EP0134050B1 - Circuit pour le fonctionnement de lampes de décharge à gaz à haute pression - Google Patents

Circuit pour le fonctionnement de lampes de décharge à gaz à haute pression Download PDF

Info

Publication number
EP0134050B1
EP0134050B1 EP84201073A EP84201073A EP0134050B1 EP 0134050 B1 EP0134050 B1 EP 0134050B1 EP 84201073 A EP84201073 A EP 84201073A EP 84201073 A EP84201073 A EP 84201073A EP 0134050 B1 EP0134050 B1 EP 0134050B1
Authority
EP
European Patent Office
Prior art keywords
output
circuit
reference current
signal
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84201073A
Other languages
German (de)
English (en)
Other versions
EP0134050A1 (fr
Inventor
Hans-Günter Ganser
Ralf Dr. Schäfer
Hans-Peter Dr. Stormberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0134050A1 publication Critical patent/EP0134050A1/fr
Application granted granted Critical
Publication of EP0134050B1 publication Critical patent/EP0134050B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement for operating high-pressure gas discharge lamps with higher-frequency current, consisting of a full-wave rectifier connected to an AC voltage network, the DC output voltage of which is supplied to a switching power supply consisting of at least one switching transistor, a choke coil, a freewheeling diode and the discharge lamp, the high-frequency switching speed of the Switching transistor is controlled via a driver stage by a control device which compares the instantaneous lamp current sensed with a current sensor with an upper and lower reference current level (0, U), the switching transistor being switched non-conductive when the lamp current exceeds the upper level (0), and conductive if the level falls below the lower level (U).
  • Such a circuit arrangement generates a direct current pulsating in time with the mains frequency, to which a high-frequency component dependent on the switching speed of the switching transistor is modulated.
  • a circuit arrangement of this type is known with a switching power supply designed as a flow converter and a control device with a hysteresis comparator which compares the instantaneous lamp current with a predetermined reference current and switches the switching transistor on or off when predetermined deviations from this reference current are reached .
  • the lamp is supplied with a pulsating direct current, to which a high-frequency amplitude is modulated.
  • the inductance of the choke coil depends on the level of the high-frequency modulation, ie on the mutual distance between the upper and lower reference current levels. This follows from the formula in T is the period of the sawtooth-shaped high-frequency modulation, 1 0 the upper and l u the lower reference current, L the inductance of the choke coil, R the lamp resistance and V the instantaneous value of the rectified mains voltage. For a switching frequency of the switching transistor of 40 kHz, z. B.
  • the invention is therefore based on the object of providing a circuit arrangement for operating high-pressure gas discharge lamps with a higher-frequency current, which can be operated with high-frequency amplitudes of up to 200% of the mean lamp current, which leads to very small choke coils without acoustic arc instabilities occurring in the lamp .
  • This object is achieved in a circuit arrangement of the type mentioned at the outset according to the invention in that the mutual distance between the reference current levels (O, U) is more than 10% of the average lamp current and a further, average reference current level (M) can be set at which the switching transistor after a set number of runs of the lamp current set in the control device, it is switched non-conductive when this intermediate level (M) is passed through from below, and is switched conductive when the intermediate level (M) is passed through from above.
  • the mean reference current level is to be understood as a current level lying in the middle range between the lower and upper reference current levels.
  • the mutual distance between the reference current levels i. H. the level of the frequency modulation can be up to 200% of the mean lamp current without acoustic arc instabilities occurring if the switching transistor is switched over by the mean reference current level when the lamp current is passed through.
  • Switching the switching transistor when passing through the average reference current level can, for. B. with every second or third pass of the lamp current or with a different periodicity or aperiodic.
  • hysteresis-free comparators are used to compare the instantaneous lamp current with the three reference current levels provided at the outputs of which a high (H) signal occurs when the instantaneous lamp current is above the corresponding reference current level, and a low (L) signal when the lamp current is below the reference current level.
  • the hysteresis-free comparators thus generate three independently adjustable reference current levels.
  • the set input of a first bistable multivibrator which forms the output of the control device is connected to the output of the 0 comparator via an inverter and a first NAND gate, and its reset input is connected via an AND gate and a second NAND gate and via a monostable multivibrator triggering on negative edges is connected to the U comparator, while at the same time the second inputs of the AND gate and the first NAND gate are connected to the output signals of a counting circuit connected to the M comparator are applied that the output of the counting circuit connected to the AND gate generates an H / UH pulse with a number of runs of the average reference current level set in the counting circuit, while the output of the counting circuit connected to the NAND gate produces an number of runs of the middle n Reference current levels from below provide an H / UH pulse.
  • the connections of the O comparator via the inverter and the first NAND gate with the first bistable multivibrator has the advantage that even in the event of faults in other parts of the circuit, for. B. caused by glitches or faulty components, the switching transistor is always switched non-conductive as soon as the lamp current reaches the upper reference current level 0. Damage to the switching transistor due to excessive currents is thus ruled out and possible explosion of the lamp due to excessive power is also prevented.
  • the counting circuit expediently has a first monostable multivibrator triggering on positive edges and a second monostable multivibrator triggering on negative edges, the inputs of which are connected to the output of a second bistable multivibrator whose set input is via a first counter triggering on negative edges and a
  • the AND signal is supplied with the output signal of the M comparator, while at the same time its reset input via a third NAND gate, an inverter, a second counter triggering on positive edges and a further AND gate likewise with the output of the M comparator are connected and in addition the respective second inputs of the AND gates are connected to the outputs of the second bistable flip-flop, the first counter by the signal present at the set input of the second bistable flip-flop and the second counter by the signal at the reset input of this second The flip-flop signal is reset.
  • This design of the counter circuit has the advantage that the output signals of the second bistable multivibrator as well as the output signals of the counters are used directly to reset the circuit and thus there are no delay times due to other components, so that switching at the average reference current level is as delay-free as possible.
  • the respective second inputs of the second and third NAND gates are connected via a further monostable multivibrator triggering on positive edges to the output of a hysteresis-free comparator which detects the zero crossings of the mains voltage, the advantage results that the control device is reset to a defined initial state at each zero crossing of the mains voltage.
  • the switching frequency of the switching transistor is usually between 10 and 100 kHz, preferably between 20 and 50 kHz.
  • FIG. 1 with A and B input terminals for connection to an AC network of z. B. 220 V, 50 Hz.
  • a full-wave rectifier 3 with four diodes is connected to these input terminals A and B via a high-frequency filter, consisting of a filter coil 1 and a filter capacitor 2.
  • a flow converter consisting of a switching transistor 4, a choke coil 5, a high-pressure gas discharge lamp 6 and a free-wheeling diode 7 is connected to the output of the full-wave rectifier 3.
  • a measuring resistor 8 serving as a current sensor is also inserted into the lamp circuit, from which a voltage proportional to the instantaneous lamp current is tapped, which voltage is applied to the input C of a control device 9.
  • the lamp current is tracked by the control device 9 in the manner described below to a reference current signal present at the input D of the control device 9.
  • the current drawn from the AC voltage network should run as sinusoidally as possible. In the present exemplary embodiment, it turned out to be sufficient that the input D of the control device 9 to give a rectified mains voltage, which is reduced, by a voltage divider 10 and 11 as a reference signal, a capacitor 12 being used for screening high-frequency voltage components.
  • the signal present at the output E of the control device 9 then switches the switching transistor 4 in a conductive or non-conductive manner via a driver stage 13, as a result of which the lamp current is shaped as follows.
  • an upper and a lower reference current level 0 or U and an average reference current level M for the lamp current I can be set in the control device 9 (FIG. 2).
  • the control device 9 then works in such a way that when the upper reference current level 0 is reached, the switching transistor 4 is switched to be non-conductive (points a, e, g, in FIG. 2), so that the supply of the lamp 6 from the AC voltage network is interrupted and the lamp current with a time constant determined by the inductance of the inductor 5 decreases.
  • the lower reference current level U points b, d, h, k in FIG. 2
  • the switching transistor 4 is either switched off if it was previously conductive (points c, i), d. i.e. if the mean reference current level M is passed through from below, or conductive if it was previously non-conductive (point f), i.e. that is, when the average reference current level M is passed through from above, so that the curve drawn in FIG. 2 results in a continuous line for the lamp current.
  • the switching frequency of the switching transistor 4 is in the order of magnitude of approximately 10 to 100 kHz, depending on the size of the inductor 5 and the lamp 6 used.
  • the mean lamp current is thus tracked to the mean reference current level M, which in turn, as shown in FIG. 3, is sinusoidal in accordance with the reference current signal at input D of the control device 9, as a result of which the network deformation is kept low. It has now been shown that with the lamp current shape shown in FIG. 2, the high-frequency modulation running between the upper and lower reference current levels 0 and U can be up to 200% without acoustic arc instabilities being observed in the lamp 6. If, on the other hand, the additional switching of the switching transistor 4 at the medium level M is suppressed, only a small high-frequency modulation is permissible, which has the disadvantages explained in more detail above.
  • the reference current signal present at input D of control device 9 is fed directly to signal input G of a hysteresis-free comparator 14 and via a voltage divider consisting of resistors 15, 16, 17 to reference inputs I, N, Q of three hysteresis-free comparators 18, 19 and 20, while at the same time the lamp current signal is present at the signal inputs K, P, R of the input C of the control device 9.
  • a constant DC voltage is applied to the reference input F of the comparator 14 by a DC voltage generator 21, the meaning of which is explained in more detail below.
  • the mode of operation of the comparators is now such that a high (H) signal is present at each of their outputs A14, A18, A19, A20 when the voltage at signal input G, K, P or R exceeds the voltage at reference input F, I, N or Q lies, while in the opposite case there is a low (L) signal at outputs A14 to A20.
  • the reference current levels 0, M and U shown in FIG. 2 are thus set by selecting the voltage dividers 10, 11 from FIG. 1 and 15, 16, 17 from FIG. 4.
  • An inverter 22 is connected to the output A20 of the O-comparator 20 and a first NAND gate 23 is connected to its output A22, the output A23 of which is connected to the setting input S of a first bistable flip-flop 24 which connects the output E of the control device 9 forms.
  • the reset input R of the bistable multivibrator 24 is connected to the U comparator 18 via a second NAND gate 25 and an AND gate 26 via a monostable multivibrator 27 triggering on negative edges.
  • a monostable multivibrator 28 triggering on positive edges is connected to the comparator 14, the output A28 of which is connected to the second input of the NAND gate 25.
  • the M comparator 19 is followed by two AND gates 29 and 30, the outputs A29 and A30 of which are each connected to a counter 31 and 32.
  • the output A31 of the counter 31 is connected to its reset input R and to the set input S of a second bistable flip-flop 33, whose reset input R is connected to the output A32 of the counter 32 via a third NAND gate 34 and an inverter 35 connected is.
  • the output A331 of the second bistable multivibrator 33 is connected to the second input of the AND gate 29 and the output A332 of this bistable multivibrator 33 with the second input of the AND gate 30.
  • the output A332 of the bistable multivibrator 33 also has two further monostable multivibrators 36 and 37 connected to it, the outputs A36 and A37 of which have the second inputs of the AND gate 26 and the NAND gate 23 are connected.
  • the output A26 of the AND gate 26 is connected to the first input of the NAND gate 25, whose output A25 is in turn connected to the reset input R of the first bistable multivibrator 24.
  • This pulse generates a UH / L pulse at the outputs A34 and A25 of the NAND gates 34 and 25, which is applied to the reset inputs R of the bistable flip-flops 33 and 24, so that the output A332 of the bistable flip-flop 33 on the L signal, its output A331 on the H signal and the output E of the bistable multivibrator 24 is also set on the H signal.
  • the switching transistor 4 from FIG. 1 is then turned on via the driver stage 13 by the H signal at the output E, so that the current through the lamp 6 begins to rise.
  • the output E of the bistable multivibrator 24 is set to an L signal and the switching transistor 4 is thus switched non-conductive via the driver stage 13.
  • the connection of the lamp 6 to the AC voltage network is interrupted and the lamp current drops again below the upper reference current level 0, as a result of which the output A20 of the O-comparator 20 is at an L signal, the output A22 of the inverter 22 is at an H signal and the output A23 of the NAND gate 23 switches to the L signal, but this does not change the output signal when the average reference current level M is reached (time t 5 ), the output A19 of the M comparator 19 switches to the L signal.
  • the output A18 of the U comparator 18 switches to an L signal, as a result of which the monostable multivibrator 27 triggering on negative edges emits an H / UH pulse at its output A27, so that at output A26 of the AND gate 26 also produces an H / UH pulse and thus a UH / L pulse at the output A25 of the NAND gate 25 which, with its H / L transition via the reset input R, produces the output E of the bistable multivibrator 24 switches to H signal.
  • the switching transistor 4 thus becomes conductive and the lamp current again exceeds the reference current level U, so that the U comparator 18 switches to the H signal.
  • the M comparator 19 goes to an H signal, so that an H signal is present at both inputs of the AND gate 29 and thus its output A29 also switches to an H signal.
  • the process described for time t 4 is repeated and the lamp current drops until the average reference current level M is reached (time tg), so that the output A19 of the M comparator 19 goes to L- Signal switches.
  • the output A31 of the counter 31 thus supplies an H signal, which causes it to reset itself via its reset input, ie its output A31 goes back to the L signal and the two-counting starts again.
  • the UH transition at the output A332 of the bistable multivibrator 33 produces an H / UH pulse at the output A36 of the monostable multivibrator 36 triggering on positive edges, so that an H / UH pulse also occurs at the output A26 of the AND gate 26 and thus a UH / L pulse at the output A25 of the NAND gate 25, as a result of which the output E of the bistable multivibrator 24 switches to an H signal.
  • the switching transistor 4 thus becomes low-resistance and the lamp current rises again, as a result of which the output A19 of the M comparator 19 goes to an H signal. If the upper reference current level O is exceeded at time t 10 , the process described for time t 4 is repeated and the lamp current drops.
  • an H / UH pulse is generated by the H / L transition at the output 332 of the bistable multivibrator 33 at the output A37 of the monostable multivibrator 37 triggering on negative edges, as a result of which a UH / L pulse is generated at the output A23 of the NAND gate 23 arises through which the output E of the bistable multivibrator 24 is set to the L signal.
  • the switching transistor 4 is switched non-conductive via the driver stage 13, and the lamp current drops, so that the output A19 of the M comparator 19 goes back to an L signal.
  • L and H signals are again present at the inputs of the AND gate 29, and an L signal occurs at its output 29.
  • the principle according to the invention of a control device with three reference current levels is not limited to the flow converter circuit described, but can also be used in other switching power supplies, e.g. B. a flyback converter can be applied.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Claims (5)

1. Dispositif de commutation pour le fonctionnement de lampes à décharge dans le gaz à haute pression avec un courant à fréquence plus élevée, constitué par un redresseur à double alternance, qui est connecté à un réseau de tension alternative et dont la tension continue de sortie est amenée à un appareil de commutation de secteurs constitué au moins par un transistor de commutation, une bobine de self, une diode de roue libre et la lampe à décharge, la vitesse de commutation à haute fréquence du transistor de commutation étant commandée par l'intermédiaire d'un étage d'excitation par un dispositif de réglage, assurant la comparaison du courant de lampe instantané échantilloné à l'aide d'un capteur de courant entre un niveau de courant supérieur et un niveau de courant de référence (O, Uh le transistor de commutation étant porté à l'état non conducteur dans le cas où le courant de lampe dépasse le niveau supérieur (0) et à l'état conducteur, lorsque le niveau inférieur (U) est dépassé, caractérisé en ce que l'espacement entre les niveaux de courant de référence (0, U) est plus de 10% du courant de lampe moyen et un autre niveau de courant de référence moyen (M) peut être établi, auquel le transistor de commutation est porté à l'état non conducteur, chaque fois après un nombre de passages du courant de lampe établi dans le dispositif de réglage, lorsque ce niveau moyen (M) est traversé du bas, et est porté à l'état conducteur, lorsque le niveau moyen (M) est traversé du haut.
2. Circuit de commutation selon la revendication 1, caractérisé en ce que pour la comparaison des courants de lampe instantanés avec les trois niveaux de courant de référence (0, M, U) sont prévus trois comparateurs exempts d'hystérésis (18, 19, 20), aux sorties (A18, A19, A20) desquels se produit chaque fois un signal haut (H), lorsque le courant de lampe instantané se situe au-dessus du niveau de référence correspondante (0, M, U) et un signal bas (L) lorsque le courant de lampe se situe au-dessus du niveau de courant de référence.
3. Circuit de commutation selon la revendication 2, caractérisé en ce qu'un premier multivibrateur bistable (24), formateur de la sortie (E) du dispositif de réglage (9) est connecté à la sortie (A20) du comparateur 0 (20) par l'intermédiaire d'un inverseur (22) et d'une première porte NON-ET (23) de l'entrée d'établissement, multivibrateur (24) dont l'entrée de rétablissement est connectée par l'intermédiaire d'une porte ET (26) et d'une deuxième porte NON-ET (25), ainsi que par l'intermédiaire d'un multivibrateur monostable basculant à des flancs négatifs (27), au comparateur U (18), alors que simultanément, les deuxièmes entrées de la porte ET (26) et de la première porte NON-ET (23) sont chargées des signaux de sortie d'un circuit de comptage (29 à 37) connecté au comparateur M (19) de façon que la sortie du circuit de comptage connectée à la porte ET (26) engendre une impulsion H/UH à.un nombre établi dans le circuit de comptage, de passages affec- tués à partir du haut du niveau de courant de référence moyen (M), alors que la sortie du circuit de comptage connectée à la porte NON-ET (23) fournit une impulsion H/UH à partir du bas dans le cas d'un nombre de passages, établi dans le circuit de comptage, du niveau de courant de référence moyen (M).
4. Circuit de commutation selon la revendication 3, caractérisé en ce qu'un premier multivibrateur monostable basculant à des flancs positifs (36) et un deuxième multivibrateur monostable basculant à des flancs négatifs (37), dont les sorties sont connectées à la sortie (A332) d'un deuxième multivibrateur bistable (33), dont l'entrée d'établissement est chargée du signal de sortie du comparateur M (19) par l'intermédiaire d'un premier compteur (31) basculat à des flancs négatifs et d'une porte ET (29), alors que simultanément, l'entrée de rétablissement est connectée par l'intermédiaire d'une troisième porte NON-ET (34), d'un inverseur (35), d'un deuxième compteur (32) basculant à des flancs positifs et d'une autre porte ET (30), également à la sortie du comparateur M (19) et, en outre, chaque fois les deuxièmes entrées de la porte ET (29, 30) sont connectées aux sorties (A331, A332) du deuxième multivibrateur bistable (33), le premier compteur (31) étant rétabli par le signal présent à l'entrée d'établissement du deuxième multivibrateur bistable (33) et le deuxième compteur (32) par le signal présent à l'entrée de rétablissement de ce deuxième multivibrateur.
5. Circuit de commutation selon la revendication 4, caractérisé en ce que chaque fois les deuxièmes entrées des deuxièmes et troisièmes portes NON-ET (25, 34) sont connectées par l'intermédiaire d'un autre multivibrateur bistable (28) basculant à des flancs positifs à la sortie (A14) d'un comparateur (14) exempt d'hystérésis détectant les passages par zéro de la tension du secteur.
EP84201073A 1983-07-27 1984-07-18 Circuit pour le fonctionnement de lampes de décharge à gaz à haute pression Expired EP0134050B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327030 1983-07-27
DE19833327030 DE3327030A1 (de) 1983-07-27 1983-07-27 Schaltungsanordnung zum betrieb von hochdruckgasentladungslampen

Publications (2)

Publication Number Publication Date
EP0134050A1 EP0134050A1 (fr) 1985-03-13
EP0134050B1 true EP0134050B1 (fr) 1987-11-19

Family

ID=6205026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201073A Expired EP0134050B1 (fr) 1983-07-27 1984-07-18 Circuit pour le fonctionnement de lampes de décharge à gaz à haute pression

Country Status (4)

Country Link
US (1) US4594531A (fr)
EP (1) EP0134050B1 (fr)
JP (1) JPH0693395B2 (fr)
DE (2) DE3327030A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172451B (en) * 1985-02-07 1989-06-14 El Co Villamos Keszulekek Es S Circuit system for igniting and lighting a high-pressure discharge lamp particulary a sodium vapour lamp
DE3517248A1 (de) * 1985-05-13 1986-11-13 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zum betrieb von gasentladungslampen mit hoeherfrequentem strom
DE3540985A1 (de) * 1985-11-19 1987-05-21 Philips Patentverwaltung Schaltungsanordnung zum wechselstrombetrieb von gasentladungslampen
DE3641070A1 (de) * 1986-12-02 1988-06-16 Philips Patentverwaltung Schaltungsanordnung zum betrieb von hochdruck-gasentladungslampen mittels eines impulsfoermigen versorgungsstromes
AT397326B (de) * 1987-12-18 1994-03-25 Stylux Lichtelektronik Schaltungsanordnung für die zündung und den betrieb von gasentladungslampen
US5068572A (en) * 1989-06-08 1991-11-26 U.S. Philips Corporation Switch mode power supply
DE4015397A1 (de) * 1990-05-14 1991-11-21 Hella Kg Hueck & Co Schaltungsanordnung zum zuenden und betreiben einer hochdruckgasentladungslampe in kraftfahrzeugen
FR2670958B1 (fr) * 1990-12-21 1994-01-07 Telemecanique Circuit de protection contre les court-circuits pour un interrupteur electronique.
EP0984670B1 (fr) 1998-06-13 2009-12-09 Greenwood Soar IP Limited Ballast pour lampe à forte décharge
US6495971B1 (en) 1998-06-13 2002-12-17 Hatch Transformers, Inc. High intensity discharge lamp ballast
DE10333729A1 (de) * 2003-07-23 2005-03-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Vorschaltgerät für mindestens eine Hochdruckentladungslampe, Betriebsverfahren und Beleuchtungssytem für eine Hochdruckentladungslampe
DE102005022591A1 (de) * 2005-05-17 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät für eine Niederdruck-Entladungslampe mit einem Mikro-Controller
US7589480B2 (en) * 2006-05-26 2009-09-15 Greenwood Soar Ip Ltd. High intensity discharge lamp ballast
US7863836B2 (en) * 2008-06-09 2011-01-04 Supertex, Inc. Control circuit and method for regulating average inductor current in a switching converter
JP5460065B2 (ja) * 2008-10-30 2014-04-02 株式会社小糸製作所 放電灯点灯回路
US20130038234A1 (en) * 2010-04-30 2013-02-14 Geert Willem Van der Veen Dimming regulator including programmable hysteretic down-converter for increasing dimming resolution of solid state lighting loads

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265930A (en) * 1962-05-03 1966-08-09 Gen Electric Current level switching apparatus for operating electric discharge lamps
US3486070A (en) * 1968-04-29 1969-12-23 Westinghouse Electric Corp Solid-state constant power ballast for electric discharge device
JPS4811636B1 (fr) * 1969-11-11 1973-04-14
US3913002A (en) * 1974-01-02 1975-10-14 Gen Electric Power circuits for obtaining a high power factor electronically
US4042856A (en) * 1975-10-28 1977-08-16 General Electric Company Chopper ballast for gaseous discharge lamps with auxiliary capacitor energy storage
US4060752A (en) * 1976-03-01 1977-11-29 General Electric Company Discharge lamp auxiliary circuit with dI/dt switching control
US4132925A (en) * 1976-06-15 1979-01-02 Forest Electric Company Direct current ballasting and starting circuitry for gaseous discharge lamps
US4051411A (en) * 1976-09-02 1977-09-27 General Electric Company Discharge lamp operating circuit
JPS6057673B2 (ja) * 1980-09-03 1985-12-16 株式会社エルモ社 交流放電灯の電源装置
GB2095930A (en) * 1981-03-27 1982-10-06 Stevens Carlile R Constant power ballast
FR2506554A1 (fr) * 1981-05-20 1982-11-26 Signaux Entr Electriques Dispositif d'alimentation electronique pour lampes a decharge
FI61781C (fi) * 1981-06-15 1982-09-10 Helvar Oy Effektregulator speciellt ljusregulator

Also Published As

Publication number Publication date
JPH0693395B2 (ja) 1994-11-16
DE3467677D1 (en) 1987-12-23
EP0134050A1 (fr) 1985-03-13
JPS6049596A (ja) 1985-03-18
DE3327030A1 (de) 1985-02-07
US4594531A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
EP0134050B1 (fr) Circuit pour le fonctionnement de lampes de décharge à gaz à haute pression
DE3541307C1 (en) DC power supply generator e.g. for gas discharge lamp - obtains regulated DC voltage from mains supply giving sinusoidal input to filter and rectifier
DE3541308C1 (en) DC power supply generator e.g. for gas discharge lamp - obtains regulated DC from mains supply giving sinusoidal input to filter and rectifier
DE69506612T2 (de) Steuerschaltung für induktive Belastung
DE3032289C2 (de) Schaltungsanordnung zum Regeln der Ausgangsspannung einer Gleichrichterbrücke
WO1997027726A1 (fr) Procede et circuit de commande electronique pour la regulation des caracteristiques de fonctionnement de lampes a decharge
DE3324591C2 (de) Spannungsdetektorschaltung
DE3004829B1 (de) Elektronisches,beruehrungslos arbeitendes Schaltgeraet
DE2408151B2 (de) Fernsteuersystem zur Übertragung von Signalen über ein Starkstromnetz
DE2023715B2 (de) Anordnung zur drehzahlregelung bei einem antrieb der waeschetrommel einer waschmaschine
EP0634087B1 (fr) Ballast electronique pour une lampe luminescente a gaz
DE19930458C2 (de) Tonruf-Frequenzbestimmungsvorrichtung und -verfahren
CH674343A5 (fr)
DE1638444C3 (de) Verfahren zur verzögerungsfreien Regelung der Blindleistung in elektrischen Netzen
DE2736783C3 (de) Grenzwert-Meldevorrichtung für Wechselsignale
DE2242458B2 (de) Schaltungsanordnung zur unterbrechungsfreien Stromversorgung einer Last durch zwei oder mehrere Wechselstromquellen
EP1816903B1 (fr) Commutateur variable d'une correction du point zéro
EP2515617B1 (fr) Appareil d'entrée électronique destiné au fonctionnement d'au moins une DEL et/ou au moins une lampe à décharge
EP3520213B1 (fr) Procédé destiné au fonctionnement d'un onduleur et onduleur
EP1105964A1 (fr) Circuit pour reguler la vitesse de rotation d'un ventilateur
DE1538087C3 (fr)
DE19946007A1 (de) Vorrichtung zur Erzeugung von digitalen Steuersignalen
DE19523750A1 (de) Wechselstromquelle
DE3511207A1 (de) Naeherungsschalter mit einer elektronischen lastschalteinrichtung
DE3516353C1 (de) Vorrichtung zum Steuern der Einschaltdauer eines Elektromagneten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19850422

17Q First examination report despatched

Effective date: 19860917

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3467677

Country of ref document: DE

Date of ref document: 19871223

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950630

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950726

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960924

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401