EP0123062A1 - Stromteiler für Messwandler zum Messen eines Stromes - Google Patents

Stromteiler für Messwandler zum Messen eines Stromes Download PDF

Info

Publication number
EP0123062A1
EP0123062A1 EP84102085A EP84102085A EP0123062A1 EP 0123062 A1 EP0123062 A1 EP 0123062A1 EP 84102085 A EP84102085 A EP 84102085A EP 84102085 A EP84102085 A EP 84102085A EP 0123062 A1 EP0123062 A1 EP 0123062A1
Authority
EP
European Patent Office
Prior art keywords
conductor
measuring
flat conductor
current
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84102085A
Other languages
English (en)
French (fr)
Other versions
EP0123062B1 (de
Inventor
Mathis Halder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Landis and Gyr AG
Original Assignee
Landis and Gyr AG
LGZ Landis and Gyr Zug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr AG, LGZ Landis and Gyr Zug AG filed Critical Landis and Gyr AG
Priority to AT84102085T priority Critical patent/ATE20403T1/de
Publication of EP0123062A1 publication Critical patent/EP0123062A1/de
Application granted granted Critical
Publication of EP0123062B1 publication Critical patent/EP0123062B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop

Definitions

  • the invention relates to a current divider for transducers for measuring a current of the type mentioned in the preamble of claim 1.
  • Such known current dividers (DE-PS 30 08 308) divide the current to be measured into various partial currents in the ratio of the electrical conductivities of the parallel conductors, the partial current flowing in the measuring conductor flowing through the magnetic core of the measuring transducer, while the partial currents flowing in the shunt conductors make no contribution contribute to the flooding of the magnetic core.
  • other known current dividers e.g. based on the differential principle (DE-OS 31 40 544) or on the principle of the electrical bridge circuit (US Pat. No. 4,240,059), they are characterized by a significantly lower dependency of the current divider ratio on the electrical resistances of the different current paths.
  • the often very high requirements for the stability of the current divider ratio have so far not been satisfactorily met with simple means.
  • the invention has for its object to provide a simple current divider consisting of a single flat conductor of the type mentioned, which is characterized by a particularly high measurement accuracy.
  • 1 means a flat conductor of constant thickness consisting of a single sheet metal strip or metal block, each of which has a connection 2 or 3 at its longitudinal ends.
  • the current I to be measured flows through the connection 2 through the flat conductor 1 and leaves it via the connection 3.
  • the flat conductor 1 has two holes 4, 5 lying one behind the other in its longitudinal direction.
  • the flat conductor 1 also has two slots 8, 9 which run essentially in its longitudinal direction which advantageously extend approximately over the entire length of the flat conductor 1 and divide it into a measuring conductor 10 delimited by the slots 8, 9 and into two shunt conductors 11, 12 which are electrically parallel to the measuring conductor 10.
  • the measuring conductor 10 is highlighted in the drawing by hatching.
  • the slot 8 on the right in the drawing in the direction of current flow runs through the hole 4 and the slot 9 on the left runs through the hole 5.
  • the slot 9 and 8 is semicircular and of the hole wall distanced by an amount equal to the mutual spacing of the slots 8, 9 on their rectilinear part outside the area of the holes 4, 5.
  • the measuring conductor 10 runs - always viewed in the direction of current flow - on the left side in a semicircle around the hole 4 around, moves to hole 5, penetrates the magnetic core 6, 7 and finally runs on the right side in a semicircle around hole 5.
  • the shunt conductor 11 and 12 runs past the magnetic core 6, 7 on the right and left.
  • Magnetic core 6, 7 is therefore the partial current flowing in the measuring conductor 10.
  • the current conductor ratio is determined by the electrical impedances of the measuring conductor 10 and the shunt conductor 11, 12 and thus essentially only depends on the ratio of the width of the measuring conductor 10 to the width of the flat conductor 1, since on the one hand the slots 8, 9 are very narrow and on the other hand the holes 4 , 5 are relatively small.
  • the measuring conductor 10 is not led out of the plane of the flat conductor 1. Rather, it lies in the same plane as the shunt conductors 11, 12, is embedded between them and separated over its entire length only by the slots 8, 9 from the shunt conductors 11, 12, so that an intimate thermal contact between the measurement conductor 10 and the Shunt conductors 11, 12 is guaranteed.
  • the width of the slots 8, 9 is advantageously small compared to the thickness of the flat conductor 1, so that there is an optimal heat coupling between the measuring conductor 10 and the shunt conductors 11, 12.
  • the length of the measuring conductor 10 is advantageously large in comparison to the thickness of the holes 4, 5, as a result of which that portion of the measuring conductor 10 in which the isothermal conditions are not completely fulfilled is negligibly small.
  • Machining slots 8, 9 are suitable for machining and non-cutting machining processes. Particularly narrow slits can be created using a laser beam. An electrically insulating, thermally conductive layer can be inserted into the slots 8, 9.
  • the flat conductor 1 advantageously has the shape of a U. This can be achieved in that the flat conductor 1 is folded along a bending edge or reverse edge 13 in its transverse direction, ie 180 0 is folded so that the two holes 4, come to lie 5 congruently one above the other and the two legs 14, 15 of the Flat conductor 1 - separated from one another by a thin insulating layer - are in close thermal contact with one another. In this case, optimal thermal conditions are achieved if the width of the slots 8, 9 is small compared to the distance between the two legs 14, 15.
  • FIG. 2 shows an example of a flat conductor 16 produced in this way, in which the same or equivalent parts as in FIG. 1 are designated by the same reference numbers.
  • the slots 8, 9 are shown in FIG. 2 for the sake of clarity of the drawing by simple solid lines.
  • An aluminum sheet anodized on both sides is advantageously suitable as the insulation layer 17 between the legs 14, 15.
  • the leg 6 of the magnetic core 18 penetrates both the hole 4 and the hole 5 (not visible in FIG. 2), while the leg 7 closes the magnetic circuit outside the flat conductor 1.
  • the measuring transformer described works as a so-called active current transformer.
  • a detector winding 19 arranged on the magnetic core 18 is connected to the input of an amplifier 20, the output of which is connected to a row consisting of a secondary winding 21 and a load 22 circuit is connected.
  • the flat conductor 16 represents the primary winding of the measuring transducer.
  • the partial current flowing in the measuring conductor 10 is decisive for the primary flooding.
  • the primary flooding is compensated in a known manner by a current i flowing in the secondary winding 21, which current is controlled in a control loop by the amplifier 20 such that the voltage induced in the detector winding 19 approaches zero.
  • the detector winding 19 can be omitted if a magnetic field sensor, e.g. the magnetic field is detected in an air gap of the magnetic core 18 and is connected to the input of the amplifier 20.
  • the measuring transducer described can also be operated as a so-called time-encrypted transducer according to the teaching of CH-PS 618 043.
  • the parts 19 to 22 are omitted, the primary flooding of the magnetic core 18 is superimposed on an alternating reference flooding by means of a pre-magnetization winding, and the points in time of the zero crossings of the resulting magnetic field are detected with the aid of a magnetic field sensor arranged in an air gap of the magnetic core 18.
  • the U-shaped flat conductor 1 or 16 can easily be used with a measuring wand with a three-legged magnetic core.
  • For Use as a primary winding in a pot-shaped magnetic core may require an adaptation of the shape of the outer contours of the flat conductor 16.
  • the flat conductor 23 according to FIG. 3 has, in addition to the two holes 4, 5 and the two slots 8, 9, two further holes 4 ', 5' and two further slots 8 ', 9'.
  • the holes 4 and 4 ', the holes 5 and 5', the slots 8 and 8 'and the slots 9 and 9' are arranged mirror-symmetrically to the longitudinal axis of the flat conductor 23.
  • the slots 8, 9 and 8 ', 9' divide the flat conductor 23 into two outer shunt conductors 12 and 12 'and a middle shunt conductor 24 and two measuring conductors 10 and 10', the measuring conductor 10 between the shunt conductors 12 and 24 and the measuring conductor 10 'is embedded between the shunt conductors 12' and 24.
  • the holes 4, 5 are intended to receive the leg 6 of the magnetic core 18 (FIG. 2) and the holes 4 ', 5' are intended to receive the leg 7.
  • the sum of the partial currents flowing in the two measuring conductors 10, 10 ' is decisive for the primary flooding of the magnetic core 10.
  • the middle shunt conductor 24 of the flat conductor 23 has cutouts 25 which are shaped in such a way that the cross-sectional area of the shunt conductor 24 is approximately constant over its entire length, so that a constant current density and thus uniform heating is achieved.
  • the width of the flat conductor 23 is different.
  • the slots 8, 9 and 8 ', 9' are shaped such that the measuring conductors 10, 10 'each form three straight conductor parts, the halves of the measuring conductors 10, 10' belonging to the leg 14 being wider lie outside as the halves belonging to the leg 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

Der Stromteiler besteht aus einem Flachleiter (1) mit zwei Löchern (4; 5) zur Aufnahme eines Magnetkerns (6, 7) und mit zwei Schlitzen (8; 9), die den Flachleiter (1) in einen Messleiter (10) und zwei Nebenschlussleiter (11; 12) unterteilen. Der Messleiter (10) durchdringt den Magnetkern (6, 7), die Nebenschlussleiter (11; 12) führen an ihm vorbei. Der Messleiter (10) liegt in der gleichen Ebene wie die Nebenschlussleiter (11; 12) und ist zwischen diesen eingebettet.

Description

  • Die Erfindung bezieht sich auf einen Stromteiler für Messwandler zum Messen eines Stromes der im Oberbegriff des Patentanspruchs 1 genannten Art.
  • Solche bekannte Stromteiler (DE-PS 30 08 308) teilen den zu messenden Strom im Verhältnis der elektrischen Leitwerte der parallelen Leiter in verschiedene Teilströme auf, wobei der im Messteiter fliessende Teilstrom den Magnetkern des Messwandlers durchflutet, während die in den Nebenschlussleitern fliessenden Teilströme keinen Beitrag an die Durchflutung des Magnetkerns leisten. Gegenüber anderen bekannten Stromteilern, die z.B. auf dem Differenzprinzip (DE-OS 31 40 544) oder auf dem Prinzip der elektrischen Brückenschaltung (US-PS 4 240 059) beruhen, zeichnen sie sich durch eine wesentlich geringere Abhängigkeit des Stromteilerverhältnisses von den elektrischen Widerständen der verschiedenen Strompfade aus. Trotz dieses prinzipbedingten Vorteils konnten die oft sehr hohen Anforderungen an die Stabilität des Stromteilerverhältnisses bisher mit einfachen Mitteln nicht befriedigend erfüllt werden.
  • Der Erfindung liegt die Aufgabe zugrunde, einen einfachen, aus einem einzigen Flachleiter bestehenden Stromteiler der eingangs genannten Art zu schaffen, der sich durch eine besonders hohe Messgenauigkeit auszeichnet.
  • Die Lösung dieser Aufgabe gelingt durch die im Kennzeichen des Patentanspruchs 1 angegebenen Merkmale.
  • Nachfolgend werden einige Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.
    • Es zeigen: Fig. 1 einen Stromteiler,
    • Fig. 2 einen Messwandler und
    • Fig. 3
    • und 4 weitere Stromteiler.
  • In der Fig. 1 bedeutet 1 einen aus einem einzigen Blechstreifen oder Metallblock bestehenden Flachleiter konstanter Dicke, der an seinen längsseitigen Enden je einen Anschluss 2 bzw. 3 aufweist. Der zu messende Strom I fliesst über den Anschluss 2 durch den Flachleiter 1 und verlässt diesen über den Anschluss 3. Der Flachleiter 1 weist zwei in seiner Längsrichtung hintereinander liegende Löcher 4, 5 auf. Ein erster Schenkel 6 eines in der Fig. 1 nicht näher dargestellten, geschlossenen Magnetkerns eines Messwandlers durchdringt das Loch 4 und ein zweiter Schenkel 7 dieses Magnetkerns durchdringt das Loch 5. Der Flachleiter 1 weist ferner zwei im wesentlichen in seiner Längsrichtung verlaufende Schlitze 8, 9 auf, die sich vorteilhaft annähernd über die gesamte Länge des Flachleiters 1 erstrecken und diesen in einen durch die Schlitze 8, 9 begrenzten Messleiter 10 sowie in zwei zum Messleiter 10 elektrisch parallele Nebenschlussleiter 11, 12 unterteilen. Zur besseren Uebersichtlichkeit ist der Messleiter 10 in der Zeichnung durch eine Schraffur zeichnerisch hervorgehoben. Der in der Zeichnung in Stromflussrichtung betrachtet rechts liegende Schlitz 8 läuft durch das Loch 4 und der links liegende Schlitz 9 läuft durch das Loch 5. In der Nähe des Loches 4 bzw. 5 ist der Schlitz 9 bzw. 8 halbkreisförmig ausgebildet und von der Lochwandung um einen Betrag distanziert, der gleich gross ist wie der gegenseitige Abstand der Schlitze 8, 9 auf ihrem geradlinigen Teil ausserhalb des Bereiches der Löcher 4, 5. Der Messleiter 10 läuft - immer in Stromflussrichtung betrachtet - auf der linken Seite halbkreisförmig um das Loch 4 herum, bewegt sich zum Loch 5, durchdringt den Magnetkern 6, 7 und läuft schliesslich auf der rechten Seite halbkreisförmig um das Loch 5 herum. Der Nebenschlussleiter 11 bzw. 12 läuft dagegen rechts bzw. links am Magnetkern 6, 7 vorbei. Für die primäre Durchflutung des
  • Magnetkerns 6, 7 ist somit der im Messleiter 10 fliessende Teilstrom massgebend. Das Stromteiterverhättnis ist durch die elektrischen Impedanzen des Messleiters 10 und der Nebenschtussleiter 11, 12 bestimmt und somit im wesentlichen nur vom Verhältnis der Breite des Messleiters 10 zur Breite des Flachleiters 1 abhängig, da einerseits die Schlitze 8, 9 sehr schmal und anderseits die Löcher 4, 5 verhältnismässig klein sind.
  • Im Gegensatz zu bekannten Lösungen ist der Messleiter 10 nicht aus der Ebene des Flachleiters 1 herausgeführt. Vielmehr liegt er in der gleichen Ebene wie die Nebenschlussleiter 11, 12, ist zwischen diesen eingebettet und annähernd auf seiner ganzen Länge nur durch die Schlitze 8, 9 von den Nebenschlussleitern 11, 12 getrennt, so dass ein inniger Wärmekontakt zwischen dem Messleiter 10 und den Nebenschlussleitern 11, 12 gewährleistet ist. Einzig im Bereich des Loches 4 bzw. 5 ist die eine Seitenwand des Messleiters 10 durch das betreffende Loch vom Nebenschlussleiter 11 bzw. 12 distanziert, die andere Seitenwand ist jedoch auch in diesem Bereich nur durch den Schlitz 9 bzw. 8 vom benachbarten Nebenschlussleiter 12 bzw. 11 getrennt, so dass ein nahezu idealer Temperaturausgleich und damit eine von der Stärke des zu messenden Stromes I unabhängige Stromverteilung im Flachleiter 1 gewährleistet ist und eine sehr hohe Messgenauigkeit erzielt wird.
  • Vorteilhaft ist die Breite der Schlitze 8, 9 im Vergleich zur Dicke des Flachleiters 1 klein, so dass sich eine optimale Wärmekopplung zwischen dem Messleiter 10 und den Nebenschlussleitern 11, 12 ergibt. Die Länge des Messteiters 10 ist vorteilhaft gross im Vergleich zur Dicke der Löcher 4, 5, wodurch erreicht wird, dass jener Teilbereich des Messleiters 10, in welchem die isothermischen Bedingungen nicht vollkommen erfüllt sind, vernachlässigbar klein ist.
  • Zur Herstellung der Schlitze 8, 9 eignen sich spanabhebende und spanlose Bearbeitungsverfahren. Besonders schmale Schlitze lassen sich mit Hilfe eines Laserstrahls erzeugen. In die Schlitze 8, 9 kann eine elektrisch isolierende, thermisch leitende Schicht eingefügt werden.
  • Vorteilhaft weist der Flachleiter 1 die Form eines U auf. Dies lässt sich dadurch erreichen, dass der Flachleiter 1 entlang einer Biegekante bzw. Umkehrkante 13 in seiner Querrichtung gefaltet, d.h. um 1800 umgeklappt wird, so dass die beiden Löcher 4, 5 deckungsgleich übereinander zu liegen kommen und die beiden Schenkel 14, 15 des Flachleiters 1 - durch eine dünne Isolierschicht voneinander getrennt - miteinander in engem thermischem Kontakt stehen. Dabei werden optimale thermische Verhältnisse erzielt, wenn die Breite der Schlitze 8, 9 klein ist im Vergleich zum Abstand der beiden Schenkel 14, 15.
  • Die Form des U-förmig gefalteten Flachleiters kann auch unmittelbar aus einem Gussteil oder Strangpressteil herausgearbeitet sein. Die Fig. 2 zeigt ein Beispiel eines so hergestellten Flachleiters 16, bei dem gleiche bzw. gleich wirkende Teile wie in der Fig. 1 mit den gleichen Bezugszahlen bezeichnet sind. Die Schlitze 8, 9 sind in der Fig. 2 aus Gründen der zeichnerischen Klarheit durch einfache ausgezogene Linien dargestellt. Als Isolationsschicht 17 zwischen den Schenkeln 14, 15 eignet sich vorteilhaft ein beidseitig eloxiertes Aluminiumblech. Der Schenkel 6 des Magnetkerns 18 durchdringt sowohl das Loch 4 als auch das in der Fig. 2 nicht sichtbare Loch 5, während der Schenkel 7 den Magnetkreis ausserhalb des Flachleiters 1 schliesst.
  • Im dargestellten Beispiel arbeitet der beschriebene Messwandler als sogenannter aktiver Stromwandler. Dazu ist eine auf dem Magnetkern 18 angeordnete Detektorwicklung 19 mit dem Eingang eines Verstärkers 20 verbunden, dessen Ausgang an eine aus einer Sekundärwicklung 21 und einer Bürde 22 bestehende Reihenschaltung angeschlossen ist.
  • Der Flachleiter 16 stellt die Primärwicklung des Messwandlers dar. Für die primäre Durchflutung ist der im Messleiter 10 fliessende Teilstrom massgebend. Die Kompensation der primären Durchflutung erfolgt in bekannter Weise durch einen in der Sekundärwicklung 21 fliessenden Strom i, der in einem Regelkreis vom Verstärker 20 so gesteuert wird, dass die in der Detektorwicklung 19 induzierte Spannung gegen Null geht.
  • Durch die von der Stärke des zu messenden Stromes I unabhängige Stromverteilung im Flachleiter 16 wird eine sehr hohe Messgenauig keit erzielt. Da sich sowohl die Nebenschlussleiter 11, 12 als auch der Messteiter 10 in entgegengesetzter Stromflussrichtung über die beiden Schenkel 14, 15 erstrecken, ergibt sich eine weitgehend induktionsfreie Anordnung, eine nur geringe Streufelderzeugung und damit auch ein nur sehr kleiner Phasenfehler.
  • Die Detektorwicklung 19 kann entfallen, wenn an ihrer Stelle ein Magnetfeldsensor, der z.B. das Magnetfeld in einem Luftspalt des Magnetkerns 18 erfasst, an den Eingang des Verstärkers 20 angeschlossen wird.
  • Der beschriebene Messwandler kann auch als sogenannter zeitverschlüsselter Wandler gemäss der Lehre der CH-PS 618 043 betrieben werden. Dabei entfallen die Teile 19 bis 22, der primären Durchflutung des Magnetkerns 18 wird mittels einer Vormagnetisierungswicklung eine alternierende Referenzdurchflutung überlagert und mit Hilfe eines in einem Luftspalt des Magnetkerns 18 angeordneten Magnetfeldsensors werden die Zeitpunkte der Nulldurchgänge des resultierenden Mangetfeldes erfasst.
  • Der U-förmige Flachleiter 1 bzw. 16 ist ohne weiteres bei einem Messwandter mit dreischenkligem Magnetkern verwendbar. Zur Verwendung als Primärwicklung in einem topfförmigen Magnetkern ist allenfalls eine Anpassung der Form der Aussenkonturen des Flachleiters 16 erforderlich.
  • Der Flachleiter 23 nach der Fig. 3 weist ausser den beiden Löchern 4, 5 und den beiden Schlitzen 8, 9 zwei weitere Löcher 4', 5' und zwei weitere Schlitze 8', 9' auf. Die Löcher 4 und 4', die Löcher 5 und 5', die Schlitze 8 und 8' sowie die Schlitze 9 und 9' sind zur Längsache des Flachleiters 23 spiegelsymmentisch angeordnet. Die Schlitze 8, 9 und 8', 9' unterteilen den Flachleiter 23 in zwei äussere Nebenschlussleiter 12 und 12' und einen mittleren Nebenschlussleiter 24 sowie in zwei Messteiter 10 und 10', wobei der Messleiter 10 zwischen den Nebenschlussleitern 12 und 24 und der Messleiter 10' zwischen den Nebenschlussleitern 12' und 24 eingebettet ist. Nach dem Falten des Flachleiters 23 um die Biegekante 13 liegt einerseits das Loch 5 deckungsgleich über dem Loch 4 und anderseits das Loch 5' deckungsgleich über dem Loch 4'. Die Löcher 4, 5 sind zur Aufnahme des Schenkels 6 des Magnetkerns 18 (Fig. 2) und die Löcher 4', 5' zur Aufnahme des Schenkels 7 bestimmt. Für die primäre Durchflutung des Magnetkerns 10 ist die Summe der in den beiden Messleitern 10, 10' fliessenden Teilströme massgebend.
  • Es ist leicht einzusehen, dass beim Flachleiter 23 die gleichen vorteilhaften Wirkungen eintreten wie beim Flachleiter 1 bzw. 16. Da beide Schenkel 6, 7 des Magnetkerns 18 den Flachleiter 23 durchdringen, ergibt sich zudem eine weitestgehend symmetrische Anordnung und damit eine hohe Unempfindlichkeit gegen äussere Störfeldeinflüsse.
  • Der mittlere Nebenschlussleiter 24 des Flachleiters 23 weist Aussparungen 25 auf, die derart geformt sind, dass die Querschnittsftäche des Nebenschlussleiters 24 über seiner ganzen Länge annähernd konstant ist, so dass eine konstante Stromdichte und damit eine gleichmässige Erwärmung erreicht wird. Zum gleichen Zweck ist die Breite des Flachleiters 23 unterschiedlich.
  • Beim Flachleiter 26 nach der Fig. 4 sind die Schlitze 8, 9 und 8', 9' derart geformt, dass die Messleiter 10, 10' je drei gerade Leiterteile bilden, wobei die dem Schenkel 14 angehörenden Hälften der Messleiter 10, 10' weiter aussen liegen als die dem Schenkel 15 angehörende Hälften. Dies führt nach dem Falten des Flachleiters 26 zu einer optimalen Ueberdeckung der einzelnen Leiterteile, d.h. die dem einen Schenkel 14 bzw. 15 angehörenden Teile der Nebenschlussleiter 12, 12' und 24 überdecken die dem anderen Schenkel 15 bzw. 14 angehörenden Teile der Messleiter 10 und 10'.

Claims (8)

1. Stromteiler für Messwandler zum Messen eines Stromes, mit einem Flachleiter, der mindestens zwei im wesentlichen in Längsrichtung des Flachleiters angeordnete Schlitze aufweist, die den Flachleiter in mindestens einen Messleiter und in mindestens zwei zu diesem elektrisch parallele Nebenschlussleiter unterteilen, wobei der Messleiter einen Magnetkern des Messwandlers durchdringt, dadurch gekennzeichnet, dass der Flachleiter (1; 16; 23; 26) zwei in seiner Längsrichtung hintereinander liegende Löcher (4; 5 bzw. 4'; 5') aufweist, durch die der Magnetkern (18) hindurchgeführt ist, dass der eine Schlitz (8 bzw. 8') durch das eine Loch (4 bzw. 4') und der andere Schlitz (9 bzw. 9') durch das andere Loch (5 bzw. 5') läuft und dass der Messleiter (10 bzw. 10') in der gleichen Ebene liegt wie die Nebenschlussleiter (11; 12; 12'; 24) und zwischen diesen eingebettet ist.
2. Stromteiler nach Anspruch 1, dadurch gekennzeichnet, dass der Flachleiter (1; 16; 23; 26) die Form eines U aufweist, dass die beiden Löcher (4; 5 bzw. 4'; 5') deckungsgleich übereinander liegen und dass die beiden Schenkel (14; 15) des Flachleiters (1; 16; 23; 26) elektrisch voneinander isoliert sind und miteinander in engem thermischen Kontakt stehen.
3. Stromteiler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Breite der Schlitze (8; 8'; 9; 9') klein ist im Vergleich zur Dicke des Flachleiters (1; 16; 23; 26).
4. Stromteiler nach Anspruch 2, dadurch gekennzeichnet, dass die Breite der Schlitze (8; 8'; 9; 9') klein ist im Vergleich zum Abstand der beiden Schenkel (14; 15) des Flachleiters (1; 16; 23; 26).
5. Stromteiler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Länge des Messleiters (10; 10') gross ist im Vergleich zur Dicke der Löcher (4; 4'; 5; 5').
6. Stromteiler nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass der Flachleiter (23; 26) vier Schlitze (8; 8'; 9; 9') aufweist, die den Flachleiter (23; 26) in zwei äussere Nebenschlussleiter (12; 12') und einem mittleren Nebenschlussleiter (24) sowie in zwei Messteiter (10; 10') unterteilen, wobei jeder der Messleiter (10; 10') zwischen einem der äusseren Nebenschlussleiter (12; 12') und dem mittleren Nebenschlussleiter (24) eingebettet ist.
7. Stromteiler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Flachleiter (1; 16; 23; 26) Aussparungen (25) aufweist und/oder seine Breite unterschiedlich ist, derart, dass die Stromdichte in den Nebenschlussleitern (11; 12; 12'; 24) konstant ist.
8. Stromteiler nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass jeweils die dem einen Schenkel (14 bzw. 15) des Flachleiters (1; 16; 23; 26) angehörenden Teile der Nebenschlussleiter (11; 12; 12'; 24) die dem anderen Schenkel (15 bzw. 14) des Flachleiters (1; 16; 23; 26) angehörenden Teile der Messleiter (10, 10') im wesentlichen überdecken.
EP84102085A 1983-04-25 1984-02-29 Stromteiler für Messwandler zum Messen eines Stromes Expired EP0123062B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84102085T ATE20403T1 (de) 1983-04-25 1984-02-29 Stromteiler fuer messwandler zum messen eines stromes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2197/83A CH658930A5 (de) 1983-04-25 1983-04-25 Stromteiler fuer messwandler zum messen eines stromes.
CH2197/83 1983-04-25

Publications (2)

Publication Number Publication Date
EP0123062A1 true EP0123062A1 (de) 1984-10-31
EP0123062B1 EP0123062B1 (de) 1986-06-11

Family

ID=4228162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84102085A Expired EP0123062B1 (de) 1983-04-25 1984-02-29 Stromteiler für Messwandler zum Messen eines Stromes

Country Status (5)

Country Link
US (1) US4496932A (de)
EP (1) EP0123062B1 (de)
AT (1) ATE20403T1 (de)
CH (1) CH658930A5 (de)
DE (1) DE3460210D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479008A2 (de) * 1990-09-29 1992-04-08 Siemens Aktiengesellschaft Strommessanordnung
CN103926458A (zh) * 2014-04-30 2014-07-16 厦门宏发电力电器有限公司 电子式电能表及其分流器、采样电阻片及抵消电路板交变磁场干扰的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894610A (en) * 1985-09-14 1990-01-16 LOZ Landis & Gyr Zug AG Current-transformer arrangement for an electrostatic meter
US4749940A (en) * 1986-12-22 1988-06-07 General Electric Company Folded bar current sensor
US5107204A (en) * 1986-12-22 1992-04-21 General Electric Company Low temperature coefficient shunt for current measurement
US5066904A (en) * 1988-10-18 1991-11-19 General Electric Company Coaxial current sensors
US5223790A (en) * 1991-05-10 1993-06-29 Metricom, Inc. Current sensor using current transformer with sintered primary
US6130599A (en) * 1999-08-03 2000-10-10 Eaton Corporation Electrical current sensing apparatus
US6456061B1 (en) * 2000-11-21 2002-09-24 General Electric Company Calibrated current sensor
US6538421B1 (en) 2001-05-14 2003-03-25 Warren W. Carpenter Apparatus with separated conductors
US6577115B1 (en) 2001-05-14 2003-06-10 Warren W. Carpenter Apparatus with separated conductors
JP4224483B2 (ja) * 2005-10-14 2009-02-12 Tdk株式会社 電流センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH537085A (de) * 1972-04-10 1973-05-15 Sprecher & Schuh Ag Strommesswandler zur Gewinnung einer dem zu messenden Strom proportionalen Spannung
DE2457797A1 (de) * 1973-12-07 1975-06-19 Meidensha Electric Mfg Co Ltd Als strom- und/oder spannungswandler geeigneter wandler
DE2734729B1 (de) * 1977-07-08 1978-08-10 Landis & Gyr Ag Messwandler zum potentialfreien Messen von Stroemen oder Spannungen
DE3008308A1 (de) * 1979-05-31 1980-12-04 Landis & Gyr Ag Stromteiler fuer messwandler
US4240059A (en) * 1979-04-05 1980-12-16 Westinghouse Electric Corp. Current divider for a current sensing transducer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309655A (en) * 1978-06-23 1982-01-05 Lgz Landis & Gyr Zug Ag Measuring transformer
US4182982A (en) * 1978-07-11 1980-01-08 Westinghouse Electric Corp. Current sensing transducer for power line current measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH537085A (de) * 1972-04-10 1973-05-15 Sprecher & Schuh Ag Strommesswandler zur Gewinnung einer dem zu messenden Strom proportionalen Spannung
DE2457797A1 (de) * 1973-12-07 1975-06-19 Meidensha Electric Mfg Co Ltd Als strom- und/oder spannungswandler geeigneter wandler
DE2734729B1 (de) * 1977-07-08 1978-08-10 Landis & Gyr Ag Messwandler zum potentialfreien Messen von Stroemen oder Spannungen
US4240059A (en) * 1979-04-05 1980-12-16 Westinghouse Electric Corp. Current divider for a current sensing transducer
DE3008308A1 (de) * 1979-05-31 1980-12-04 Landis & Gyr Ag Stromteiler fuer messwandler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479008A2 (de) * 1990-09-29 1992-04-08 Siemens Aktiengesellschaft Strommessanordnung
EP0479008A3 (en) * 1990-09-29 1992-07-01 Siemens Aktiengesellschaft Current measurement apparatus
CN103926458A (zh) * 2014-04-30 2014-07-16 厦门宏发电力电器有限公司 电子式电能表及其分流器、采样电阻片及抵消电路板交变磁场干扰的方法
CN103926458B (zh) * 2014-04-30 2016-11-16 厦门宏发电力电器有限公司 电子式电能表及其分流器、采样电阻片及抵消电路板交变磁场干扰的方法

Also Published As

Publication number Publication date
ATE20403T1 (de) 1986-06-15
EP0123062B1 (de) 1986-06-11
US4496932A (en) 1985-01-29
CH658930A5 (de) 1986-12-15
DE3460210D1 (en) 1986-07-17

Similar Documents

Publication Publication Date Title
DE3401594C2 (de) Meßwandler zum Messen eines Stromes
DE3401587C2 (de) Meßwandler zum Messen eines Stromes
EP0111063B1 (de) Stromteiler für Messwandler
DE60116079T2 (de) Strommessvorrichtung
EP0607595B1 (de) Sensorchip
EP0123062B1 (de) Stromteiler für Messwandler zum Messen eines Stromes
EP0093727B1 (de) Stromwandler
CH674678A5 (de)
DE3324224C2 (de)
DE10011050A1 (de) Transformator für einen Kompensationsstromsensor
DE3008308C2 (de) Stromteiler für Meßwandler zum potentialfreien Messen von Strömen
DE2453540C2 (de) Magnetoresistives Bauelement
DE2622943A1 (de) Elektromagnetischer mengenmesser
DE2454522C2 (de) Magnetoresistives Schichtwiderstands-Element
EP0238524B1 (de) Stromwandleranordnung für einen statischen elektrizitätszähler
DE3029295A1 (de) Elektrischer widerstand
DE2923799C2 (de) Diffundierter Halbleiterwiderstand
DE2522918A1 (de) Richtungsleitung mit feldverschiebungseffekt
DE2746591C2 (de) Elektrischer Kondensator
DE10011047A1 (de) Direktabbildender Stromsensor
DE1085916B (de) Kryotron, das einen Torleiter und einen Steuerleiter enthaelt
EP0045074B1 (de) Vorrichtung zur Messung des Übergangswiderstandes galvanisch aufgetragener Oberflächenschichten
DE3619423C2 (de)
DE1648142C3 (de) Elektromagnetischer Stromungs messer
DE19501719C2 (de) Meßshunt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB SE

17P Request for examination filed

Effective date: 19841122

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB SE

REF Corresponds to:

Ref document number: 20403

Country of ref document: AT

Date of ref document: 19860615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3460210

Country of ref document: DE

Date of ref document: 19860717

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900309

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910228

Ref country code: AT

Effective date: 19910228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84102085.2

Effective date: 19911009