EP0128418A1 - Betonbehälter zur Aufnahme bioschädlicher Stoffe - Google Patents

Betonbehälter zur Aufnahme bioschädlicher Stoffe Download PDF

Info

Publication number
EP0128418A1
EP0128418A1 EP84105902A EP84105902A EP0128418A1 EP 0128418 A1 EP0128418 A1 EP 0128418A1 EP 84105902 A EP84105902 A EP 84105902A EP 84105902 A EP84105902 A EP 84105902A EP 0128418 A1 EP0128418 A1 EP 0128418A1
Authority
EP
European Patent Office
Prior art keywords
concrete
outer shell
container according
inner shell
concrete container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84105902A
Other languages
English (en)
French (fr)
Other versions
EP0128418B1 (de
Inventor
Peter Dr. Dr.-Ing. Vygen
Bernhard Dr. Dipl.-Chem. Christ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transnuklear GmbH
Original Assignee
Transnuklear GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transnuklear GmbH filed Critical Transnuklear GmbH
Publication of EP0128418A1 publication Critical patent/EP0128418A1/de
Application granted granted Critical
Publication of EP0128418B1 publication Critical patent/EP0128418B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the invention relates to a concrete container with steel reinforcement for receiving bio-harmful substances, in particular for receiving radioactive waste, consisting of a base body with a lid and suspension devices.
  • Bio-harmful substances such as hazardous industrial waste and in particular radioactive waste from nuclear facilities, industry and hospitals, must be packed according to the legal requirements before they can be stored in a suitable landfill.
  • Concrete containers are often used for this purpose, in which the bio-harmful substances usually enclosed by sheet metal packaging are introduced.
  • the concrete containers must be designed to be stable and, in some cases, shield radioactive radiation so that the safety of the biosphere during handling, transport and during intermediate and final storage is guaranteed. This applies particularly to accident situations.
  • the present invention was therefore based on the object of creating a concrete container with steel reinforcement for receiving bio-harmful substances, in particular for receiving radioactive waste, consisting of a base body with a lid and suspension devices which, even in the event of improper handling, accidents and damage fire, ensure the safe containment of the container inventory enables without endangering the environment.
  • the base body consists of an inner shell and an outer shell, the concrete of the thinner outer shell having a lower compressive strength than the concrete of the inner shell.
  • the lid of the container can also be constructed accordingly.
  • the thickness of the outer shell is preferably 2 to 6 cm and is made of a porous concrete. It is also beneficial if the concrete of the outer shell contains foamed plastic beads. It is also advantageous if a layer of non-combustible, poorly heat-conducting plastics, glass fibers or graphite fibers is arranged between the inner shell and the outer shell.
  • the inner shell is preferably connected to the outer shell by predetermined breaking points and / or anchors having deformation areas.
  • the suspension devices of the concrete container are advantageously connected to the reinforcement of the inner shell via links and / or deformation elements forming predetermined breaking points. In addition, they can also be connected to the reinforcement of the outer shell. It has also proven to be advantageous if the links and the deformation elements are embedded in concrete or other damping material, for which purpose a concrete is used which has the concrete quality of the outer shell.
  • Figures I to IV schematically show a concrete container according to the invention in an exemplary embodiment, Figure I a longitudinal section, Figure II the details between the inner and outer shell and Figures III and IV the arrangement of the suspension devices.
  • the cylindrical, cube-shaped or cuboid concrete container consists of a base body (1) and a cover (5), both of which are provided with steel reinforcement (7).
  • suspension devices in the form of eyelets (14) or corner fittings (16) are attached to the concrete container.
  • the radioactive substances are located inside the container, mostly enclosed in a metal barrel (6).
  • the space between the metal barrel (6), base body (1) and cover (5) can contain a backfill material.
  • the base body (1) and optionally also the cover (5) consist of an inner shell (2) and an outer shell (3).
  • the inner shell (2) is made of concrete with high compressive strength, e.g. B.
  • Heavy concrete (compressive strength: 60-64 N / mm 2 , density: 3.5-3.7 g / cm 3 ) and has a significantly greater thickness compared to the outer shell (3) made of lower strength concrete. While the concrete thickness of the inner shell (2) can often be 15 to 20 cm, the thickness of the outer shell (3) is less than 10 cm.
  • the outer shell (3) is provided with a reinforcement (8) which is less in comparison to the strong steel reinforcement (7) of the inner shell (2), which fulfills the safety, carrying, stability and possibly the main radiation shielding function Strength is.
  • the reinforcement (8) consists of a wire mesh, corrugated perforated plate or a suitable wire spiral.
  • the outer shell (3) takes on energy-absorbing shock absorption and predetermined breaking functions on the container due to the correspondingly selected low concrete quality in connection with the smaller layer thickness and the weaker reinforcement.
  • the outer shell (3) In the event of damage, only the outer shell (3) is damaged or broken without the safety functions of the inner shell (2) being impaired. This also applies to a damage fire that may damage the outer shell (2). It has proven to be favorable for shock absorption if the outer shell (3) has a thickness of 3 to 6 cm. For reasons of weight, damping and heat insulation, it is advantageous to use porous concrete as the material for the outer shell (3). Suitable for this include Gas concrete, natural pumice concrete, expanded clay and expanded slate concrete, cottage pumice concrete and ash sinter concrete. It is particularly advantageous if the concrete of the outer shell (3) contains foamed plastic balls.
  • a layer (4) made of non-combustible plastics eg, between the inner shell (2) and the outer shell (3).
  • B. in foamed form, glass fibers, for example as mats, or graphite fibers, e.g. B. is arranged as a tile.
  • This layer (4) additionally improves shock absorption and thermal insulation because of the elastic properties of the materials mentioned.
  • the concrete container according to the invention is easy to manufacture.
  • the inner shell (2) which is provided with anchors (10) on the outside, can be manufactured. It may be possible to reinforce the outer area of the inner shell (2) by pouring in mats or wire. Then, by pouring out the space between the inner shell (2) and a concrete casting mold, the outer shell (3) is cast over the anchor fasteners (11). The layer (4) is placed around the already concreted inner shell (2) before concreting the outer shell (3). Concreting the outer shell (3) in the area of the cover and the end face also presents no difficulties.
  • the inner shell (2) is connected to the outer shell (3) by predetermined breaking points (11) and / or anchors (13) having deformation areas (12).
  • Iron rods or wires can be used as anchors (13) with predetermined breaking points (11), the cross-section of which at the predetermined breaking point (11), which are located either within the outer shell (3), within the layer (4) or in the interface area of the two shells, is weakened accordingly.
  • Anchors can also be used that slide into one another as two parts when a permissible pressure load is exceeded due to shearing.
  • Anchors are anchors (13) with deformation areas (12), which can be in corresponding positions as the predetermined breaking points (11) Can be used with beads or spiral spring-like anchors.
  • the anchors (13) either absorb deformation energy or cause the outer shell (3) to flake off and crumble to dissipate energy if necessary.
  • suspension devices (14, 16) are connected to the reinforcement (7) via links (15, 19) and / or deformation elements (18) forming predetermined breaking points, the links (15, 19) or the deformation elements (18) of concrete (20), the quality of which corresponds to the concrete quality of the outer layer (3), or are surrounded by other damping material.
  • the suspension devices (14, 16) are additionally connected to the reinforcement (8) of the outer shell (3).
  • the eyelets (14) to the reinforcement (7) of the inner shell (2) laterally, e.g. B. to connect by a weld that this link (15) is effective as a predetermined breaking point with impermissible load.
  • the concrete (20) located in a protective sleeve (17) then acts as a shock-absorbing buffer.
  • the inner shell (2) is protected in this way.
  • the lifting eye (14) can also be attached to the reinforcement (8). If there is a strong impact or fall on the corner fittings (16), the energy to be consumed is partly via the reinforcement (8) of the outer shell (3) partly via deformation elements (18) or links (19) designed as predetermined breaking points analogous to the predetermined breaking point on the lifting eyes (14) on the then crumbling concrete (20) transferred and destroyed.
  • the concrete (20) other suitable damping material can also be used.
  • the concrete container according to the invention With its outer shell (3), the concrete container according to the invention has an effective and inexpensive protection of the integrity of the inner shell (2) in the event of a fall, impact or fire. Costs, materials and handling are low. In many applications, the concrete container according to the invention can even replace complex and expensive steel containers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Buffer Packaging (AREA)

Abstract

Betonbehälter für bioschädliche, insbesondere radioaktive Abfälle, bestehend aus einem Grundkörper mit Deckel und Aufhängeeinrichtungen, müssen unfall- und feuergeschützt sein. Diesen Schutz erreicht man, wenn zumindest der Grundkörper aus einer inneren und einer äußeren Schale besteht, wobei der Beton der äußeren Schale eine geringere Druckfestigkeit als der Beton der inneren Schale besitzt.

Description

  • Gegenstand der Erfindung ist ein Betonbehälter mit Stahlbewehrung zur Aufnahme bioschädlicher Stoffe, insbesondere zur Aufnahme radioaktiver Abfälle, bestehend aus einem Grundkörper mit Deckel sowie Aufhängeeinrichtungen.
  • Bioschädliche Stoffe, wie gefährlicher Industriemüll und insbesondere radioaktive Abfälle aus kerntechnischen Anlagen, Industrie und Krankenhäusern, müssen entsprechend den gesetzlichen Erfordernissen verpackt werden, ehe sie in einer geeigneten Deponie gelagert werden dürfen. Vielfach werden dazu Betonbehälter verwendet, in denen die meist von Blechemballagen umschlossenen bioschädlichen Stoffe eingebracht werden. Die Betonbehälter müssen stabil ausgelegt sein und fallweise radioaktive Strahlung abschirmen, damit die Sicherheit der Biosphäre bei der Handhabung, dem Transport und bei der Zwischen- und Endlagerung gewährleistet ist. Das gilt besonders auch für Unfallsituationen.
  • Bekannte Betonbehälter, wie in den DE-GM 77 36 411 und DE-GM 79 20 754 beschrieben, besitzen den Nachteil, daß sie stoßempfindlich sind und bei unsachgemäßer Handhabung gravierende Abplatzungen und Ausbrüche sowie durchgehende Risse im Beton entstehen können, so daß die Integrität der Behälter nicht sichergestellt bleibt. Vor allem bei Transportunfällen, wie Absturz bzw. Fall aus mehreren Metern Höhe und Bränden, können erhebliche Schäden an den Betonbehältern auftreten, wodurch eine Gefährdung der Umgebung durch das bioschädliche Behälterinventar, z. B. durch radioaktive Strahlung, erfolgen kann.
  • Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, einen Betonbehälter mit Stahlbewehrung zur Aufnahme bioschädlicher Stoffe, insbesondere zur Aufnahme radioaktiver Abfälle, zu schaffen, bestehend aus einem Grundkörper mit Deckel sowie Aufhängeeinrichtungen, der auch bei unsachgemäßer Handhabung, Unfällen und Schadensfeuer den sicheren Einschluß des Behälterinventars ohne Gefährdung der Umgebung ermöglicht.
  • Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß zumindest der Grundkörper aus einer inneren Schale und einer äußeren Schale besteht, wobei der Beton der dünneren äußeren Schale eine geringere Druckfestigkeit als der Beton der inneren Schale besitzt. Auch der Deckel des Behälters kann entsprechend aufgebaut sein.
  • Vorzugsweise beträgt die Dicke der äußeren Schale 2 bis 6 cm und ist aus einem porösem Beton gefertigt. Es ist auch günstig, wenn der Beton der äußeren Schale geschäumte Kunststoffkügelchen enthält. Weiterhin ist es vorteilhaft, wenn zwischen der inneren Schale und der äußeren Schale eine Schicht aus nicht brennbaren schlecht wärmeleitenden Kunststoffen, Glasfasern oder Grafitfasern angeordnet ist. Vorzugsweise ist die innere Schale mit der äußeren Schale durch Sollbruchstellen und/oder Verformungsbereiche aufweisende Anker verbunden.
  • Die Aufhängeeinrichtungen des Betonbehälters sind vorteilhafterweise über Sollbruchstellen bildende Verknüpfungen und/oder Verformungselemente mit der Bewehrung der inneren Schale verbunden. Zusätzlich können sie auch noch mit der Bewehrung der äußeren Schale verbunden sein. Als günstig hat es sich außerdem erwiesen, wenn die Verknüpfungen und die Verformungselemente in Beton oder anderes Dämpfungsmaterial eingebettet sind, wobei hierzu ein Beton verwendet wird, der die Betonqualität der äußeren Schale besitzt.
  • Die Abbildungen I bis IV zeigen schematisch einen erfindungsgemäßen Betonbehälter in beispielhafter Ausführungsform, wobei Abbildung I einen Längsschnitt, Abbildung II die Details zwischen innerer und äußerer Schale und die Abbildungen III und IV die Anordnung der Aufhängeeinrichtungen wiedergeben.
  • Der zylindrische, würfel- oder quaderförmige Betonbehälter, besteht aus einem Grundkörper (1) und einem Deckel (5), die beide mit einer Stahlbewehrung (7) versehen sind. Außerdem sind am Betonbehälter Aufhängeeinrichtungen in Form von Tragösen (14) oder Eckbeschlägen (16) befestigt. Im Behälterinnern befinden sich die radioaktiven Stoffe, zumeist in einem Blechfaß (6) eingeschlossen. Der Zwischenraum zwischen Blechfaß (6), Grundkörper (1) und Deckel (5) kann ein Verfüllmaterial enthalten. Der Grundkörper (1) und gegebenenfalls auch der Deckel (5) bestehen aus einer inneren Schale (2) und einer äußeren Schale (3). Die innere Schale (2) ist aus Beton hoher Druckfestigkeit, z. B. Schwerbeton (Druckfestigkeit: 60-64 N/mm2, Dichte: 3,5-3,7 g/cm3) gefertigt und weist gegenüber der aus Beton niedrigerer Festigkeit hergestellten äußeren Schale (3) eine wesentliche größere Dicke auf. Während die Betondicke der inneren Schale (2) oft 15 bis 20 cm betragen kann, ist die Dicke der äußeren Schale (3) geringer als 10 cm. Die äußere Schale (3) ist mit einer Bewehrung (8) versehen, die im Vergleich zur starken Stahlbewehrung (7) der inneren Schale (2), welche die Sicherheits-, Trag-, Stabilitäts-und gegebenenfalls die hauptsächliche Strahlenabschirmfunktion erfüllt, von geringerer Stärke ist. Beispielsweise besteht die Bewehrung (8) aus einem Maschendrahtgeflecht, gewelltem Lochblech oder aus einer geeigneten Drahtspirale. Die äußere Schale (3) übernimmt wegen der entsprechend gewählten geringen Betongüte in Verbindung mit der geringeren Schichtdicke und der schwächeren Bewehrung energieverzehrende Stoßdämpfungs- und Sollbruchsfunktionen am Behälter.
  • Beim Schadensfall wird nur die äußere Schale (3) beschädigt oder zerbricht, ohne daß die Sicherheitsfunktionen der inneren Schale (2) beeinträchtigt werden. Das gilt auch für ein Schadensfeuer, das allenfalls die äußere Schale (2) beschädigt. Als günstig für die Stoßdämpfung hat es sich erwiesen, wenn die äußere Schale (3) eine Dicke von 3 bis 6 cm aufweist. Aus Gewichts-, Dämpfungs- und Wärmeisolationsgründen ist es vorteilhaft, als Material für die äußere Schale (3) porösen Beton zu verwenden. Dazu geeignet sind u.a. Gasbeton, Naturbimsbeton, Blähton- und Blähschieferbeton, Hüttenbimsbeton und Aschesinterbeton. Besonders vorteilhaft ist es, wenn der Beton der äußeren Schale (3) geschäumte Kunststoffkügelchen enthält.
  • In manchen Anwendungsfällen ist es günstig, wenn zwischen der inneren Schale (2) und der äußeren Schale (3) eine Schicht (4) aus nicht brennbaren Kunststoffen, z. B. in geschäumter Form, Glasfasern, z.B. als Matten, oder Grafitfasern, z. B. als Flies, angeordnet ist. Diese Schicht (4) verbessert wegen der elastischen Eigenschaften der genannten Materialien zusätzlich die Stoßdämpfung und Wärmeisolation.
  • Der erfindungsgemäße Betonbehälter ist einfach herstellbar. Zunächst kann die innere Schale (2), die außen mit Ankern (10) versehen ist, gefertigt werden. Dabei ist es gegebenenfalls möglich, den äußeren Bereich der inneren Schale (2) durch Eingießen von Matten oder Draht zu verstärken. Anschließend wird durch Ausgießen des Zwischenraumes zwischen der inneren Schale (2) und einer Betongußform die äußere Schale (3) über die Ankerbefestigungen (11) angegossen. Die Schicht (4) wird vor dem Betonieren der äußeren Schale (3) um die bereits betonierte innere Schale (2) gelegt. Auch das Aufbetonieren der äußeren Schale (3) im Deckel- und Stirnseitenbereich bereitet keine Schwierigkeiten.
  • Als besonders vorteilhaft hat sich herausgestellt, wenn die innere Schale (2) mit der äußeren Schale (3) durch Sollbruchstellen (11) und/oder Verformungsbereiche (12) aufweisende Anker (13) verbunden ist. Als Anker (13) mit Sollbruchstellen (11) können Eisenstäbe oder Drähte verwendet werden, deren Querschnitt an der Sollbruchstelle (11), die sich entweder innerhalb der äußeren Schale (3), innerhalb der Schicht (4) oder im Nahtstellenbereich beider Schalen befinden, entsprechend geschwächt ist. Auch sind Anker, die sich bei Überschreitung einer zulässigen Druckbeanspruchung durch Abscheren als zwei Teile ineinanderschieben, einsetzbar. Als Anker (13) mit Verformungsbereichen (12), die sich in entsprechenden Positionen wie die Sollbruchstellen (11) befinden können, sind Anker mit Sicken oder spiralfederähnliche Anker einsetzbar. Die Anker (13) nehmen entweder Verformungsenergie auf oder bewirken ein gezieltes Abplatzen der äußeren Schale (3) und deren energieverzehrendes Zerbröseln im Bedarfsfall.
  • Besonders günstig ist es, wenn die Aufhängeeinrichtungen (14, 16) über Sollbruchstellen bildende Verknüpfungen (15, 19) und/oder Verformungselemente (18) mit der Bewehrung (7) verbunden sind, wobei die Verknüpfungen (15, 19) bzw. die Verformungselemente (18) von Beton (20), dessen Qualität der Betonqualität der äußeren Schicht (3) entspricht, oder von anderem Dämpfungsmaterial umgeben sind. Vorteilhafterweise werden die Aufhängeeinrichtungen (14, 16) zusätzlich mit der Bewehrung (8) der äußeren Schale (3) verbunden.
  • Bei einem Fall oder starken Stoß auf die Tragösen (14) oder auf die ebenfalls als Aufhängeeinrichtungen dienenden Eckbeschläge (16), letztere meist bei würfel- oder quaderförmigen Betonbehältern verwendet, deckel- und auch oft bodenseitig angebracht, wird die Energie über die Sollbruchstellen bildende Verknüpfungen (15), oder Verformungselemente (18) verzehrt.
  • So ist es beispielsweise möglich, die Tragösen (14) an die Bewehrung (7) der inneren Schale (2) seitlich z. B. durch eine Schweißnaht zu verbinden, daß diese Verknüpfung (15) als Sollbruchstelle bei unzulässiger Belastung wirksam wird.Der in einer Schutzhülse (17) befindliche Beton (20) wirkt dann als stoßdämpfender Puffer. Die innere Schale (2) wird auf diese Weise geschützt. Die Tragöse (14) kann auch zusätzlich an der Bewehrung (8) befestigt sein. Erfolgt ein starker Stoß oder Sturz auf die Eckbeschläge (16), wird die zu verzehrende Energie teils über die Bewehrung (8) der äußeren Schale (3) teils über Verformungselemente (18) bzw. als Sollbruchstellen ausgebildete Verknüpfungen (19) analog der Sollbruchstelle an den Tragösen (14) auf den dann zerbröckelnden Beton (20) übertragen und vernichtet. Anstatt des Betons (20) ist auch anderes geeignetes Dämpfungsmaterial verwendbar.
  • Mit seiner äußeren Schale (3) besitzt der erfindungsgemäße Betonbehälter einen wirksamen und billigen Schutz der Integrität der inneren Schale (2) bei Fall, Stoß und Brand. Kosten-, Material- und Handhabungsaufwand sind gering. In vielen Anwendungsfällen kann der erfindungsgemäße Betonbehälter sogar aufwendige und teure Stahlbehälter ersetzen.

Claims (9)

1. Betonbehälter mit Stahlbewehrung zur Aufnahme bioschädlicher Stoffe, insbesondere radioaktiver Abfälle, bestehend aus einem Grundkörper mit Deckel sowie Aufhängeeinrichtungen, dadurch gekennzeichnet, daß zumindest der Grundkörper (1) aus einer inneren Schale (2) und einer äußeren Schale (3) besteht, wobei der Beton der dünneren äußeren Schale (3) eine geringere Druckfestigkeit als der Beton der inneren Schale (2) besitzt.
2. Betonbehälter nach Anspruch 1, dadurch gekennzeichnet, daß die äußere Schale (3) eine Dicke von 2 bis 6 cm aufweist.
3. Betonbehälter nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das Material der äußeren Schale (3) aus porösem Beton besteht.
4. Betonbehälter nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Beton der äußeren Schale (3) geschäumte Kunststoffkügelchen enthält.
5. Betonbehälter nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß zwischen der inneren Schale (2) und der äußeren Schale (3) eine Schicht (4) aus nicht brennbaren, schlecht wärmeleitenden Kunststoffen, Glasfasern oder Grafitfasern angeordnet ist.
6. Betonbehälter nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die innere Schale (2) mit der äußeren Schale (3) durch Sollbruchstellen (11) und/oder Verformungsbereiche (12) aufweisende Anker (13) verbunden ist.
7. Betonbehälter nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Aufhängeeinrichtungen (14, 16) über Sollbruchstellen bildende Verknüpfungen (15, 19) und/oder Verformungselemente (18) mit der Bewehrung (7) der inneren Schale (2) verbunden sind.
8. Betonbehälter nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Verknüpfungen (15, 19) und die Verformungselemente (18) von Beton (20), dessen Qualität der Betonqualität der äußeren Schale (3) entspricht, oder von anderem Dämpfungsmaterial umgeben sind.
9. Betonbehälter nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Aufhängeeinrichtungen (14, 16) zusätzlich mit der Bewehrung (8) der äußeren Schale (3) verbunden sind.
EP84105902A 1983-06-11 1984-05-24 Betonbehälter zur Aufnahme bioschädlicher Stoffe Expired EP0128418B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3321250 1983-06-11
DE3321250A DE3321250C2 (de) 1983-06-11 1983-06-11 Betonbehälter zur Aufnahme bioschädlicher Stoffe

Publications (2)

Publication Number Publication Date
EP0128418A1 true EP0128418A1 (de) 1984-12-19
EP0128418B1 EP0128418B1 (de) 1988-02-24

Family

ID=6201329

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84105902A Expired EP0128418B1 (de) 1983-06-11 1984-05-24 Betonbehälter zur Aufnahme bioschädlicher Stoffe

Country Status (2)

Country Link
EP (1) EP0128418B1 (de)
DE (2) DE3321250C2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583913A1 (fr) * 1985-06-19 1986-12-26 Us Energy Conteneur de stockage de dechets a eliminer
EP0216219A2 (de) * 1985-09-25 1987-04-01 Forschungszentrum Jülich Gmbh Zylindrischer Behälter
FR2615650A1 (fr) * 1987-05-20 1988-11-25 Nuklear Service Gmbh Gns Ensemble formant conteneur pour le stockage final de dechets radioactifs
FR2705824A1 (fr) * 1993-05-24 1994-12-02 Electricite De France Conteneur en béton désaéré pour le stockage de déchets radioactifs.
EP1122744A1 (de) * 1999-12-15 2001-08-08 GNB Gesellschaft für Nuklear-Behälter mbH Verfahren zum Herstellen eines Transport- und/oder Lagerbehälters für radioaktive Gegenstände
EP2693442A1 (de) * 2012-07-30 2014-02-05 STEAG Energy Services GmbH Behältersystem zur Endlagerung von radioaktiven nicht-wärmeentwickelnden Abfällen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845372A (en) * 1984-07-05 1989-07-04 Westinghouse Electric Corp. Nuclear waste packing module
DE3447278A1 (de) * 1984-12-22 1986-06-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Langzeitbestaendige korrosionsschutzumhuellung fuer dicht verschlossene gebinde mit hochradioaktivem inhalt
DE19952130C2 (de) * 1999-10-29 2003-04-17 Nuklear Service Gmbh Gns Abschirmbehälter für den Transport und die Lagerung von schwach- bis mittelradioaktiven Abfällen
SE518948C2 (sv) * 2000-04-11 2002-12-10 Oyster Internat N V C O Hb Man Anordning för förvaring av riskmaterial
DE10228387B4 (de) * 2002-06-25 2014-10-16 Polygro Trading Ag Behältersystem zum Transport und zur Lagerung hochradioaktiver Materialien
DE102004035277B4 (de) * 2004-07-21 2006-07-13 Ghattas, Nader Khalil, Prof. Dr. Mehrsperrenbehälter für radioaktiven Müll
DE102010034016A1 (de) * 2010-08-11 2012-02-16 Josef Hauck Sicherung des Atommülls aus Atomkraftwerken zur Sicherung der Menschheit
CN110246601B (zh) * 2019-07-16 2024-01-16 中国工程物理研究院总体工程研究所 一种抗高速撞击包装容器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1278475A (fr) * 1961-01-26 1961-12-08 Récipients pour la destruction ou l'emmagasinage des déchets radioactifs
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
FR2055982A5 (en) * 1969-08-13 1971-05-14 Transnucleaire Storage and transport container for a - radioactive materials
DE2338480A1 (de) * 1973-07-28 1975-02-13 Kernforschung Gmbh Ges Fuer Einrichtung zum transportieren von radioaktiven abfaellen
US4123392A (en) * 1972-04-13 1978-10-31 Chemtree Corporation Non-combustible nuclear radiation shields with high hydrogen content
FR2445590A3 (fr) * 1978-12-27 1980-07-25 Kernforschungsz Karlsruhe Conteneur de transport perdu en beton, destine a recevoir un fut a contenu radioactif
DE3015553A1 (de) * 1980-04-23 1981-10-29 Siempelkamp Gießerei GmbH & Co, 4150 Krefeld Transport- und/oder lagerbehaelter fuer bestrahlte kernreaktor-brennelemente
FR2495817A1 (fr) * 1980-12-06 1982-06-11 Kernforschungsz Karlsruhe Conteneur pour le stockage et le transport d'au moins une coquille remplie de dechets radio-actifs incorpores dans du verre fondu

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1278475A (fr) * 1961-01-26 1961-12-08 Récipients pour la destruction ou l'emmagasinage des déchets radioactifs
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
FR2055982A5 (en) * 1969-08-13 1971-05-14 Transnucleaire Storage and transport container for a - radioactive materials
US4123392A (en) * 1972-04-13 1978-10-31 Chemtree Corporation Non-combustible nuclear radiation shields with high hydrogen content
DE2338480A1 (de) * 1973-07-28 1975-02-13 Kernforschung Gmbh Ges Fuer Einrichtung zum transportieren von radioaktiven abfaellen
FR2445590A3 (fr) * 1978-12-27 1980-07-25 Kernforschungsz Karlsruhe Conteneur de transport perdu en beton, destine a recevoir un fut a contenu radioactif
DE3015553A1 (de) * 1980-04-23 1981-10-29 Siempelkamp Gießerei GmbH & Co, 4150 Krefeld Transport- und/oder lagerbehaelter fuer bestrahlte kernreaktor-brennelemente
FR2495817A1 (fr) * 1980-12-06 1982-06-11 Kernforschungsz Karlsruhe Conteneur pour le stockage et le transport d'au moins une coquille remplie de dechets radio-actifs incorpores dans du verre fondu

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583913A1 (fr) * 1985-06-19 1986-12-26 Us Energy Conteneur de stockage de dechets a eliminer
GB2176925A (en) * 1985-06-19 1987-01-07 Us Energy Waste disposal package
EP0216219A2 (de) * 1985-09-25 1987-04-01 Forschungszentrum Jülich Gmbh Zylindrischer Behälter
EP0216219A3 (en) * 1985-09-25 1988-03-02 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Cylindrical container
FR2615650A1 (fr) * 1987-05-20 1988-11-25 Nuklear Service Gmbh Gns Ensemble formant conteneur pour le stockage final de dechets radioactifs
FR2705824A1 (fr) * 1993-05-24 1994-12-02 Electricite De France Conteneur en béton désaéré pour le stockage de déchets radioactifs.
EP1122744A1 (de) * 1999-12-15 2001-08-08 GNB Gesellschaft für Nuklear-Behälter mbH Verfahren zum Herstellen eines Transport- und/oder Lagerbehälters für radioaktive Gegenstände
KR100746929B1 (ko) * 1999-12-15 2007-08-08 게엔에스 게젤샤프트 퓌어 누클레아프-서비스 엠베하 방사성 물품 수송 및/또는 저장 용기의 제조 방법
EP2693442A1 (de) * 2012-07-30 2014-02-05 STEAG Energy Services GmbH Behältersystem zur Endlagerung von radioaktiven nicht-wärmeentwickelnden Abfällen

Also Published As

Publication number Publication date
DE3321250A1 (de) 1984-12-13
DE3469466D1 (en) 1988-03-31
EP0128418B1 (de) 1988-02-24
DE3321250C2 (de) 1985-10-03

Similar Documents

Publication Publication Date Title
EP0128418B1 (de) Betonbehälter zur Aufnahme bioschädlicher Stoffe
DE2839759A1 (de) Verschluss von lagerbohrungen zur endlagerung radioaktiver abfaelle und verfahren zum anbringen des verschlusses
DD153265A5 (de) Verfahren und vorrichtung zum transport und zur lagerung radioaktiver substanzen
DE2821780A1 (de) Transport- und lagereinrichtung fuer radioaktive stoffe
EP0129782B1 (de) Vorrichtung zur Handhabung und zum Schutz von Lagergebinden für radioaktive Stoffe
DE10228387A1 (de) Behältersystem zum Transport und zur Lagerung hochradioaktiver Materialien
EP0036982B1 (de) Einsatzkorb für radioaktives Material in Transport- und/oder Lagerbehältern
EP0143212B1 (de) Transport- und Lagerbehälter für radioaktives Material
CH639794A5 (de) Abschirmbehaelter fuer den transport und/oder die lagerung bioschaedlicher abfaelle, insbesondere bestrahlter brennelemente.
DE60126507T2 (de) Verpackungseinrichtung für den massentransport von uranhaltigen spaltbaren materialien
DE19949585A1 (de) Wasser-Kernreaktor mit integriertem Auffang
EP0205060A2 (de) Strahlenschutzbehälter zum Transport und zur Lagerung radioaktiver Materialien und Verfahren zu seiner Herstellung
DE3015553C2 (de) Transport- und/oder Lagerbehälter für bestrahlte Kernreaktor-Brennelemente
DE3704466C2 (de)
DE2837631A1 (de) Transportabschirm- und/oder lagerabschirmbehaelter
DE6912726U (de) Abgeschirmter behaelter, insbesondere transportbehaelter fuer radioaktive produkte
CH669862A5 (de)
DE3610862C2 (de)
AT372544B (de) Fester lagerfaehiger abfall
DE8317200U1 (de) Behaelter zur Aufnahme bioschaedlicher Stoffe
DE2931729A1 (de) Einrichtung zur aufnahme des geschmolzenen kerns eines fluessigkeitsgekuehlten kernreaktors nach einem stoerfall und verwendung der einrichtung
DE3028040C2 (de) Anordnung zur Lagerung von radioaktiven Abfallflüssigkeiten
DE2731548A1 (de) Verfahren und anlage zur manipulation von radioaktiven abfaellen
DE2600790C2 (de) Verfahren zur Beseitigung von hochradioaktiven Abfällen
DE3028006C2 (de) Verfahren zur sicheren Einbringung von flüssigen radioaktiven Abfällen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840524

AK Designated contracting states

Designated state(s): BE CH DE GB LI SE

17Q First examination report despatched

Effective date: 19860220

R17C First examination report despatched (corrected)

Effective date: 19860804

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE GB LI SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3469466

Country of ref document: DE

Date of ref document: 19880331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: NUKEM GMBH

Ref country code: CH

Ref legal event code: PFA

Free format text: TNH TRANSPORTE UND DIENSTLEISTUNGEN ABWICKLUNGSGESELLSCHAFT MBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900201

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

EAL Se: european patent in force in sweden

Ref document number: 84105902.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950411

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950515

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950518

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: NUKEM G.M.B.H.

Effective date: 19960531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 84105902.5