EP0111139A2 - Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten Kohlenstoffasern - Google Patents

Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten Kohlenstoffasern Download PDF

Info

Publication number
EP0111139A2
EP0111139A2 EP19830110782 EP83110782A EP0111139A2 EP 0111139 A2 EP0111139 A2 EP 0111139A2 EP 19830110782 EP19830110782 EP 19830110782 EP 83110782 A EP83110782 A EP 83110782A EP 0111139 A2 EP0111139 A2 EP 0111139A2
Authority
EP
European Patent Office
Prior art keywords
annealed
rovings
monofilaments
nickel
textile fabrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19830110782
Other languages
English (en)
French (fr)
Inventor
Harold Dr. Ebneth
Hans Georg Dr. Fitzky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0111139A2 publication Critical patent/EP0111139A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/127Metals

Definitions

  • the invention is directed to annealed rovings and textile fabrics made of nickel-plated, graphitic carbon fibers, a method for producing conductive rovings, textile fabrics and monofilaments that are resistant to high temperatures, and their use.
  • Fiber-reinforced plastics in particular also carbon-fiber-reinforced plastics (KFK), are increasingly used to reduce the weight in the construction of aircraft and spacecraft.
  • KFK carbon-fiber-reinforced plastics
  • plastics do not offer sufficient protection against electromagnetic interference and especially against lightning. Even if thin aluminum nets or copper grids are laminated into the composite materials or if metallized plastic or carbon fibers or glass fibers coated with aluminum are used, there is a risk of lightning strikes disruption of the outer skin and the impairment of important internal installations.
  • Pure carbon fiber fabrics are destroyed by lightning by mechanical electrodynamic forces with simultaneous thermal stress. Even if they become considerably more conductive due to strong metallization, for example with copper, local, thermal and mechanical destruction is still observed.
  • the invention relates to annealed rovings, textile fabrics and monofilaments made of nickel-plated graphitic carbon fibers. Those structures are preferred whose nickel layer thickness on the carbon monofilament is 1 to 10% of the diameter of the carbon monofilament.
  • the layer can contain up to 5 atom% boron. In addition to the boron, up to 5 atom% of cobalt or iron can be contained in the layer ' individually or together.
  • the invention also relates to a process for the production of conductive rovings, textile fabrics, and monofilaments which are resistant to high temperatures, which is characterized in that rovings, textile fabrics, are electroless nickel-plated or monofilaments are annealed under inert gas or in a vacuum. They are preferably annealed at temperatures up to 1500 ° C. for between 0.1 and 10 minutes.
  • Another nickel layer can subsequently be applied to the annealed rovings, textile fabrics and monofilaments by wet chemical electroless or galvanic means.
  • the layer thickness of this further nickel layer is preferably 0.5 to 5% of the diameter of the carbon monofilament. Such a layer serves to improve the corrosion resistance, in particular during the duration of the surge load.
  • the annealed materials show an approx. 10 times lower surface resistance at 1500 ° C than the unannealed nickel-plated fabrics at 25 ° C.
  • the nickel coating was approximately 1.5 ⁇ m.
  • the textile construction has an influence on the current distribution. For example, it has been found that a plain-weave carbon filament yarn fabric L 1/1 conducts the lightning current preferably in the direction of the warp threads.
  • a satin shows the construction (3), a satin (7) or with beetle Z a uniform area distribution of the lightning current over the entire component.
  • a carbon filament yarn fabric has been electrolessly copper-plated by wet chemistry.
  • the amount of copper deposited corresponds to 190 g copper / m 2 .
  • the tissue was subjected to a 100 kA lightning strike; a zone about 1 cm in diameter was badly destroyed. (The test methods under realistic conditions are described in Report of SAE Committee AE 4 L of June 20, 1978, Lightning Test Wareforms and Techniques for Aerospace Vehicles and Hardware.)
  • a carbon filament yarn fabric in satin weave (satin 1 4 (2)), 75 warp threads / 10 cm and 75 weft threads / 10 cm is activated for 10 seconds in a solution of 0.01 g / 1 butadiene-palladium chloride, dried and then 80 minutes in a plating bath containing 30 g / 1 nickel chloride 6 H 2 0, 10 g / l citric acid and 3 g / l dimethylamine borane, nickel-plated at pH 8.5.
  • the carbon filament yarn fabric has absorbed 120 g Ni / m 2 and has a surface resistance, measured according to DIN 54 345, in the weft and in the warp direction of 0.05 ohm.
  • the nickel-plated fabric is then subjected to tempering under argon for 10 minutes.
  • the carbon filament yarn fabric has taken up 188 g Ni / m 2 and has a surface resistance of 0.04 ohm both in the warp and in the weft direction.
  • the nickel-plated fabric is then subjected to tempering under argon for 10 minutes.
  • a carbon filament yarn fabric in satin weave (satin (7)), 59 warp threads / 10 cm and 62 weft threads / 10 cm is activated for 10 seconds in a solution of 0.01 g / l butadiene-palladium chloride, dried and then for 90 minutes in a metallizing bath containing 30 g / l nickel chloride 6 H 2 0, 10 g / 1 citric acid and 3 g / l dimethylamine borane, nickel-plated at pH 8.5.
  • the carbon filament yarn fabric has absorbed 154 g Ni / m 2 and has a resistance per square in both warp and weft directions of 0.05 ohms.
  • the nickel-plated fabric is then subjected to tempering under argon for 10 minutes.
  • a carbon filament yarn of a high-modulus fiber made of charred polyacrylonitrile (tex 220 f 6000) is activated for 10 seconds in a solution of 0.01 g / l butadiene-palladium chloride, dried and then for 80 minutes in a metallization bath containing 30 g / 1 nickel chloride 6 H Contains 2 O, 10 g / l citric acid and 3 g / 1 dimethylamine borane, nickel-plated at a pH of 8.5.
  • This filament yarn is subjected to a heat treatment under argon at 1500 ° C. for 10 minutes.
  • a 20 mm long fiber shows the following resistance curve in a vacuum at 10 -4 Torr depending on the current intensity:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

Vernickelte, graphitische Kohlenstoffasern werden durch eine Temperung bei Temperaturen bis 1500°C modifiziert. Sie zeigen danach sowohl bei 25°C eine wesentlich verbesserte als auch eine mit der Temperatur stark ansteigende elektrische Leitfähigkeit. Textile Flächengebilde aus diesem Material zeigen bei Blitzeinschlag gegenüber dem ungetemperten Material eine verbesserte Standfestigkeit.

Description

  • Die Erfindung richtet sich auf getemperte Rovings und textile Flächengebilde aus vernickelten, graphitischen Kohlenstoffasern, ein Verfahren zur Erzeugung von bei hohen Temperaturen beständigen leitfähigen Rovings, textilen Flächengebilden und Monofilamenten und deren Verwendung.
  • Faserverstärkte Kunststoffe, insbesondere auch kohlenstoffaserverstärkte Kunststoffe (KFK), werden zur Verminderung des Gewichts in zunehmendem Maße beim Bau von Luft- und Raumfahrzeugen verwendet. Im Gegensatz zu den bisher für die Außenhaut verwandten Materialien, beispielsweise Aluminium- und Titanlegierungen, bieten Kunststoffe aber nicht ausreichend Schutz gegen elektromagnetische Einstreuungen und insbesondere gegen Blitzschlag. Selbst wenn man dünne Aluminiumnetze oder Kupfergitter in die Verbundmaterialien einlaminiert oder metallisierte Kunststoff- bzw. Kohlenstoffasern oder mit Aluminium überzogene Glasfasern verwendet, besteht bei einem Blitzeinschlag die Gefahr der Zerstörung der Außenhaut und die Beeinträchtigung wichtiger innerer Installationen.
  • Reine Kohlenstoffasergewebe werden bei Blitzeinschlag durch mechanische elektrodynamische Kräfte bei gleichzeitiger thermischer Belastung zerstört. Auch wenn sie durch eine starke Metallisierung, beispielsweise mit Kupfer, erheblich leitfähiger werden, wird doch noch eine lokale, thermisch und mechanisch bedingte Zerstörung beobachtet.
  • Es wurde nun gefunden, daß durch eine Temperung Rovings, textile Flächengebilde und Monofilamente aus vernickelten graphitischen Kohlenstoffasern eine erheblich bessere thermische Beständigkeit und höhere Leitfähigkeit bis in hohe Temperaturbereiche haben.
  • Gegenstand der Erfindung sind getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten graphitischen Kohlenstoffasern. Bevorzugt sind solche Gebilde, deren Nickelschichtdicke auf dem Kohlenstoffmonofil 1 bis 10 % des Durchmessers des Kohlenstoffmonofils beträgt. Neben Nickel kann in der Schicht bis 5-Atom-% Bor enthalten sein. Neben dem-Bor können in der Schicht' einzeln oder zusammen bis zu 5 Atom-% Kobalt oder Eisen enthalten sein.
  • Gegenstand der Erfindung ist auch ein Verfahren zur Erzeugung von bei hohen Temperaturen beständigen, leitfähigen Rovings, textilen Flächengebilden, und Monofilamenten, das dadurch gekennzeichnet ist, daß naßchemisch stromlos vernickelte Rovings, textile Flächengebilde oder Monofilamente unter Inertgas oder im Vakuum getempert werden. Bevorzugt werden sie bei Temperaturen bis 1500°C zwischen 0,1 und 10 Minuten getempert. Nachträglich kann auf den getemperten Rovings, textilen Flächengebilden und Monofilamenten naßchemisch stromlos oder galvanisch eine weitere Nickelschicht aufgebracht werden. Die Schichtdicke dieser weiteren Nickelschicht beträgt vorzugsweise 0,5 bis 5 % des Durchmessers des Kohlenstoffmonofils. Eine solche Schicht dient der Verbesserung der Korrosionsbeständigkeit, insbesondere während der Dauer der Stromstoßbelastung.
  • In der DE-PS 2 743 768 oder in der DE-OS 2 739 179 ist beschrieben, wie Filamente und textile Flächengebilde naßchemisch stromlos vernickelt werden können. Die so metallisierten Filamente bzw. textilen Flächengebilde sind sehr gleichmäßig mit einer Metallschicht umgeben. Bei der Temperung werden sie unter Sauerstoffausschluß im Inertgas oder im Vakuum üblicherweise durch Strombelastung auf Temperaturen bis 1500°C erhitzt. Nach wenigen Minuten hat sich bei ca. 1500°C eine stabile neue Phase gebildet. Durch den Tempervorgang hat sich die elektrische Leitfähigkeit bei 25°C um einen Faktor 3 bis 5 erhöht. Bei den erfindungsgemäßen Filamenten bzw. Rovings und textilen Flächengebilden nimmt die elektrische Leitfähigkeit reversibel, näherungsweise exponentiell, mit der Temperatur zu. In der nachfolgenden Tabelle ist der an einem aus mehreren Monofilen bestehenden Multifilamentgarn der Widerstandsverlauf als Funktion der Stromstärke bei einer Garnlänge von 20 mm dargestellt:
    Figure imgb0001
  • Die getemperten Materialien zeigen bei 1500°C einen ca. 10-fach niedrigeren Flächenwiderstand als die ungetemperten vernickelten Gewebe bei 25°C. In diesem Beispiel betrug bei einem Durchmesser des Monofils von 30µm die Nickelauflage ca. 1,5µm. Die textiltechnische Konstruktion hat Einfluß auf die Stromverteilung. Es hat sich beispielsweise herausgestellt, daß ein Kohlenstoff-Filamentgarngewebe in Leinwandbindung L 1/1 den-Blitzstrom vorzugsweise in Richtung der Kettfäden leitet. Dagegen zeigt ein Satin der Konstruktion
    Figure imgb0002
    (3), ein Satin
    Figure imgb0003
    (7) oder mit Käper
    Figure imgb0004
    Z eine gleichmäßige Flächenverteilung des Blitzstroms über das gesamte Bauelement.
  • Beispiel 1 (Vergleichsbeispiel)
  • Ein Kohlenstoff-Filamentgarngewebe ist naßchemisch stromlos verkupfert worden. Die abgeschiedene Kupfermenge entspricht 190 g Kupfer/m2. Das Gewebe wurde einem 100 kA Blitzeinschlag ausgesetzt; eine Zone von etwa 1 cm Durchmesser wurde dabei stark zerstört. (Die Prüfverfahren unter realistischen Bedingungen sind beschrieben in Report of SAE Committee AE 4 L vom 20.6.1978, Lightning Test Wareforms and Techniques for Aerospace Vehicles and Hardware.)
  • Alle im folgenden beschriebenen erfindungsgemäßen Flächengebilde zeigen dagegen beim Blitztest unter ähnlichen Bedingungen eine praktisch unzerstörte Gewebestruktur.
  • Beispiel 2
  • Ein Kohlenstoff-Filamentgarngewebe in Satinbindung (Satin 1 4 (2)), 75 Kettfäden/10 cm und 75 Schußfäden/10 cm wird 10 Sekunden in einer Lösung von 0,01 g/1 Butadien-palladiumchlorid aktiviert, getrocknet und anschließend 80 Minuten in einem Metallisierungsbad, das 30 g/1 Nickelchlorid 6 H20, 10 g/l Zitronensäure und 3 g/l Dimethylaminboran enthält, bei einem pH 8,5 vernickelt. Das Kohlenstoff-Filamentgarngewebe hat 120 g Ni/m2 aufgenommen und besitzt einen Oberflächenwiderstand, gemessen nach DIN 54 345, in Schuß- und in Kettrichtung von 0,05 Ohm.
  • Das vernickelte Gewebe wird anschließend 10 Minuten lang einer Temperung unter Argon unterworfen.
  • Beispiel 3
  • Ein Kohlenstoff-Filamentgarngewebe in Köperbindung (Köper
    Figure imgb0005
    (Z)), 49 Kettfäden/10 cm und 41 Schußfäden/10 cm, wird 10 Sekunden in eine Lösung von 0,01 g/l Butadienpalladiumchlorid aktiviert, getrocknet und anschließend 90 Minuten in einem Metallisierungsbad, das 30 g/l Nickelchlorid 6 H2O, 10 g/1 Zitronensäure und 3 g/1 Dimethylaminboran enthält, bei einem pH 8,5 vernickelt. Das Kohlenstoff-Filamentgarngewebe hat 188 g Ni/m2 aufgenommen und besitzt einen Oberflächenwiderstand sowohl in Kettals auch in Schußrichtung von 0,04 Ohm.
  • Das vernickelte Gewebe wird anschließend 10 Minuten lang einer Temperung unter Argon unterworfen.
  • Beispiel 4
  • Ein Kohlenstoff-Filamentgarngewebe in Satinbindung (Satin
    Figure imgb0006
    (7)), 59 Kettfäden/10 cm und 62 Schußfäden/10 cm wird 10 Sekunden in eine Lösung von 0,01 g/l Butadien-palladiumchlorid aktiviert, getrocknet und anschließend 90 Minuten in einem Metallisierungsbad, das 30 g/l Nikkelchlorid 6 H20, 10 g/1 Zitronensäure und 3 g/l Dimethylaminboran enthält, bei einem pH 8,5 vernickelt. Das Kohlenstoff-Filamentgarngewebe hat 154 g Ni/m2 aufgenommen und besitzt einen Widerstand pro Quadrat sowohl in Kett- als auch in Schußrichtung von 0,05 Ohm.
  • Das vernickelte Gewebe wird anschließend 10 Minuten lang einer Temperung unter Argon unterworfen.
  • Beispiel 5
  • Ein Kohlenstoff-Filamentgarn einer Hochmodulfaser aus verkohltem Polyacrylnitril (tex 220 f 6000) wird 10 Sekunden in einer Lösung von 0,01 g/l Butadien-Palladiumchlorid aktiviert, getrocknet und anschließend 80 Minuten in einem Metallisierungsbad, das 30 g/1 Nickelchlorid 6 H2O, 10 g/l Zitronensäure und 3 g/1 Dimethylaminboran enthält, bei einem pH von 8,5 vernickelt. Das Kohlenstoff-Filamentgarn hat, als Gewebe gewebt, 140 g Ni/m2 aufgenommen.
  • Dieses Filamentgarn wird unter Argon 10 Minuten lang bei 1500°C einer Hitzebehandlung unterworfen, Eine 20 mm lange Faser zeigt im Vakuum bei 10-4 Torr folgenden Widerstandsverlauf in Abhängigkeit von der Stromstärke:
    Figure imgb0007

Claims (10)

1) Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten, graphitischen Kohlenstofffasern.
2) Getemperte Rovings, textile Flächengebilde und Monofilamente nach Anspruch 1, dadurch gekennzeichnet, daß die Nickelschichtdicke auf dem Kohlenstoffmonofil 1 bis 10 % des Durchmessers des Kohlenstoffmonofils beträgt.
3) Getemperte Rovings, textile Flächengebilde und Monofilamente nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß in der Nickelschicht 0 bis 5 Atom-% Bor enthalten ist.
4) Getemperte Rovings, textile Flächengebilde und Monofilamente nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß in der Nickelschicht 0 bis 5 Atom-% Kobalt und/oder Eisen enthalten sind.
5) Verfahren zur Erzeugung von bei hohen Temperaturen beständigen leitfähigen Rovings, textilen-Flächengebilden und Monofilamenten, dadurch gekennzeichnet, daß naßchemisch stromlos vernickelte Rovings, textile Flächengebilde und Monofilamente unter Inertgas oder im Vakuum getempert werden.
6) Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß sie bei Temperaturen bis 1500°C getempert werden.
7) Verfahren nach Ansprüchen 5 und 6, dadurch gekennzeichnet, daß sie zwischen 0,1 und 10 Minuten getempert werden.
8) Verfahren nach Ansprüchen 5 bis 7, dadurch gekennzeichnet, daß die getemperten Rovings, textilen Flächengebilde und Monofilamente mit einer weiteren Schicht aus Nickel, deren Schicht vorzugsweise 0,5 bis 5 % des Durchmessers des Kohlenstoffmonofils beträgt, versehen werden.
9) Verwendung der getemperten Rovings, textilen Flächengebilde und Monofilamente nach Ansprüchen 1 bis 8 als elektrisch leitfähiges Material in Verbundwerkstoffen.
10) Verwendung der getemperten Rovings und textilen Flächengebilde nach Ansprüchen 1 bis 8 als Blitzschutzmaterial, bevorzugt beim Bau von Flug- und Raumfahrzeugen.
EP19830110782 1982-11-10 1983-10-28 Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten Kohlenstoffasern Withdrawn EP0111139A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823241513 DE3241513A1 (de) 1982-11-10 1982-11-10 Getemperte rovings, textile flaechengebilde und monofilamente aus vernickelten kohlenstoffasern
DE3241513 1982-11-10

Publications (1)

Publication Number Publication Date
EP0111139A2 true EP0111139A2 (de) 1984-06-20

Family

ID=6177736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830110782 Withdrawn EP0111139A2 (de) 1982-11-10 1983-10-28 Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten Kohlenstoffasern

Country Status (2)

Country Link
EP (1) EP0111139A2 (de)
DE (1) DE3241513A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269850A1 (de) * 1986-10-31 1988-06-08 American Cyanamid Company Mit Kupfer überzogene Fasern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907923C1 (de) * 1989-03-11 1989-12-07 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
DE4316607A1 (de) * 1993-05-18 1994-11-24 Wilhelm Endlich Metallisierte Kunststoff-Faserabschnitte als Füllstoff in Kleb-, Dicht-, Beschichtungs- und Schmierstoffen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0269850A1 (de) * 1986-10-31 1988-06-08 American Cyanamid Company Mit Kupfer überzogene Fasern

Also Published As

Publication number Publication date
DE3241513A1 (de) 1984-05-10

Similar Documents

Publication Publication Date Title
EP0117393B1 (de) Blitzschutzverbundmaterial
DE2728555C2 (de) Vormaterial für kohlefaserverstärkte Metalle und Verfahren zu seiner Herstellung
EP0076414B1 (de) Duroplastische Verbundwerkstoffe mit metallisierten Aramidfäden
DE3922539C2 (de)
WO2002001656A2 (de) Verfahren zur herstellung von kathoden und anoden für elektrochemische systeme sowie ein dabei verwendeter metallisierter stoff, verfahren und vorrichtung zu dessen herstellung
DE1912465B2 (de) Verbundwerkstoff und verfahren zu seiner herstellung
EP0406910B1 (de) Elektroden für galvanische Primär- und Sekundärelemente
DE2939225A1 (de) Verfahren zur herstellung eines faserverstaerkten metallaufbaus
DE1621379B2 (de) Hochtemperaturbestaendige werkstoffe und verfahren zu ihrer herstellung
DE102011109577A1 (de) Elektrisch leitendes Material sowie Strahler mit elektrisch leitendem Material sowie Verfahren zu dessen Herstellung
DE4343904C3 (de) Bauteil aus faserverstärktem Verbundwerkstoff mit einer Schutzschicht gegen Erosion
DE3436097C2 (de)
EP0111139A2 (de) Getemperte Rovings, textile Flächengebilde und Monofilamente aus vernickelten Kohlenstoffasern
DE2820502A1 (de) Metallisierte aramidfasern
EP0109638A1 (de) Verfahren zur Herstellung metallisierter textiler Flächengebilde
DE883949C (de) Biegsame Glasfaeden und daraus hergestellte Gebilde
DE1758827A1 (de) Verfahren zum Herstellen poroeser Metallteile
DE2055927A1 (de) Poröser, elektrisch leitender Gegenstand, insbesondere elektrisches Heizelement
WO1999060823A1 (de) Elektrisches heizelement und verfahren zur herstellung desselben
DE3144947A1 (de) Verfahren zum behandeln einer faser
EP0057284A2 (de) Elektrische Leitkontakte aus metallisierten textilen Flächengebilden
EP0163805A1 (de) Verbundmaterial
EP0077486A1 (de) Verfahren zur Reflexion hochfrequenter Mikrowellen
DE1758826C3 (de) Verfahren zum Herstellen von Metallfaserteilen
DE1496753A1 (de) Verbundmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831028

AK Designated contracting states

Designated state(s): DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19840709

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FITZKY, HANS GEORG, DR.

Inventor name: EBNETH, HAROLD, DR.