch die oben beschriebenen, den Gasabzug begünstigenden Effekte ist es ferner möglich, Profilkonstruktionen mit relativ großen Stegbreiten S zuzulassen, die 6 bis 50 mm betragen können, während die Stegbreiten bei den bisher bekannten Konstruktionen z.T. erheblich unter 6 mm liegen. Der Vorteil der Verwendung eines Profils mit großer Stegbreite liegt auf der Hand, da man bei gegebenen Zellenabmessungen mit weniger Profilen auskommt.
  • Damit die oben beschriebenen Wirkungen voll zur Geltung kommen können, sollten die Profile bestimmte geometrische Abmessungen aufweisen, die in Abhängigkeit von den Zellenbedingungen gewählt werden.
  • Wie oben bereits erwähnt, weist die Arbeitsfläche in der Mitte eine geringere Krümmung auf als an den Rändern. So wird die Krümmung im mittleren Teil durch eine Kreislinie bestimmt, deren Radius R 7-180 mm, vorzugsweise 15 bis 25 mm, beträgt, während an den beiden Seiten die Krümmung stärker wird und in eine Kreislinie mit dem Radius r von 0,5 bis 4 mm übergeht. Die beiden Radien sollten so gewählt werden, daß R/r i: 5 ist.
  • Durch die erfindungsgemäße Ausgestaltung der Arbeitsfläche wird einerseits erreicht, daß infolge des relativ großen Radius der Kreislinie im mittleren Bereich, ein nahezu optimaler gleichmäßiger Abstand der Arbeitsfläche zur Gegenkathode gewährleistet ist, dessen relativ geringe Krümmung aber bereits für einen raschen Abtransport der gebildeten Gasblasen ausreicht. Durch die stärkere Rundung beim Übergang der Arbeitsfläche in die tangential verlaufenden Seitenflächen sind an dieser Stelle Kanten vermieden, die, wie bekannt, einem verstärkten Verschleiß unterliegen.
  • In Abhängigkeit von dem Radius R der mittleren Kreislinie und der Stegbreite S ergibt sich die Höhe des Kreisbogens (d.h. der größte Abstand zwischen der Stegbreite S und der Arbeitsfläche 21), die allerdings der Bedingung genügen sollte, daß
    Figure imgb0001
    von 5 bis 1800 beträgt.
  • Die Neigung der Seitenflächen kann ebenfalls innerhalb weiter Grenzen variiert werden. Diese Neigung wird bestimmt durch den Winkel, mit dem sie zusammentreffen und der zweckmäßig von 20° bis 120° betragen kann.
  • Der technische Aufwand zur Herstellung der erfindungsgemäßen Metall-Elektroden, die insbesondere als Anoden für die Chloralkali- Elektrolyse geeignet sind, ist gering. Zu ihrer Herstellung müssen lediglich die einzelnen Elektrodenprofile (5) mit den Verteilerstegen (2) durchgehend verschweißt werden. In diesen Stegen können zur besseren Fixierung Kerben eingearbeitet sein, in die die Profile eingeführt werden. Die relativ lange Schweißnaht sichert einen guten Stromübergang vom Verteilersteg zu den Profilen.
  • Obwohl die erfindungsgemäße Elektrodenkonstruktion sich durch einen außerordentlich einfachen Aufbau auszeichnet, ist ihre mechanische Festigkeit hervorragend, im wesentlichen auch bedingt durch die Querschnittsform der erfindungsgemäßen Profile. Die Elektroden zeichnen sich damit verbunden auch durch eine große Reparaturfreundlichkeit aus. Bei Beschädigung eines Profiles, z.B. durch Kurzschluß, können die jeweiligen Elektrodenprofile leicht einzeln ausgewechselt werden oder durch entsprechendes Nachrichten auf die erforderliche Planarität gebracht werden.
  • Der außerordentlich geringe Verschleiß der Elektroden infolge Fehlens von Kanten ist oben bereits erwähnt worden.
  • Durch den oben beschriebenen raschen Abtransport der Gasblasen können Profile mit Breiten an wirksamer Elektrodenfläche realisiert werden, wie sie bisher noch nicht bekannt waren. In anderen Worten ausgedrückt kann hierdurch das Verhältnis von wirksamer Elektrodenfläche, in der eine weitgehend gleichmäßige Stromdichtenverteilung gegeben ist, zu geometrischer Elektrodenfläche deutlich verbessert werden.
  • Aus der Beschreibung der beanspruchten Elektrode folgt weiterhin, daß vom Elektrodengrundkörper nur die eigentlich wirksame Fläche mit einer Aktivschicht versehen werden muß, da hier eine Konstruktion vorliegt, bei der verschiedene Teilbereiche der Profile jeweils bezüglich der zu erfüllenden Aufgabe optimiert sind. So ist die der Gegenelektrode gegenüberliegende Seite so ausgebildet, daß die arbeitende Elektrodenfläche optimal ihre Funktion im Elektrolysevorgang erfüllen kann. Die anderen Abschnitte des Elektrodenprofils sind nach hydrodynamischen und eine einfache Herstellung betreffenden Kriterien optimiert. Die Konstruktion eignet sich somit sehr gut für ein Aufbringen der Aktivierungslösung durch Tauchen, Walzen oder Streichen. Da es relativ einfach ist, nur die arbeitende Elektrodenfläche zu beschichten (was angestrebt wird, aber nicht Voraussetzung ist), wird die erforderliche Menge an Aktivierungslösung auf ein Mindestmaß reduziert. Dies ist insbesondere bei der Verwendung von Aktivierungslösungen, die teure Edelmetalle bzw. Edelmetallverbindungen enthalten, von Vorteil, z.B. bei den bekannten Ru02 enthaltenden Aktivschichten zur anodischen Chlorabscheidung.
  • Nicht zuletzt läßt sich diese Konstruktion sehr gut mit Hilfe von Spritzverfahren - insbesondere thermischen Spritzverfahren - beschichten, da die arbeitende Elektrodenfläche keine scharfen Kanten aufweist und da keine schwer zugänglichen Seitenflächen beschichtet werden müssen.

Claims (4)

1. Gasentwickelnde Metallelektrode für Elektrolysezellen, insbesondere Anode für Amalgamzellen für die Chloralkalielektrolyse, die aus in einer horizontalen Ebene parallel zueinander zugeordneten Profilen besteht, wobei die der Gegenelektrode zugekehrte wirksame Elektrodenfläche gekrümmt ist und die Profile mit quer da zu verlaufenden, mit einer Stromzuführung versehenen Stromvertellern miteinander verbunden sind, dadurch gekennzeichnet, daß die Krümmung der wirksamen Elektrodenfläche im Bereich der Spalte in eine solche mit kleinerem Radius (r) übergeht, wobei der die Krümmung der wirksamen Elektrodenfläche bestimmende Radius (R) von 7 bis 180 mm und der kleinere Radius (r) 0,5 bis 4 mm beträgt, und daß die Profile nach oben abgeschlossen werden durch zwei aus der Krümmung tangential hervorgehenden Seitenflächen (22, 25), die an ihrem Schnittpunkt einen Winkel (alpha) von 20 bis 120° einschließen.
2. Gasentwickelnde Metallelektrode nach Anspruch 1, dadurch gekennzeichnet, daß R/r 5 ist.
3. Gasentwickelnde Metallelektrode nach Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß die durch die Krümmung der Arbeitsfläche bedingte Höhendifferenz h, zwischen der Stegbreote S und dem der Gegenelektrode am nächsten liegenden Punkt der Bedingung
Figure imgb0002
> 5 und <1800 genügt.
4. Gasentwickelnde Metallelektrode nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Profile Vollprofile sind.
EP84107873A 1983-07-13 1984-07-05 Gasentwickelnde Metallelektrode Expired EP0135687B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3325187 1983-07-13
DE19833325187 DE3325187A1 (de) 1983-07-13 1983-07-13 Gasentwickelnde metallelektrode
DE19833345530 DE3345530A1 (de) 1983-07-13 1983-12-16 Gasentwickelnde metallelektrode fuer elektrolysezellen
DE3345530 1983-12-16

Publications (2)

Publication Number Publication Date
EP0135687A1 EP0135687A1 (de) 1985-04-03
EP0135687B1 true EP0135687B1 (de) 1986-10-15

Family

ID=25812249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107873A Expired EP0135687B1 (de) 1983-07-13 1984-07-05 Gasentwickelnde Metallelektrode

Country Status (3)

Country Link
US (1) US4557818A (de)
EP (1) EP0135687B1 (de)
DE (2) DE3345530A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087344A (en) * 1990-09-26 1992-02-11 Heraeus Elektroden Gmbh Electrolysis cell for gas-evolving electrolytic processes
DE4306889C1 (de) * 1993-03-05 1994-08-18 Heraeus Elektrochemie Elektrodenanordnung für gasbildende elektrolytische Prozesse in Membran-Zellen und deren Verwendung
DE4419277C2 (de) * 1994-06-01 1998-07-02 Heraeus Elektrochemie Elektrolysezellen-Elektrode
KR970064007U (ko) * 1996-05-28 1997-12-11 카 오디오의 탈거 구조
US5849164A (en) * 1996-06-27 1998-12-15 Eltech Systems Corporation Cell with blade electrodes and recirculation chamber
CA2357717C (en) * 1999-01-08 2005-12-06 Moltech Invent S.A. Aluminium electrowinning cells with oxygen-evolving anodes
ATE382722T1 (de) * 2001-07-13 2008-01-15 Moltech Invent Sa Anodenstrukturen auf der basis von legierungen für die herstellung von aluminium
US20080041729A1 (en) * 2004-11-05 2008-02-21 Vittorio De Nora Aluminium Electrowinning With Enhanced Electrolyte Circulation
DE102006054442A1 (de) * 2006-11-16 2008-05-21 Hydrodivide Ag Elektrode und ihre Verwendung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3409533A (en) * 1964-03-23 1968-11-05 Asahi Chemical Ind Mercury-method cell for alkali chloride electrolysis
GB1068992A (en) * 1964-03-31 1967-05-17 Asahi Chemical Ind Anode assembly
US3616445A (en) * 1967-12-14 1971-10-26 Electronor Corp Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides
BE754741A (fr) * 1969-08-14 1971-01-18 Burndy Corp Amortisseur de cable pour des lignes de transmission
BE755592A (fr) * 1969-09-02 1971-03-02 Ici Ltd Assemblage anodique
US3795603A (en) * 1971-08-26 1974-03-05 Uhde Gmbh Apparatus for the electrolysis of alkali metal chloride solutions with mercury cathode
DE7207894U (de) * 1972-03-02 1972-11-30 Metallges Ag Elektrode, insbesondere anode
US4033847A (en) * 1973-11-05 1977-07-05 Olin Corporation Metal anode assembly
SU567771A1 (ru) * 1975-04-14 1977-08-05 Предприятие П/Я В-2287 Диафрагменный электролизер дл получени хлора и щелочи
DE2721958A1 (de) * 1977-05-14 1978-11-16 Hoechst Ag Metallelektrode fuer elektrolyseapparate zum elektrolytischen herstellen von chlor
DE3008116A1 (de) * 1980-03-03 1981-09-17 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Gasentwickelnde metallelektrode fuer elektrochemische prozesse

Also Published As

Publication number Publication date
DE3460986D1 (en) 1986-11-20
EP0135687A1 (de) 1985-04-03
DE3345530A1 (de) 1985-06-27
US4557818A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
DD243516A5 (de) Monopolare und bipolara chlorzellen und elektrodenstrukturen fuer diese
DE2262173C3 (de)
DE2231196A1 (de) Anodensatz fuer elektrolytische zellen
EP0189535A1 (de) Elektrolyseapparat
EP0135687B1 (de) Gasentwickelnde Metallelektrode
DE2135873B2 (de) Zellenoberteil für Amalgamhochlastzellen
EP0089475A1 (de) Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
DE69213362T2 (de) Elektrolyseur und Herstellung davon
WO1991000379A1 (de) Elektrolysezelle für gasentwickelnde elektrolytische prozesse
DE2923818A1 (de) Elektrodenabteil
DE1467075B2 (de) Anode zur elektrolytischen Herstellung von Chlor
EP0753604B1 (de) Anode zur elektrolytischen Gewinnung von Metallen
DE3808495C2 (de)
EP0274138A1 (de) Elektrodenanordnung für gasbildende Elektrolyseure mit vertikal angeordneten Plattenelektroden
DE2125941C3 (de) Bipolare Einheit und damit aufgebaute elektrolytische Zelle
DE2845832A1 (de) Vorrichtung zur diaphragma-elektrolyse
EP0035131B1 (de) Gasentwickelnde Metallelektrode für elektrochemische Prozesse
DE2949495A1 (de) Elektrode fuer elektrolysezellen
DE3239535C2 (de) Verfahren zur Herstellung einer bipolaren Elektrode
DE2909640A1 (de) Elektrolyseapparat
DE3406797A1 (de) Beschichtete ventilmetallanode zur elektrolytischen gewinnung von metallen oder metalloxiden
DE3325187A1 (de) Gasentwickelnde metallelektrode
DE3005795C2 (de) Beschichtete Metallanode zur elektrolytischen Gewinnung von Metallen
DE69203267T2 (de) Elektrischer Leiter, Verfahren zur Herstellung eines elektrischen Leiters und Elektrode für Elektrolysezelle.
DD242641A5 (de) Vollstaendig aus teilen zusammengesetzte elektrochemische zelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850329

17Q First examination report despatched

Effective date: 19860227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3460986

Country of ref document: DE

Date of ref document: 19861120

ET Fr: translation filed
R20 Corrections of a patent specification

Effective date: 19870119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84107873.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000627

Year of fee payment: 17

Ref country code: NL

Payment date: 20000627

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000703

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000714

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000817

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20010714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010705

EUG Se: european patent has lapsed

Ref document number: 84107873.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST