EP0111703B1 - Mill for fluid milling material - Google Patents
Mill for fluid milling material Download PDFInfo
- Publication number
- EP0111703B1 EP0111703B1 EP83110939A EP83110939A EP0111703B1 EP 0111703 B1 EP0111703 B1 EP 0111703B1 EP 83110939 A EP83110939 A EP 83110939A EP 83110939 A EP83110939 A EP 83110939A EP 0111703 B1 EP0111703 B1 EP 0111703B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grinding
- mill
- mill according
- rotor
- milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 238000003801 milling Methods 0.000 title abstract 10
- 239000012530 fluid Substances 0.000 title 1
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000009969 flowable effect Effects 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 2
- 238000012935 Averaging Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C17/00—Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
- B02C17/16—Mills in which a fixed container houses stirring means tumbling the charge
- B02C17/166—Mills in which a fixed container houses stirring means tumbling the charge of the annular gap type
Definitions
- the invention relates to a mill for flowable regrind with a grinding chamber receiving the regrind and in this freely movably provided grinding body, formed centrally between the stator and rotor, a good inlet and a good outlet, a separating device upstream of the good outlet for separating the grinding bodies and with a return device for recycling the separated grinding media in the area of the material inlet.
- a ball mill of this type is known from DE-OS 2811 899.
- the grinding stock and grinding balls are kept in circulation in a grinding chamber which is limited in cross section by two conical surfaces, around a displacement ring of the rotor which is wedge-shaped in cross section, the material outlet and the material inlet being relatively tight the mill axis is arranged so that the grinding balls separated out by the separating device can be added to the incoming regrind through a return channel.
- This return channel passes through a disc of the rotor and is directed radially so that the conveying takes place under the action of centrifugal force.
- the throughput speeds of the grinding stock and the grinding media must be in a specific relationship to one another.
- the throughput speed of the millbase can be influenced, for example, by the feed pressure and the rotor speed.
- the grinding media are taken away by the regrind, but the entrainment effect is mainly influenced by the viscosity of the regrind.
- the rotor speed also has a limited influence on the rotational speeds of the material to be ground and the grinding media. However, because a constant ratio of the circulation speeds cannot be achieved, the grinding results are always subject to certain fluctuations.
- the invention takes a different approach and pursues the task of developing the mill described at the outset in such a way that the grinding process is made more uniform and the grinding result is improved by simplified and more precise coordination of the rotational speed of the grinding stock and grinding media.
- the feedback device for a positive change in the return speed of the grinding media in relation to the rotational speed of the material to be ground is provided with at least one separate conveying element of a conveying drive that can be operated at a speed different from the rotor drive.
- the rotational speed of the grinding media can be positively influenced and their optimal operating value can be approximated. It can be set at a very specific value if the operating conditions of the mill remain constant, as is usually the case for continuous operation.
- the end product is put into operation, it is easy to set the operating speed of the conveying member and thus the necessary rotational speed of the grinding media by means of samples of the end product and, if necessary, to monitor and compensate for any changes in these conditions which may occur by means of further samples or measurements.
- the aim is to achieve a size of the return speed such that the grinding media experience a certain amount of jam in front of the return device, which continues far into the grinding zone. If the return speed is too high, the contact pressure of the balls becomes too low, and the grinding effect of the mill deteriorates as the power consumption of the mill motor decreases. On the other hand, if the recirculation is too slow, there is an excessive backflow. As a result, the balls are pressed against each other too much and roll too little against each other and against the wall of the grinding chamber, which in turn reduces the grinding performance and increases the grinding temperature due to friction. In contrast, backflow and contact pressure are directly influenced by the selected return speed.
- the conveyor drive is provided completely independently of the rotor drive.
- This version is simple, but makes control difficult.
- a conveyor drive that runs with a certain fixed or variable transmission ratio to the rotor drive is more complex to manufacture and more precisely to control.
- the rotor and conveyor element can be connected to a common drive via a speed change gear.
- the conveying element is expediently designed as a centrifugal pump, which can act directly on the grinding media and, for example, has a pump wheel which rotates centrally to the mill axis.
- the dimensions and arrangements on the pump wheel can then be selected such that the rotation speed of the pump wheel is in the range of the rotation speed of the rotor in reasonably normal operation, and only certain changes in the speed up or down are selected for regulation, that is to say the grinding media do not have any abrupt changes in speed be subjected.
- the central arrangement also enables a quite compact and functional design, especially when the pump wheel, each sealed, between the rotor and stator is inserted.
- the drives for the rotor and pump wheel are preferably connected from opposite sides.
- the feed pump should form individual feed channels with a clear width that is slightly larger than the largest single or double cross-sectional dimension of the grinding media to be conveyed, in order to reliably prevent the grinding media from becoming blocked or jammed in the channels.
- a clear width that is slightly larger than the largest single or double cross-sectional dimension of the grinding media to be conveyed, in order to reliably prevent the grinding media from becoming blocked or jammed in the channels.
- only one or four to five grinding media should be able to pass through at the same time.
- this grinding element is expediently formed between the pump wheel and the mill housing.
- the material inlet between the pump wheel and the mill housing forms an annular gap nozzle, which prevents the grinding media from flowing back when the mill is at a standstill and to which a set of interacting grinding surfaces on the pump wheel and mill housing connects. At least one of the two grinding surfaces can have teeth in the manner of a toothed colloid mill.
- the clear width of the annular gap is at most half as large as the dimensions of the grinding media.
- Annular gap width and / or grinding gap width can also be changed by axial adjustment, in particular of a common grinding ring.
- a control arrangement for controlling the conveyor drive, in particular, automatically, as a function of mill operating values and / or properties of the ground material is used particularly advantageously here.
- Such a control arrangement can be connected, for example, to at least one sensor that detects the drive power, the torque and / or the speed of the mill drive.
- the control arrangement can be connected to at least one sensor that detects the viscosity or the pressure of the ground material.
- the starting viscosity can be just as important as the viscosity achieved after the grinding process, as well as the ratio of the two viscosities. It goes without saying that other properties or state values of the ground material and further mill operating values can also be important.
- the stator 1 of the split ball mill shown in FIG. 1 is divided by the approximately horizontal parting line 2 into a lower mill housing 3 and a cover 4, which are flanged together in a sealing manner and braced by screws 5. It can be inserted between the clamping flanges annular intermediate members 6, which can be designed as sealing rings and / or as intermediate rings in order to be able to change the axial position of the rotor in the stator.
- the mill housing has a tapered housing wall 7 at the bottom which, with a recess 8 in the cover 4, delimits the double-conical grinding chamber 9 to the outside.
- the housing wall 7 is enclosed on the outside by a cooling chamber 11, which in turn is delimited by a cooling housing 12 with a base 13 and annular walls 14, 15.
- a cooling housing 12 with a base 13 and annular walls 14, 15.
- the entire mill can be carried by this cooling housing 12, which is made in one piece with the mill housing 3. But you can also hang the mill housing 3 on the lid to be fixed to the stand.
- Another cooling space 10 is formed in the cover 4, the bearing sleeve 17 rotatably carries a rotor shaft 19 in a known and therefore not shown manner, the lower end of which is in the hub shell 21 of the rotor 22, screwed to it by thread 23 and secured by a screw 24 is.
- the rotor 22 has a rotor disk 26 extending from the hub cup 21, which has on its outer edge an annular hollow displacement body 27 with a double-cone cross section that is adapted to the shape of the housing wall 7. This displacement body is immersed in the grinding chamber 9 and forms a grinding gap 91 with the housing wall 7 with an approximately constant gap width a.
- the interior of the displacement body 27 is divided by an approximately cylindrical partition 28 starting from the rotor disk 26. This ends at a distance b from the ring base 29 of this interior, which is thereby divided into an inner and outer annular chamber 31, 32 for internal cooling of the rotor or for Circulation of the cooling medium.
- the inner chamber 31 is connected via a predominantly radial channel 33 of the rotor disk 26 to an outer ring channel 34 in the rotor shaft 19.
- the outer ring chamber 32 is connected to a central bore 36 of the rotor shaft 19 via a comparable channel 35.
- coolant flows downward in the inner annular chamber 31 and upward in the outer annular chamber 32 and has to flow tangentially around at least half the circumference of the partition wall 28 until it reaches the outside again.
- the inlet and outlet can also be tangential in order to achieve a rotating cooling flow and thus greater uniformity.
- a pump wheel 39 is mounted centrally to the mill axis 37 between the rotor disk 26 and a high-lying inner flange 38 of the mill housing 3, which ends with a preferably axially adjustable grinding ring 41 seated on the inner flange 38 in the same cylinder surface 42.
- the pump wheel 39 is wedged onto the motor shaft 43 of a suitable drive, in particular an electric conveyor motor 44, which is suspended on the inner flange 38 via an intermediate ring 45.
- An annular space 47 is formed between the parts 38, 41, 39 and 45 by means of a mechanical seal 46, into which a feed line 48 opens from the underside and which is formed on the outlet side as an annular gap between the grinding ring 41 and the pump wheel 39 Good inlet 49 is in connection with the grinding chamber 9.
- a pre-grinding unit 51 which is designed as a colloid mill by means of two toothings formed in the grinding ring 41 and the pump wheel 39, is connected upstream of the material inlet 49.
- the raw material fed in from the line 48 thus flows through the annular space 47 and the pre-grinding unit 51 to the annular gap material inlet 49.
- the clear width of the annular gap is so much smaller than the cross-sectional dimensions of the ground material that this already prevents backflow when the mill is at a standstill.
- the clear width of the material inlet and the grinding gap of the pre-grinding unit can be changed by axially adjusting the grinding ring 41 by means of intermediate rings. From the inlet of the material, the material to be ground arrives downwards on the way of a conical spiral in the inner part of the grinding gap 91, again spiraling upwards on the outside of the displacement body 27 and radially inwards in the grinding gap on the upper side of the rotor disk 26. During this time, grinding balls 52 distributed approximately uniformly in the regrind are carried along. These grinding balls are repeatedly rotated by intermittent contacts with the rotor and roll alternately on the fixed and circumferential boundary surfaces of the grinding gap 91.
- the retained grinding balls pass in the direction of arrow 63 from the separating space 58 via openings 64 in the rotor disk 26 into an annular space 65 between this rotor disk and the pump wheel 39.
- annular space 65 From this annular space 65, at least partially radially directed delivery channels 66 lead tightly to the common outer cylinder surface 42 Above the annular inlet 49.
- the cross section of the channels 66 is adapted to be larger than the diameter of the largest grinding balls used, which are thus thrown outwards by the rotation of the pump wheel 39 at a low radial speed.
- the cross section of the channels 66 should either be selected so that only one or four to five balls can pass through it at the same time.
- the diameter of the mostly cylindrical channels between 1.2 and 1.4 diameter of the grinding media is selected, while in the second case a channel diameter of 2.2 to 2.4 grinding media diameter is selected. In this way, it is achieved with greater certainty that grinding media cannot jam in the channels, but can move through quickly without great wall pressure.
- the mill motor 67 which drives the rotor shaft 19 via a belt drive 68 according to FIG. 2, can in principle have a constant speed. As a rule, a variable speed drive will also be provided here.
- the conveyor motor 44 is controlled via a mediator device 69, which receives a first default value via a line 71 from an arithmetic unit 72, which is connected via line 73 to a first sensor 74, which constantly delivers first viscosity values from a first viscosity meter 75, which is connected to the feed line 48.
- a further line 76 leads to the second sensor 77 of a second viscosity meter 78 on the outlet line 59, and a third line 79 leads to a sensor 80 provided directly or indirectly on the mill motor 67, which, for example, measures the current output, the current and / or or the speed of the engine delivers. Several of these quantities can also be sensed by separate measuring devices or transmitters can be passed on.
- the middle device 69 is also connected via a line 81 to a computing unit 82, which in turn has three lines with sensors 83 for the pressure p1 in the feed line 48, 84 for the pressure p2 in the inlet part of the grinding chamber 9 and 85 for the pressure p3 in the outlet part the grinding chamber is connected.
- the arithmetic units 72 and 82 already form first output values according to predetermined functions, which are averaged again in the common middle device 69.
- the subdivision shown in FIG. 2 can also be omitted if all sample values are fed to a common computer which forms the mean value and which is fed to the conveyor motor 44 after amplification.
- Such a central computer 86 is provided according to FIG. 3. Instead of the feed motor 44, one controls a control device 87 for a continuously variable transmission 88, which is connected to a hollow shaft 89 guided to the pump wheel 39, through which the rotor shaft 19 runs downwards.
- a control device 87 for a continuously variable transmission 88 which is connected to a hollow shaft 89 guided to the pump wheel 39, through which the rotor shaft 19 runs downwards.
- the line 79 led to the mill motor 67 is saved, since in principle there is a speed limitation of the conveyor drive to the mill motor. It is therefore not necessary to readjust if the speed of the mill motor changes, provided readjustment is not necessary due to other pulse values.
- not all of the specified push buttons need to be connected, sometimes one single push button can be used.
- continuously variable transmission 88 can also be connected to the motor 67 outside the mill housing, so that there is no need for the rotor shaft 19 to pass through this housing.
- the speeds of the rotor 22 and the pump wheel 39 should be approximately the same in normal operation in order to avoid unnecessary relative movements at the common interface.
- the viscosity measurement also does not have to be continuous, but can be carried out periodically, in which case it is then readjusted in stages. Usually, a single viscosity measurement is sufficient if the control function is determined based on experience. It goes without saying that further tactile values can also be used, for example a ball jam in the separating space 58. As a rule, it is also not disadvantageous if part of the ground material with the balls is fed back to the material inlet, that is to say undergoes a second processing operation. You can even significantly increase the mean throughput time using the grinding media conveyor, i.e. Allow the product to go through 1.5 to 3.5 times on average and thus homogenize it better.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Crushing And Grinding (AREA)
- Disintegrating Or Milling (AREA)
- Cyclones (AREA)
- Rotary Pumps (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
Description
Die Erfindung betrifft eine Mühle für fliessfähiges Mahlgut mit einem das Mahlgut und in diesem frei beweglich vorgesehene Mahlkörper aufnehmenden, zentrisch zwischen Stator und Rotor gebildeten Mahlraum, einem Guteinlass und einem Gutauslass, einer dem Gutauslass vorgeschalteten Trenneinrichtung zum Aussondern der Mahlkörper und mit einer Rückführeinrichtung zum Rückführen der ausgesonderten Mahlkörper in den Bereich des Guteinlaufs.The invention relates to a mill for flowable regrind with a grinding chamber receiving the regrind and in this freely movably provided grinding body, formed centrally between the stator and rotor, a good inlet and a good outlet, a separating device upstream of the good outlet for separating the grinding bodies and with a return device for recycling the separated grinding media in the area of the material inlet.
Eine Kugelmühle dieser Art ist bekannt durch die DE-OS 2811 899. Dabei werden Mahlgut und Mahlkugeln in einem im Querschnitt durch zwei Kegelflächen begrenzten Mahlraum in Umlauf gehalten um einen im Querschnitt keilförmigen Verdrängungsring des Rotors, wobei der Gutauslass ebenso wie der Guteinlass verhältnismässig dicht an der Mühteriachse angeordnet ist, so dass die durch die Trennvorrichtung ausgesonderten Mahlkugeln durch einen Rückführkanal dem einlaufenden Mahlgut wieder zugegeben werden können. Dieser Rückführkanal durchquert dabei eine Scheibe des Rotors und ist so radial gerichtet, dass die Förderung unter Fliehkraftwirkung erfolgt.A ball mill of this type is known from DE-OS 2811 899. In this case, the grinding stock and grinding balls are kept in circulation in a grinding chamber which is limited in cross section by two conical surfaces, around a displacement ring of the rotor which is wedge-shaped in cross section, the material outlet and the material inlet being relatively tight the mill axis is arranged so that the grinding balls separated out by the separating device can be added to the incoming regrind through a return channel. This return channel passes through a disc of the rotor and is directed radially so that the conveying takes place under the action of centrifugal force.
Um bei Mühlen dieser Art eine einigermassen gleichmässige Verteilung von Mahlgut und Mahlkörpern zu schaffen, müssen die Durchlaufgeschwindigkeiten des Mahlgutes und der Mahlkörper in bestimmten Verhältnis zueinander stehen. Die Durchlaufgeschwindigkeit des Mahlgutes lässt sich beispielsweise durch den Zuführdruck und die Rotordrehzahl beeinflussen. Die Mahlkörper werden zwar vom Mahlgut mitgenommen, aber die Mitnahmewirkung wird vor allem beeinflusst durch die Viskosität des Mahlgutes. Auch die Rotordrehzahl hat begrenzten Einfluss auf die Umlaufgeschwindigkeiten des Mahlguts und der Mahlkörper. Weil sich aber kein konstantes Verhältnis der Umlaufgeschwindigkeiten erzielen lässt, sind die Mahlergebnisse stets gewissen Schwankungen unterworfen. Man hat zwar versucht, hier die Umlaufgeschwindigkeit der Mahlkugeln durch veränderliche Abmessungen des Rückführkanals bzw. der Rückführkanäle zu ändern, aber solche Umstellungen können durch einen Stillstand meist nur bei leerer Maschine bewerkstelligt werden. Zudem sind die auf diese Weise erzielten Abstimmungen noch sehr ungenügend.In order to create a reasonably uniform distribution of the grinding stock and grinding media in mills of this type, the throughput speeds of the grinding stock and the grinding media must be in a specific relationship to one another. The throughput speed of the millbase can be influenced, for example, by the feed pressure and the rotor speed. The grinding media are taken away by the regrind, but the entrainment effect is mainly influenced by the viscosity of the regrind. The rotor speed also has a limited influence on the rotational speeds of the material to be ground and the grinding media. However, because a constant ratio of the circulation speeds cannot be achieved, the grinding results are always subject to certain fluctuations. Attempts have been made to change the rotational speed of the grinding balls by changing the dimensions of the return duct or the return ducts, but such changes can usually only be made when the machine is at a standstill when the machine is empty. In addition, the votes achieved in this way are still very unsatisfactory.
Die Erfindung geht einen anderen Weg und verfolgt die Aufgabe, die eingangs geschilderte Mühle so weiterzubilden, dass durch vereinfachtes und genaueres Abstimmen der Umlaufgeschwindigkeit von Mahlgut und Mahlkörper der Mahlvorgang vergleichmässigt und das Mahlergebnis verbessert wird.The invention takes a different approach and pursues the task of developing the mill described at the outset in such a way that the grinding process is made more uniform and the grinding result is improved by simplified and more precise coordination of the rotational speed of the grinding stock and grinding media.
Zur Lösung dieser Aufgabe wird erfindungsgemäss die Rückführeinrichtung für eine positive Änderung der Rückführgeschwindigkeit der Mahlkörper in Bezug auf die Umlaufgeschwindigkeit des Mahlgutes mit wenigstens einem gesonderten Förderorgan eines mit einer vom Rotorantrieb abweichenden Geschwindigkeit betreibbaren Förderantriebs versehen.To achieve this object, the feedback device for a positive change in the return speed of the grinding media in relation to the rotational speed of the material to be ground is provided with at least one separate conveying element of a conveying drive that can be operated at a speed different from the rotor drive.
Auf diese Weise kann unabhängig von allen anderen Antriebsvorgängen und Geschwindigkeiten die Umlaufgeschwindigkeit der Mahlkörper positiv beeinflusst und ihrem optimalen Betriebswert angenähert werden. Sie lässt sich bei einem ganz bestimmten Wert einstellen, wenn die Betriebsverhältnisse der Mühle im übrigen konstant bleiben, wie dies für den Dauerbetrieb meist zutrifft. Bei Betriebsaufnahme kann man durch Proben des Endproduktes leicht die jeweils gebotene Betriebsgeschwindigkeit des Förderorgans und damit die notwendige Umlaufgeschwindigkeit der Mahlkörper einstellen und gegebenenfalls durch weitere Proben oder durch Messungen eventuell eintretende Änderungen dieser Verhältnisse überwachen und wieder ausgleichen.In this way, regardless of all other drive processes and speeds, the rotational speed of the grinding media can be positively influenced and their optimal operating value can be approximated. It can be set at a very specific value if the operating conditions of the mill remain constant, as is usually the case for continuous operation. When the end product is put into operation, it is easy to set the operating speed of the conveying member and thus the necessary rotational speed of the grinding media by means of samples of the end product and, if necessary, to monitor and compensate for any changes in these conditions which may occur by means of further samples or measurements.
Angestrebt wird dabei eine solche Grösse der Rückführgeschwindigkeit, dass die Mahlkörper vor der Rückführeinrichtung einen gewissen Stau erfahren, der sich weit in die Mahlzone fortsetzt. Ist die Rückführgeschwindigkeit zu gross, so wird der Anpressdruck der Kugeln zu klein, wobei sich die Mahlwirkung der Mühle unter Abnahme der Leistungsaufnahme des Mühlenmotors verschlechtert. Bei zu langsamer Rückführung ergibt sich dagegen ein übergrosser Rückstau. Dadurch werden die Kugeln zu stark aufeinandergepresst und wälzen sich zu wenig aneinander und an der Wandung des Mahlraumes ab, was wiederum die Mahlleistung reduziert und die Mahltemperatur durch Reibung erhöht. Erfindungsgemäss werden dagegen Rückstau und Anpressdruck durch die gewählte Rückführgeschwindigkeit unmittelbar beeinflusst.The aim is to achieve a size of the return speed such that the grinding media experience a certain amount of jam in front of the return device, which continues far into the grinding zone. If the return speed is too high, the contact pressure of the balls becomes too low, and the grinding effect of the mill deteriorates as the power consumption of the mill motor decreases. On the other hand, if the recirculation is too slow, there is an excessive backflow. As a result, the balls are pressed against each other too much and roll too little against each other and against the wall of the grinding chamber, which in turn reduces the grinding performance and increases the grinding temperature due to friction. In contrast, backflow and contact pressure are directly influenced by the selected return speed.
Nach einer ersten Ausführungsform der Erfindung ist der Förderantrieb vom Rotorantrieb völlig unabhängig vorgesehen. Diese Ausführung ist einfach, erschwert jedoch die Steuerung.According to a first embodiment of the invention, the conveyor drive is provided completely independently of the rotor drive. This version is simple, but makes control difficult.
Aufwendiger in der Herstellung und genauer in der Steuerung ist dagegen ein Förderantrieb, der mit einem bestimmten festen oder veränderlichen Übersetzungsverhältnis zum Rotorantrieb läuft. Beispielsweise können Rotor und Förderorgan über ein Geschwindigkeits-Änderungsgetriebe an einen gemeinsamen Antrieb angeschaltet sein.In contrast, a conveyor drive that runs with a certain fixed or variable transmission ratio to the rotor drive is more complex to manufacture and more precisely to control. For example, the rotor and conveyor element can be connected to a common drive via a speed change gear.
Das Förderorgan wird zweckmässigerweise als Schleuderpumpe ausgebildet, die unmittelbar auf die Mahlkörper einwirken kann und beispielsweise ein zentrisch zur Mühlenachse umlaufendes Pumpenrad aufweist. Die Abmessungen und Anordnungen am Pumpenrad können dann so gewählt werden, dass bei einigermassen normalem Betrieb die Drehgeschwindigkeit des Pumpenrades im Bereich der Drehgeschwindigkeit des Rotors liegt und nur zur Regelung bestimmte Änderungen der Drehzahl nach oben oder unten gewählt werden, dass also die Mahlkörper keinen abrupten Geschwindigkeitsänderungen unterworfen werden.The conveying element is expediently designed as a centrifugal pump, which can act directly on the grinding media and, for example, has a pump wheel which rotates centrally to the mill axis. The dimensions and arrangements on the pump wheel can then be selected such that the rotation speed of the pump wheel is in the range of the rotation speed of the rotor in reasonably normal operation, and only certain changes in the speed up or down are selected for regulation, that is to say the grinding media do not have any abrupt changes in speed be subjected.
Die zentrische Anordnung ermöglicht auch eine recht kompakte und funktionsgerechte Bauart, insbesondere dann, wenn das Pumpenrad, jeweils abgedichtet, zwischen Rotor und Stator eingefügt wird. Dabei werden bevorzugt die Antriebe für Rotor und Pumpenrad von entgegengesetzten Seiten angeschlossen.The central arrangement also enables a quite compact and functional design, especially when the pump wheel, each sealed, between the rotor and stator is inserted. The drives for the rotor and pump wheel are preferably connected from opposite sides.
Die Förderpumpe sollte einzelne Förderkanäle mit einer lichten Weite bilden, die wenig grösser ist als die grösste einfache oder doppelte Querschnittabmessung der zu fördernden Mahlkörper, um ein Verstopfen oder Verklemmen der Mahlkörper in den Kanälen zuverlässig zu verhindern. Zweckmässigerweise sollen dabei gleichzeitig nur jeweils ein oder vier bis fünf Mahlkörper durchtreten können.The feed pump should form individual feed channels with a clear width that is slightly larger than the largest single or double cross-sectional dimension of the grinding media to be conveyed, in order to reliably prevent the grinding media from becoming blocked or jammed in the channels. Advantageously, only one or four to five grinding media should be able to pass through at the same time.
Ferner empfiehlt es sich, den Auslass des Schleuderorgans und den Guteinlass etwa in der gleichen Umfangsfläche axial eng benachbart vorzusehen. Mahlgut und Mahlkörper werden dabei gleichermassen radial in den Mahlraum eingeleitet.It is also advisable to provide the outlet of the centrifugal member and the material inlet axially closely adjacent in approximately the same circumferential area. Grist and grinding media are equally introduced radially into the grinding chamber.
Sofern dem Guteinlass ein Mahlorgan vorgeschaltet werden soll, wird dieses Mahlorgan zweckmässigerweise zwischen Pumpenrad und Mühlengehäuse gebildet. Vorteilhafterweise bildet der Guteinlass zwischen Pumpenrad und Mühlengehäuse eine Ringspaltdüse, die ein Zurückfliessen der Mahlkörper beim Stillstand der Mühle verhindert und an die sich ein Satz zusammenwirkender Mahlflächen am Pumpenrad und Mühlengehäuse anschliesst. Wenigstens eine der beiden Mahlflächen kann dabei eine Verzahnung nach Art der Zahnkolloidmühle aufweisen.If a grinding element is to be connected upstream of the material inlet, this grinding element is expediently formed between the pump wheel and the mill housing. Advantageously, the material inlet between the pump wheel and the mill housing forms an annular gap nozzle, which prevents the grinding media from flowing back when the mill is at a standstill and to which a set of interacting grinding surfaces on the pump wheel and mill housing connects. At least one of the two grinding surfaces can have teeth in the manner of a toothed colloid mill.
Die lichte Weite des Ringspaltes ist höchstens halb so gross wie die Mahlkörperabmessungen. Ringspaltweite und/oder Mahlspaltweite können zudem durch axiale Verstellung insbesondere eines gemeinsamen Mahlringes verändert werden.The clear width of the annular gap is at most half as large as the dimensions of the grinding media. Annular gap width and / or grinding gap width can also be changed by axial adjustment, in particular of a common grinding ring.
Besonders vorteilhaft kommt hier eine Steueranordnung zum insbesondere selbsttätigen Steuern des Förderantriebs in Abhängigkeit von Mühlenbetriebswerten und/oder Eigenschaften des Mahlgutes zum Einsatz. Eine solche Steueranordnung kann beispielsweise an wenigstens einen die Antriebsleistung, das Drehmoment und/oder die Drehzahl des Mühlenantriebs erfassenden Messwertgeber angeschlossen werden. Ebenso lässt sich die Steueranordnung an wenigstens einen die Viskosität oder den Druck des Mahlgutes erfassenden Messwertgeber anschliessen. Dabei kann die Ausgangs-Viskosität ebenso von Bedeutung sein wie die nach dem Mahlvorgang erzielte Viskosität, auch das Verhältnis der beiden Viskositäten. Es versteht sich, dass auch andere Eigenschaften oder Zustandswerte des Mahlgutes und weitere Mühlenbetriebswerte von Bedeutung sein können.A control arrangement for controlling the conveyor drive, in particular, automatically, as a function of mill operating values and / or properties of the ground material, is used particularly advantageously here. Such a control arrangement can be connected, for example, to at least one sensor that detects the drive power, the torque and / or the speed of the mill drive. Likewise, the control arrangement can be connected to at least one sensor that detects the viscosity or the pressure of the ground material. The starting viscosity can be just as important as the viscosity achieved after the grinding process, as well as the ratio of the two viscosities. It goes without saying that other properties or state values of the ground material and further mill operating values can also be important.
Da die verschiedenen zu berücksichtigenden Messwerte recht unterschiedliche Steuerungen des Förderantriebes bilden können, sollten mehrere Messwertgeber an ein - etwa einen Computer umfassendes - Mittlergerät angeschlossen sein, das aus den verschiedenen Messwerten nach vorgegebenen Funktionen einen resultierenden Steuerwert für den Förderantrieb bildet.Since the various measured values to be taken into account can form quite different controls for the conveyor drive, several sensors should be connected to a middle device, for example a computer, which, based on the various functions, forms a resulting control value for the conveyor drive based on the various functions.
Die Zeichnung gibt die Erfindung beispielsweise wieder. Es zeigen:
- Fig. 1 einen Längsschnitt durch eine erfindungsgemässe Spaltkugelmühle,
- Fig. 2 ein zugehöriges Schaltbild.
- 1 shows a longitudinal section through a split ball mill according to the invention,
- Fig. 2 is an associated circuit diagram.
Der Stator 1 der in Fig. 1 gezeigten Spaltkugelmühle ist durch die etwa waagerechte Trennfuge 2 unterteilt in ein unteres Mühlengehäuse 3 und einen Deckel 4, die abdichtend zusammengeflanscht und durch Schrauben 5 verspannt sind. Dabei können zwischen den Spannflanschen ringförmige Zwischenglieder 6 eingefügt sein, die sich als Dichtungsringe und/oder als Zwischenringe ausbilden lassen, um die axiale Lage des Rotors im Stator verändern zu können. Das Mühlengehäuse weist eine unten ringkeilartige verjüngte Gehäusewandung 7 auf, die mit einer Ausnehmung 8 im Deckel 4 den doppelkegelförmigen Mahlraum 9 nach aussen begrenzt.The
Die Gehäusewandung 7 ist aussen durch einen Kühlraum 11 umschlossen, der wiederum begrenzt wird durch ein Kühlgehäuse 12 mit Boden 13 und Ringwänden 14, 15. Grundsätzlich kann die ganze Mühle durch dieses einstückig mit dem Mühlengehäuse 3 gefertigte Kühlgehäuse 12 getragen werden. Man kann aber auch das Mühlengehäuse 3 an dem ständerfest anzuordnenden Deckel aufhängen.The
Ein weiterer Kühlraum 10 ist im Deckel 4 eingeformt, dessen Lagerhülse 17 in bekannter und daher nicht weiter gezeigter Weise drehbar eine Rotorwelle 19 trägt, deren unteres Ende im Nabentopf 21 des Rotors 22 steckt, mit diesem durch Gewinde 23 verschraubt und durch eine Schraube 24 gesichert ist.Another
Der Rotor 22 weist eine vom Nabentopf 21 ausgehende Rotorscheibe 26 auf, die an ihrem Aussenrand einen der Form der Gehäusewandung 7 angepassten ringförmigen hohlen Verdrängungskörper 27 mit Doppelkegel-Querschnitt aufweist. Dieser Verdrängungskörper taucht ein in den Mahlraum 9 und bildet in diesem mit der Gehäusewandung 7 einen Mahlspalt 91 mit annähernd gleichbleibender Spaltweite a.The
Der Innenraum des Verdrängungskörpers 27 ist unterteilt durch eine von der Rotorscheibe 26 ausgehende etwa zylindrische Trennwand 28. Diese endet mit Abstand b vom Ringboden 29 dieses Innenraumes, der dadurch unterteilt wird in eine innere und äussere Ringkammer 31,32 zur Innenkühlung des Rotors bzw. zur Zirkulation des Kühlmediums. Die Innenkammer 31 steht über einen vornehmlich radial verlaufenden Kanal 33 der Rotorscheibe 26 in Verbindung mit einem äusseren Ringkanal 34 in der Rotorwelle 19. Die äussere Ringkammer 32 ist über einen vergleichbaren Kanal 35 an eine zentrische Bohrung 36 der Rotorwelle 19 angeschlossen. Da die Kanäle 33 und 35 diametral angeordnet sind, strömt Kühlflüssigkeit in der inneren Ringkammer 31 nach unten und in der äusseren Ringkammer 32 nach oben und muss tangential wenigstens um den halben Umfang der Trennwand 28 herumströmen, bis sie wieder nach aussen gelangt. Ein- und Auslass können auch tangential liegen, um eine rotierende Kühlströmung und damit eine grössere Vergleichmässigung zu erreichen.The interior of the displacement body 27 is divided by an approximately
Zentrisch zur Mühlenachse 37 ist zwischen der Rotorscheibe 26 und einem hochliegenden Innenflansch 38 des Mühlengehäuses 3 ein Pumpenrad 39 gelagert, das mit einem auf dem Innenflansch 38 sitzenden, vorzugsweise axial verstellbaren Mahlring 41 in der gleichen Zylinderfläche 42 abschliesst. Das Pumpenrad 39 ist auf die Motorwelle 43 eines geeigneten Antriebes, insbesondere eines Elektro-Fördermotors 44, aufgekeilt, der über einen Zwischenring 45 am Innenflansch 38 aufgehängt ist. Dabei wird zwischen den Teilen 38, 41, 39 und 45 mittels einer Gleitringdichtung 46 ein ringsum abgeschlossener Ringraum 47 gebildet, in den von der Unterseite eine Zuführleitung 48 mündet und der auslasseitig über einen zwischen dem Mahlring 41 und dem Pumpenrad 39 gebildeten, als Ringspalt ausgebildeten Guteinlass 49 mit dem Mahlraum 9 in Verbindung ist.A
Dem Guteinlass 49 vorgeschaltet ist noch ein Vormahlaggregat 51, das durch zwei in den Mahlring 41 und das Pumpenrad 39 eingeformte Verzahnungen als Kolloidmühle ausgebildet ist.A
Das aus der Leitung 48 zugeführte Rohmahlgut strömt somit durch den Ringraum 47 und das Vormahlaggregat 51 zum Ringspalt-Guteinlass 49. Die lichte Weite des Ringspaltes ist um soviel kleiner als die Querschnittsabmessungen des Mahlgutes, dass schon dadurch ein Rückströmen beim Stillstand der Mühle verhindert wird. Zudem lässt sich die lichte Weite des Guteinlasses und des Mahlspaltes des Vormahlaggregates durch axiales Verstellen des Mahlringes 41 durch Zwischenringe verändern. Vom Guteinlass gelangt das Mahlgut auf dem Weg einer Kegelspirale im inneren Teil des Mahlspaltes 91 nach unten, wieder spiralenförmig auf der Aussenseite des Verdrängungskörpers 27 nach oben und auf der Oberseite der Rotorscheibe 26 im Mahlspalt radial nach innen. Währenddem werden annähernd gleichförmig im Mahlgut verteilte Mahlkugeln 52 mitgeführt. Diese Mahlkugeln werden durch zwischenzeitige Kontakte mit dem Rotor immer wieder in Drehung versetzt und wälzen sich wechselseitig an den feststehenden und umlaufenden Begrenzungs-flächen des Mahlspaltes 91 ab.The raw material fed in from the
Da der ganze Verdrängungskörper 27 umlaufen wird, ergeben sich auf begrenztem Raum sehr zahlreiche Einzelkontakte zwischen den Mahlkugeln und den Partikeln des Mahlgutes. Dabei ist die Umlaufströmung des Mahlgutes wesentlich durch den Förderdruck in der Zuführleitung 48 bestimmt, und die auf die Kugeln ausgeübte Mitnahmekraft ist massgeblich beeinflusst durch die Viskosität des geförderten Mahlgutes. Es ergibt sich aber auch ein von der Mahlgutförderung weitgehend unabhängiger Antrieb für die Mahlkugeln, die nachdrängend die vorderen Kugeln über den Spaltteil 92 des Mahlspaltes radial nach innen drücken.Since the entire displacement body 27 is rotated, there are numerous individual contacts in a limited space between the grinding balls and the particles of the material to be ground. The circulating flow of the millbase is essentially determined by the delivery pressure in the
Während dabei das relativ leichte Mahlgut entlang der Kegelfläche 53 nach oben steigt, bleiben die grösseren Mahlkugeln schon dicht an der Oberseite der Rotorscheibe 26 in der flachen Kegelsenke 54 bzw. werden im eine Trennvorrichtung bildenden Auslassspalt 55 zurückgehalten, der einen Abscheideraum 58 nach aussen begrenzt. Durch den Auslassspalt kann somit das von Mahlkörpern befreite Gut in die von der Lagerhülse 17 nach aussen geführte Auslassleitung 59 gelangen, die gegenüber der Rotorwelle 19 und deren Antrieb abgeschirmt ist.While the relatively light ground material rises along the conical surface 53, the larger grinding balls already remain close to the top of the
Die zurückgehaltenen Mahlkugeln gelangen dagegen in Richtung des Pfeiles 63 aus dem Abscheideraum 58 über Durchbrechungen 64 der Rotorscheibe 26 in einen Ringraum 65 zwischen dieser Rotorscheibe und dem Pumpenrad 39. Aus diesem Ringraum 65 führen wenigstens teilweise radial gerichtete Förderkanäle 66 bis zur gemeinsamen äusseren Zylinderfläche 42 dicht oberhalb des ringspaltförmigen Guteinlasses 49. Der Querschnitt der Kanäle 66 ist dabei angepasst grösser als der Durchmesser der grössten eingesetzten Mahlkugeln, die somit durch die Rotation des Pumpenrades 39 mit geringer Radialgeschwindigkeit nach aussen geschleudert werden. Damit das unter dem höheren Zuführdruck stehende Mahlgut nicht entgegen der Schleuderrichtung auf dem Wege 66 bis 63 zum Auslassspalt 55 gelangen kann, müssen dieser Zuführdruck und die vornehmlich durch die Drehgeschwindigkeit des Pumpenrades 39 bestimmte Schleuderkraft aufeinander abgestimmt werden. Es ist aber auch die Drehzahl n2 des Pumpenrades 39 wenigstens auf die Drehzahl n1 des Rotors 22 abzustimmen. Zudem muss, um eine gleichmässige Verteilung innerhalb des Gutes aufrecht zu erhalten, auch eine Abstimmung auf die Viskosität erfolgen können.The retained grinding balls, on the other hand, pass in the direction of arrow 63 from the separating space 58 via openings 64 in the
Der Querschnitt der Kanäle 66 sollte entweder so gewählt werden, dass gleichzeitig nur eine oder vier bis fünf Kugeln hindurchtreten können. Im ersten Fall wird dann der Durchmesser der meist zylindrisch ausgeführten Kanäle zwischen 1,2 und 1,4 Durchmesser der Mahlkörper gewählt, während man im zweiten Fall einen Kanaldurchmesser von 2,2 bis 2,4 Mahlkörper-Durchmesser wählt. Auf diese Weise wird mit grösserer Sicherheit erreicht, dass Mahlkörper sich in den Kanälen nicht verklemmen können, sondern ohne grossen Wanddruck zügig durchwandern.The cross section of the
Der Mühlenmotor 67, der gemäss Fig. 2 die Rotorwelle 19 über einen Riemenantrieb 68 antreibt, kann im Prinzip gleichbleibende Drehzahl haben. In der Regel wird man auch hier einen Regelantrieb vorsehen. Der Fördermotor 44 wird jedoch über ein Mittlergerät 69 gesteuert, das einen ersten Vorgabewert über eine Leitung 71 von einer Recheneinheit 72 erhält, die über die Leitung 73 mit einem ersten Messwertgeber 74 verbunden ist, der ständig erste Viskositätswerte von einem ersten Viskositätsmesser 75 liefert, der an die Zuführleitung 48 angeschlossen ist.The
Eine weitere Leitung 76 führt zum zweiten Messwertgeber 77 eines zweiten Viskositätsmessers 78 an der Auslassleitung 59, und eine dritte Leitung 79 ist zu einem mittelbar oder unmittelbar am Mühlenmotor 67 vorgesehenen Messwertgeber 80 geführt, der beispielsweise Messwerte über die augenblicklich abgegebene Leistung, die Stromstärke und/oder die Drehzahl des Motors liefert. Es können auch mehrere dieser Grössen durch gesonderte Messgeräte ertastet bzw. Messwertgeber weitergegeben werden.A
Das Mittlergerät 69 ist ferner über eine Leitung 81 an eine Recheneinheit 82 angeschlossen, die ihrerseits über drei Leitungen mit Messwertgebern 83 für den Druck p1 in der Zuführleitung 48, 84 für den Druck p2 im Einlassteil der Mahlkammer 9 und 85 für den Druck p3 im Auslassteil der Mahlkammer verbunden ist.The
Da ausschliesslich die Drehzahl des Fördermotors 44 gesteuert werden soll, ist es notwendig, aus den verschiedenen Informationen den geeigneten Mittelwert zu bilden. Dies kann auf mancherlei Weise geschehen, insbesondere durch elektronische Rechenanordnungen, die dann eine einzige Informationsgrösse und über das Mittlergerät 69 ein einziges Steuerkommando dem Fördermotor 44 übermitteln.Since only the speed of the
Nach Fig. 2 bilden schon die Recheneinheiten 72 und 82 nach vorgegebenen Funktionen erste Ausgangswerte, die im gemeinsamen Mittlergerät 69, erneut gemittelt werden. Die in Fig. 2 dargestellte Unterteilung kann auch entfallen, wenn man alle Tastwerte einem gemeinsamen Rechner zuführt, der den Mittelwert bildet und nach Verstärkung dem Fördermotor 44 zuführt.According to FIG. 2, the
Ein solcher Zentralrechner 86 ist nach Fig. 3 vorgesehen. Man steuert dort aber anstatt des Fördermotors 44 eine Regelvorrichtung 87 für ein stufenloses Getriebe 88, das angeschaltet ist an eine zum Pumpenrad 39 geführte Hohlwelle 89, durch welche hindurch die Rotorwelle 19 nach unten verläuft. Hier ist die zum Mühlenmotor 67 geführte Leitung 79 eingespart, da im Prinzip eine Drehzahlbindung des Förderantriebes an den Mühlenmotor gegeben ist. Es muss also nicht nachgeregelt werden, wenn sich die Drehzahl des Mühlenmotors ändert, sofern eine Nachregelung nicht durch andere Tastwerte erforderlich ist. Auch hier müssen nicht alle angegebenen Taster angeschlossen sein, mitunter kommt man mit einem einzigen eine Nachsteuerung bewirkenden Taster aus.Such a
Im übrigen kann das stufenlose Getriebe 88 auch ausserhalb des Mühlengehäuses an den Motor 67 angeschlossen werden, dass also eine Durchführung der Rotorwelle 19 durch dieses Gehäuse entfällt.In addition, the continuously
Wenn irgend möglich, sollten die Drehzahlen des Rotors 22 und des Pumpenrades 39 im Normalbetrieb etwa gleich sein, um unnötige Relativbewegungen an der gemeinsamen Grenzfläche zu vermeiden. Die Viskositätsmessung muss auch nicht kontinuierlich sein, sondern kann periodisch erfolgen, wobei dann eben stufenweise nachgesteuert wird. Meist ist auch eine einzige Viskositätsmessung hinreichend, wenn man die Steuerfunktion nach Erfahrungswerten festlegt. Es versteht sich, dass man auch weitere Tastwerte heranziehen kann, etwa einen Kugelstau im Abscheideraum 58. In aller Regel ist es auch nicht nachteilig, wenn ein Teil des Mahlgutes mit den Kugeln wieder dem Guteinlass zugeführt wird, also einen zweiten Verarbeitungsvorgang durchläuft. Man kann sogar mittels des Mahlkörperförderers die mittlere Durchlaufzeit erheblich steigern, d.h. das Gut im Mittel 1,5 bis 3,5 mal durchlaufen lassen und dadurch entsprechend besser homogenisieren.If at all possible, the speeds of the
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83110939T ATE25203T1 (en) | 1982-11-16 | 1983-11-03 | MILL FOR FLOWABLE GRIND. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19823242436 DE3242436A1 (en) | 1982-11-16 | 1982-11-16 | MILL FOR FLOWABLE GROUND MATERIAL |
DE3242436 | 1982-11-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0111703A2 EP0111703A2 (en) | 1984-06-27 |
EP0111703A3 EP0111703A3 (en) | 1985-09-25 |
EP0111703B1 true EP0111703B1 (en) | 1987-01-28 |
Family
ID=6178300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83110939A Expired EP0111703B1 (en) | 1982-11-16 | 1983-11-03 | Mill for fluid milling material |
Country Status (6)
Country | Link |
---|---|
US (1) | US4629133A (en) |
EP (1) | EP0111703B1 (en) |
JP (1) | JPS5998745A (en) |
AT (1) | ATE25203T1 (en) |
DE (2) | DE3242436A1 (en) |
ES (1) | ES8406224A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0184992A2 (en) * | 1984-12-06 | 1986-06-18 | FRYMA Maschinen AG | Ball mill |
DE3716587C1 (en) * | 1987-05-18 | 1988-04-28 | Draiswerke Gmbh | Agitator mill |
EP1238707A2 (en) | 2001-03-06 | 2002-09-11 | HOSOKAWA ALPINE Aktiengesellschaft & Co. OHG | Agitator mill with toroidal crushing gap |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH667222A5 (en) * | 1985-07-18 | 1988-09-30 | Buehler Ag Geb | METHOD FOR CONTROLLING AN AGRI MILL, AND CONTROL DEVICE FOR CARRYING OUT THE METHOD. |
DE3716295A1 (en) * | 1987-05-15 | 1988-11-24 | Fryma Maschinenbau Gmbh | SPLIT BALL MILL FOR CONTINUOUS FINE-SIZING, ESPECIALLY UNLOCKING MICRO-ORGANISMS AND DISPERSING SOLIDS IN LIQUID |
DE3918092C2 (en) * | 1988-06-09 | 1999-08-12 | Buehler Ag Geb | Agitator mill |
JPH04166246A (en) * | 1990-10-31 | 1992-06-12 | Matsushita Electric Ind Co Ltd | Medium agitating mill and grinding method |
DE4142213C2 (en) * | 1991-12-20 | 2003-01-09 | Draiswerke Gmbh | agitating mill |
DE4329339A1 (en) * | 1993-08-31 | 1995-03-02 | Fryma Masch Ag | Agitator mill |
DE19528736A1 (en) * | 1995-08-04 | 1997-02-06 | Krupp Polysius Ag | Arraangement for making mixture of ground material and water - in which material is ground in one stage and water added while grain size and viscosity of mixture are constantly monitored |
US5662279A (en) * | 1995-12-05 | 1997-09-02 | Eastman Kodak Company | Process for milling and media separation |
US7699250B1 (en) * | 2007-03-02 | 2010-04-20 | Progressive Industries, Inc. | Media grinding mill |
DE102010061504B4 (en) * | 2010-12-22 | 2014-10-16 | Technische Universität Berlin | Method for determining a ground material and device |
RU2540537C2 (en) * | 2013-02-26 | 2015-02-10 | Богданов Лев Константинович | Method and device for grinding |
CN113399058B (en) * | 2021-05-28 | 2022-07-12 | 天津水泥工业设计研究院有限公司 | Efficient vertical dry stirring mill and application thereof |
CN117463481B (en) * | 2023-12-28 | 2024-03-12 | 大兴安岭益康野生食品加工有限公司 | Cranberry magma low temperature double grinding device |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB234520A (en) * | 1924-05-26 | 1926-07-01 | Hermann Hildebrandt | Improvements relating to the comminuting and mixing of substances of all kinds |
US1605025A (en) * | 1924-05-26 | 1926-11-02 | Hildebrandt Hermann | Comminuting and mixing of substances of all kinds |
GB422628A (en) * | 1933-07-13 | 1935-01-14 | Whiston Alfred Bristow | Improvements relating to the reduction of solid substances to a finely divided state |
US2059795A (en) * | 1935-10-23 | 1936-11-03 | James H Johns | Grinding mill |
GB489171A (en) * | 1937-01-19 | 1938-07-19 | William Langsdorf | Improvements in paint and like mixing and grinding machines |
DE814374C (en) * | 1950-02-08 | 1951-09-20 | Werner Fichter | Conical mill for lacquer paints |
US2595117A (en) * | 1950-03-08 | 1952-04-29 | Smidth & Co As F L | Method and apparatus for grinding |
US2922586A (en) * | 1954-02-18 | 1960-01-26 | Hardinge Harlowe | Comminuting and classifying system and method |
US3226044A (en) * | 1961-10-27 | 1965-12-28 | Nisso Seiko Kabushiki Kaisha | Grinding mill |
DE1223236B (en) * | 1962-11-16 | 1966-08-18 | Draiswerke Ges Mit Beschraenkt | Agitator mill |
GB1069986A (en) * | 1963-08-22 | 1967-05-24 | Us Stoneware Inc | Method of comminution and apparatus therefor |
DE1226406B (en) * | 1964-09-11 | 1966-10-06 | Draiswerke Ges Mit Beschraenkt | Method and device for finely grinding cocoa beans |
DE2242174A1 (en) * | 1972-08-26 | 1974-03-07 | Netzsch Maschinenfabrik | Ball mill for grinding abrasive materials - is fed with make up balls during operation through duct sealed by tight fitting ball |
CH566167A5 (en) * | 1973-09-28 | 1975-09-15 | Bicik Vladislav | |
SU473522A1 (en) * | 1974-01-08 | 1975-06-14 | Днепропетровский Ордена Трудового Красного Знамени Горный Институт Им. Артема | Ball loading control system in the mill |
DE2811899C2 (en) * | 1978-03-18 | 1984-12-06 | Fryma-Maschinen Ag, Rheinfelden | Gap ball mill |
AT367657B (en) * | 1978-08-24 | 1982-07-26 | Buehler Ag Geb | AGITATOR BALL MILL CONTROL |
DE3038794C2 (en) * | 1980-10-14 | 1994-02-17 | Buehler Ag Geb | Agitator mill |
JPS5838396A (en) * | 1981-08-29 | 1983-03-05 | Ebara Corp | Grinder pump |
-
1982
- 1982-11-16 DE DE19823242436 patent/DE3242436A1/en not_active Withdrawn
-
1983
- 1983-11-03 AT AT83110939T patent/ATE25203T1/en not_active IP Right Cessation
- 1983-11-03 DE DE8383110939T patent/DE3369470D1/en not_active Expired
- 1983-11-03 EP EP83110939A patent/EP0111703B1/en not_active Expired
- 1983-11-14 JP JP58212618A patent/JPS5998745A/en active Granted
- 1983-11-15 ES ES527272A patent/ES8406224A1/en not_active Expired
-
1985
- 1985-09-06 US US06/773,103 patent/US4629133A/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0184992A2 (en) * | 1984-12-06 | 1986-06-18 | FRYMA Maschinen AG | Ball mill |
EP0184992A3 (en) * | 1984-12-06 | 1987-11-19 | Fryma Maschinen Ag | Ball mill |
DE3716587C1 (en) * | 1987-05-18 | 1988-04-28 | Draiswerke Gmbh | Agitator mill |
EP1238707A2 (en) | 2001-03-06 | 2002-09-11 | HOSOKAWA ALPINE Aktiengesellschaft & Co. OHG | Agitator mill with toroidal crushing gap |
DE10110652B4 (en) * | 2001-03-06 | 2004-01-29 | Hosokawa Alpine Ag & Co.Ohg, | Agitator mill with toroidal grinding gap |
Also Published As
Publication number | Publication date |
---|---|
DE3369470D1 (en) | 1987-03-05 |
DE3242436A1 (en) | 1984-05-17 |
EP0111703A3 (en) | 1985-09-25 |
ATE25203T1 (en) | 1987-02-15 |
JPS5998745A (en) | 1984-06-07 |
ES527272A0 (en) | 1984-07-16 |
EP0111703A2 (en) | 1984-06-27 |
ES8406224A1 (en) | 1984-07-16 |
JPH0227018B2 (en) | 1990-06-14 |
US4629133A (en) | 1986-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0111703B1 (en) | Mill for fluid milling material | |
DE2811887C2 (en) | Drive for a continuously working screw centrifuge | |
EP0058886B1 (en) | Agitator mill | |
EP3311922B1 (en) | Agitator ball mill | |
EP3311921B1 (en) | Agitator ball mill | |
CH680652A5 (en) | ||
DE69517064T2 (en) | Abrasive vertical grain polishing machine | |
EP1724022B1 (en) | Stirring mill | |
EP1825907B1 (en) | Homogenising device | |
DE2931276C2 (en) | ||
DE3208973C2 (en) | Device for processing viscous substances or substances that become viscous during processing | |
DE69107166T2 (en) | Mill for grinding and fine grinding of solids dispersed in liquids. | |
DE112019003289B4 (en) | Scroll compressor | |
FI60252B (en) | MALAPPARAT FOER TRAEMASSA ELLER MOTSVARANDE | |
US5399080A (en) | Pellet press | |
EP2992960B1 (en) | Device for grinding dispensed products with prior screening | |
WO1998028077A1 (en) | Comminution machine with an emulsifier | |
EP0358790B1 (en) | Milling system | |
EP0448100B1 (en) | Stirring mill | |
EP0645179B1 (en) | Grinding mill and mixer containing said grinding mill | |
DE3022809A1 (en) | Continuous fine grinding ball mill - has gap between displacement body rotor and grinding space set by variable converter gear | |
CH682465A5 (en) | Agitator-type grinder assembly | |
EP1724021A1 (en) | Agitator mill | |
DE4240779C1 (en) | Mill with stirring action - has annular stator between stirring shaft and grinder-body separator with passages returning bodies to outer grinding chamber | |
EP1206971B1 (en) | Agitator mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19860214 |
|
17Q | First examination report despatched |
Effective date: 19860716 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 25203 Country of ref document: AT Date of ref document: 19870215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3369470 Country of ref document: DE Date of ref document: 19870305 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001013 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20001020 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20001114 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001127 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001130 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20001206 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010110 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011103 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
BERE | Be: lapsed |
Owner name: FRYMA MASCHINEN A.G. Effective date: 20011130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20011103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020730 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |