EP0108928B1 - Méthode de régulation d'une centrale de force motrice - Google Patents

Méthode de régulation d'une centrale de force motrice Download PDF

Info

Publication number
EP0108928B1
EP0108928B1 EP83110099A EP83110099A EP0108928B1 EP 0108928 B1 EP0108928 B1 EP 0108928B1 EP 83110099 A EP83110099 A EP 83110099A EP 83110099 A EP83110099 A EP 83110099A EP 0108928 B1 EP0108928 B1 EP 0108928B1
Authority
EP
European Patent Office
Prior art keywords
desired value
steam
steam generator
input
integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110099A
Other languages
German (de)
English (en)
Other versions
EP0108928A3 (en
EP0108928A2 (fr
Inventor
Heinrich Ing.Grad. Renze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT83110099T priority Critical patent/ATE35166T1/de
Publication of EP0108928A2 publication Critical patent/EP0108928A2/fr
Publication of EP0108928A3 publication Critical patent/EP0108928A3/de
Application granted granted Critical
Publication of EP0108928B1 publication Critical patent/EP0108928B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting

Definitions

  • the invention relates to a method for regulating a power plant block containing a turbine and a steam generator, in which the basic setpoint for the block power is supplied to the steam generator as the basic setpoint for the steam generation and the turbine control as the basic setpoint for the electrical power.
  • Such methods are usually in the controlled system without compensation, so that stable control of the steam generation can only be achieved with difficulty because of the inertia of the steam generator.
  • the delay time is relatively long, so steam pressure, which is already used as a control variable for the steam generator, must be switched proportionally to the regulation of the turbine in addition to stabilization.
  • Steam pressure and power control mutually influence each other, so that there is positive feedback between the steam generator and power control with the turbine.
  • Another disadvantage of such a control is that even with targeted load changes and heating faults, the steam accumulator is used via the power control with the valve opening of the turbine as an actuator, so that not only the steam pressure control with the steam generator is made difficult, but the steam generator is not gentle is driven.
  • the opening of the turbine valve remains constant and only the steam generator is readjusted. Only in the event of sudden changes in the mains frequency is the turbine valve opening changed in this operating mode and thus the steam accumulator is used.
  • so-called fixed-pressure operation is used, i.e. the opening of the turbine inlet valve is changed with a constant steam pressure to change the power output. So that the steam accumulator is not used, the setpoint for the valve opening is adjusted via a delay element with which the delay time of the steam generator is simulated. Since this measure first understands the valve opening with the changed steam generation, the steam pressure remains constant when the load changes. In this known method, the storage behavior of the steam generator is only considered incompletely. Also, no measures are proposed with which the valve opening is not changed in the event of a heating fault. An exact replication of the load-dependent time behavior of the steam generator is required for the regulation of frequency deviations.
  • the present invention has for its object to provide a method of the type mentioned, in which the dynamic processes in power changes are taken into account more than in the known methods and thereby the control and regulation processes are better separated and in which the commissioning is also simplified .
  • a first value corresponding to the opening of the turbine inlet valve is preferably formed and fed to the one input of a multiplier, the output signal of which is subtracted from the basic setpoint for the block power.
  • the difference value is applied to the basic setpoint for the steam generator and fed to the input of an integrator emulating the storage behavior of the steam generator, to the output of which the second input of the multiplier is connected.
  • the steam accumulator should also be used in the event of a change in output after driving the difference is subtracted from the nominal value for the electrical power.
  • a signal which corresponds to the frequency deviation from the desired value is advantageously fed to the desired value for the electrical power, that is to say for controlling the turbine valve, and to the desired value for the steam generator.
  • the signal corresponding to the frequency deviation and a delay element corresponding to the delay time of the steam generator can be fed to a subtraction stage, the output signal of which is applied to the setpoint for the steam generator.
  • the electrical power is regulated with the turbine inlet valve and the steam pressure with the steam generator.
  • the basic setpoint for the block output is set according to a schedule with an adjuster ST1 and passed on to the block control via a downstream setpoint control SWF.
  • This basic setpoint for the block power is passed on without delay as a setpoint for the steam generation via a line SWD and via a delay element VZ1, the timing of which is the same as that of the steam generator, as a setpoint for the electrical power via a line SWL.
  • the delay and start-up time of the steam generator is simulated in the delay element VZ1.
  • This transition function is determined by suddenly changing the setpoint for the steam generator with the steam pressure constantly controlled by the turbine and recording the time profile of the electrical power. Since the time behavior of the steam generator is dependent on the power, the transition function must be used for several, e.g. three different, load points are included. According to these values, the time behavior of the delay elements designated VZ1, VZ2 ... is controlled by the setpoint for the block power.
  • a unit 4 with a dashed outline serves to generate a signal which corresponds approximately to the valve opening.
  • the pressure setpoint is performance-dependent within limit setpoints Pmin and p max , which are set with adjusters ST4, ST5.
  • a constant value Ap which is set with an adjuster ST6, is added to the power setpoint in order to form the pressure setpoint in an adder ADD3.
  • a minimum selection MIN3 is connected downstream of the adder ADD3 and the adjuster ST4, to which the one input of a maximum selection MAX3 is connected, to which the limit setpoint p 1 "is also fed.
  • At the output of the maximum selection MAX3 a basic setpoint for the steam pressure is produced.
  • the steam pressure changes with a delay in accordance with the storage capacity of the steam generator, the opening of the turbine valve and the time behavior of the steam generator. So that there is no control difference for a steam pressure regulator 6 due to a change in the grid setpoint for the block power even in the sliding pressure range (see FIG. 2), the setpoint for the steam pressure must also be delayed in accordance with the actual value.
  • the output signal of the integrator INT1 does not change when the setpoint of the block power changes, since then the two signals "basic setpoint / block power" and the product of the output signals of the divider DIV1 and the integrator INT change change to the same extent so that the difference signal at the output of the subtractor SUB7 and thus the input signal of the integrator INT1 remains zero.
  • sliding pressure mode when the basic setpoint of the block power changes, a signal is generated at the input of the integrator INT1, which signal corresponds to the difference between the steam generated and emitted caused by the timing of the steam accumulator. This signal is switched to the basic setpoint for steam generation and corresponds to the steam required for charging or discharging the storage tank.
  • a delay element VZ3 is connected to the integrator INT1, with which the delay in the change in steam pressure due to the time behavior of the steam generator is taken into account for the setpoint value of the steam pressure.
  • a signal thus arises at its output, which is delayed when the basic setpoint for the block output changes in accordance with the valve opening of the turbine, the storage capacity of the steam generator and the time behavior of the steam generator. This signal can be used as a pressure setpoint for the steam pressure regulator 6.
  • the steam pressure regulator 6 is used primarily to correct heating faults. In the event of a heating fault, the steam pressure changes, and the setpoint for the steam generator should be changed via the steam pressure regulator so that the steam output generated remains constant.
  • a subtractor SUB8 forms the control deviation of the vapor pressure from the setpoint for the vapor pressure supplied by the delay element VZ3 and the vapor pressure multiplied in a multiplier M3 by a constant supplied by a constant generator KG1.
  • the basic setpoint for the block power delayed in a delay element VZ2 is divided in a divider DIV2 by the output signal of the delay element VZ3, so that its output signal corresponds to the opening of the turbine valve.
  • This is multiplied in a multiplier M2 by the output signal of the subtractor SUB8, which is the control deviation of the steam pressure, and thus generates a signal which corresponds to the missing or excessive steam output.
  • This signal is applied to the setpoint for the steam generator in an adder ADD8. So that the valve opening of the turbine remains constant in the event of a heating fault, the output signal of the multiplier M2 corresponding to the control difference "steam flow" is subtracted from the nominal value for the electrical power in a subtractor SUB3. In the event of a heating fault, the valve opening of the turbine is not adjusted and the memory in the steam generator is not additionally used.
  • the steam pressure regulator can be set very stable according to a controlled system with 100% compensation.
  • this signal is given to the input of a steam generator model, which consists of a delay element VZ4, the timing of which is the same as that of the steam generator, and an integrator INT2, the timing of which is equal to the storage time constant of the steam generator.
  • the output signal of the delay element VZ4 corresponds to the changed steam generation due to the changed steam generator setpoint. Since the vapor pressure e.g. in the event of a negative heating fault having to be rebuilt, the steam delivery of the steam generator is delayed by the charge of the steam accumulator.
  • the output signal of the integrator INT2 corresponds to the changed steam delivery of the steam generator, since the storage capacity of the steam generator is simulated in this integrator.
  • a differential can also be switched off using a differentiating element DF2 and an adder ADD5.
  • the lead is derived from the control difference.
  • the reserve is from the control difference "Steam flow” and the output signal of the steam generator model VZ4, INT2 derived.
  • the signal at the input of the integrator INT1 remains zero in the fixed pressure range. So that the input and output signal of the delay element VZ3 is constant, namely Pmln or p max .
  • the setpoint for the electrical power changes with constant opening of the turbine valve without a time lag with the generation of the electrical power. This means that without applying the control difference "steam flow" occurring at the output of the multiplier M2, the control difference at the input of the power controller would remain zero.
  • a signal k * Af corresponding to the deviation of the actual frequency from the target frequency is fed to a unit 1, which serves to limit the frequency deviation signal when the upper or the lower limit power is reached.
  • unit 1 is supplied with the basic setpoint of the block power and compared in subtractors SUB1, SUB2 with the lower limit power p min or the upper limit power P max , which are set in adjusters ST2, ST3.
  • the difference signals are fed to a minimum selection MIN1 or a maximum selection MAX2.
  • a maximum selection MAX1 is connected to the former, and a minimum selection MIN2 is connected via an inverter IV1 and is further connected to the maximum selection MAX1, MAX2.
  • the output signal of the maximum selection MAX2 is the allowance for a power increase in the event of a frequency drop and the output signal of the minimum selection MIN1 is the allowance for a power decrease in the event of a frequency increase. If the frequency control in the lower power range should not be effective even in the event of a frequency drop, the output signal of the minimum selection MIN1 is given with the opposite sign via the inverter IV1 in the minimum selection MIN2.
  • the frequency deviation signal k - Af which may be limited by the minimum selection MIN2, is added by an adder ADD1 to the nominal value for the electrical power and by an adder ADD2 to the basic nominal value for the steam generator.
  • the adder ADD2 is arranged so that the frequency signal has the same effect as a change in the basic setpoint value of the block power, ie the power of the steam generator is overridden in order to load or discharge the memory in the steam generator.
  • the electrical power follows exactly a setpoint change due to a frequency change if the control difference on the steam pressure controller is kept at zero. Since the opening of the turbine valve is immediately adjusted in the event of a frequency change via the power regulator, a "steam pressure dent" arises from the removal of steam from the storage of the steam generator. If a signal corresponding to this "steam pressure dent" is added to the control difference "steam pressure", a frequency deviation does not change the control difference at the steam pressure controller.
  • the signal corresponding to the "vapor pressure dent" is generated in a unit 2, which is described in more detail below.
  • the steam pressure changes corresponding to the storage time constant of the steam generator if there is a difference between the steam generated and the steam removed.
  • the size of the frequency signal added to the setpoint value of the electric power corresponds to that of the steam removed.
  • the time keeping of the steam generator is simulated in a delay element VZ5. Since the setpoint change of the steam generator is switched to the input of the delay element due to a frequency deviation of the same size, its output signal corresponds to the steam generated, which is available for generating the electrical power.
  • a subtractor SUB5 therefore forms a signal which corresponds to the difference between the generated and removed steam.
  • This signal is fed into an integrator INT3, the time constant of which is equal to the storage time constant of the steam generator. Its output signal is therefore the same size as the vapor pressure deviation due to the change in power due to the change in frequency.
  • This integrator signal is added to the control difference "vapor pressure" formed by the subtractor SUB8, so that in the vapor pressure controller 6 the change in the vapor pressure which occurs due to the frequency change is compensated.
  • the input signal of the integrator INT3 In the event of a frequency drop, the input signal of the integrator INT3, and thus also its output signal, becomes negative, since more steam is initially extracted than is generated.
  • the output signal of the integrator remains when the generated steam is the same size as the extracted steam. In order for the output signal to go back to zero, more steam must be generated than is withdrawn. This is achieved in that the input signal of the delay element VZ5 is increased, for example by a factor of 0.2 to 0.3, by applying the signal corresponding to the pressure dent.
  • the frequency rises more steam is initially generated than is withdrawn.
  • the ent of the pressure dent speaking signal then causes less steam to be generated than drawn.
  • a reference of the frequency signal is additionally generated by means of a differentiating element DF1 and added to the basic setpoint for the steam generator with an adder ADD7, so that the steam generation is increased as early as possible or is reduced in the event of a frequency increase.
  • the lead is also given to the input of the delay element VZ5.
  • the shape of the pressure dent which is caused by a frequency change, is determined by the size of the connection.
  • the opening of the turbine valve is temporarily set to 100% via the electrical power regulator.
  • a positive control difference Xd arises at the power controller. Since the steam withdrawn decreases by this amount, the positive control difference of the electrical power is given into the input of the integrator INT3 at 100% valve opening via a maximum selection MAX4, so that the pressure bulge is correctly simulated even when the power control is not effective.
  • an adjuster ST7 is provided, which emits a signal corresponding to the valve opening 100%, which is subtracted from the actual valve opening by a subtractor SUB6.
  • the control difference Xd of the electrical power is applied to this difference.
  • the maximum selection MAX4 only gives the part of the signal thus formed to the integrator INT3 that exceeds the value zero.
  • a signal is applied to the setpoint for the steam generator via the adder ADD6 to the basic setpoint for the steam generation, which leads to the steam generator being overridden for charging or discharging the memory.
  • the steam generation for charging or discharging the memory is not overridden in the event of schedule changes in power, so that the generation of the electrical power is additionally delayed in the sliding pressure range.
  • FIG. 3 only those elements are provided with reference numerals that are necessary for the description of the changes compared to the exemplary embodiment according to FIG. 1. The elements that have the same functions in the two exemplary embodiments are provided with the same reference symbols.
  • the input signal of an integrator INT5 is subtracted from the setpoint value of the electrical power before the delay element VZ1, which corresponds to the integrator INT1 according to FIG. 1, ie , a signal corresponding to the amount of the storage steam quantity is subtracted.
  • the steam generation is not overridden in this case, so that the steam generator is driven particularly gently.
  • the setpoint value of the electrical power must be changed in the event of a frequency deviation, as in the exemplary embodiment according to FIG. 1. It is then also necessary in the sliding pressure range to additionally override the setpoint for the steam generator for loading or unloading the store compared to the fixed pressure range.
  • a lead consisting of an integrator INT4 and a multiplier M5 is used for this.
  • the time constant of the integrator INT4 is again the same as the storage time constant of the steam generator.
  • a limiting device 7 ensures that in the event of a frequency change, the lead to the setpoint of the steam generator is effective only in the sliding pressure range.
  • a subtractor SUB9 is provided, in which the input signals of the integration elements INT4, INT5 are compensated.
  • the input signal of the integrator INT4 reaches an adder ADD9, in which it is added to the basic setpoint for the steam generator.
  • FIG. 4 illustrates an example in which the steam generator's memory is used even in the event of changes in performance.
  • the basic setpoint for the power is given to the turbine valve as the setpoint for the electrical power without delay.
  • the setpoint for the steam generation and the pressure setpoint are formed as in the exemplary embodiment according to FIG. 1. Since the memory of the steam generator is also used in the event of schedule changes in performance, this mode of operation must be taken into account for the formation of a signal which corresponds to the "pressure dent".
  • This signal is generated with an arrangement which is already contained in the exemplary embodiment according to FIG. 1 and is designated by 2.
  • the frequency deviation signal k ⁇ ⁇ f but also the basic setpoint for the block power is supplied to this arrangement.
  • the steam pressure deviation due to the use of the store can become impermissibly large when the capacity is controlled using the turbine valve.
  • the output is only regulated within a specified limit in accordance with the block setpoint (controlled system without compensation).
  • a dead band TB is provided for setting the limits. Exceeds the size of the "Pressure dent" the set limit, the power control is changed. The signal then let through by the dead band is multiplied by the setpoint for the valve opening in a multiplier M6. In this way, the signal corresponding to the “power dent” is obtained, which results in a controlled system with compensation due to a change in power.
  • This signal which corresponds to the “power bulge” is added to the setpoint value of the block power in an adder ADD10 and also to the setpoint value of the electrical power in an adder ADD11.
  • the output signal of the integrator INT3 becomes negative, so that the signal corresponding to the vapor removed and the setpoint for the electrical output become smaller, thus reducing the speed of the output change. Since the input signal of the integrator INT3 corresponds to the difference between the steam withdrawn and the steam generated, the pressure bulge is also correctly simulated in this case.
  • the opening of the turbine valve via the power controller is exactly proportional to the setpoint value in the event of a schedule power change by connecting the “power dent” to the setpoint value of the electrical power the block power is adjusted. Since the valve opening is adjusted like a control without overshoot, the control of the steam pressure and the electrical power is very stable.
  • this concept can be used to manually change the power by adjusting the opening of the turbine valve.
  • the calculated “setpoint steam” for the setpoint formation of the steam generator only has to be applied and the limits of the dead band set to zero.
  • the control difference “steam flow rate” which arises due to a disturbance in steam generation is subtracted from the setpoint value of the electrical power so that the valve opening of the turbine remains constant. There is then no control difference at the power regulator of the turbine, since the electrical power has changed by the same amount as the setpoint for the electrical power due to the pressure deviation. Since the valve opening of the turbine is kept constant regardless of the electrical power, it is a controlled system with 100% compensation. If, on the other hand, the electrical power is kept constant by adjusting the turbine valve via the power regulator of the turbine, the steam removed is greater than the steam generated. The vapor pressure therefore drops and only rises again when the generated steam becomes larger than the extracted steam. Since the steam extraction is controlled independently of the steam pressure, the controlled system has no compensation.
  • FIG. 5 shows the functional diagram of a steam pressure regulator with which this requirement is met.
  • the control difference "vapor pressure" at the output of the subtractor SUB8 is an amplitude-dependent attenuator, e.g. a so-called dead band TD, whose dead zone, in which the damping is 100%, can be set with a steep ST8.
  • the output signal of the dead band TD is multiplied by the multiplier M2 by the setpoint for the valve opening of the turbine and the signal thus obtained is subtracted from the setpoint for the electrical power in the subtractor SUB3 and added to the setpoint for the steam generator in the adder ADD8.
  • the two inputs of a subtractor SUB10 are connected to the output and the input of the dead band TD, to which a differentiator DF4 and a multiplier M7 are connected.
  • the time constant of the differentiator DF4 is set to that of the steam accumulator. Its output signal is added to the signal of the multiplier M2 in an adder ADD13.
  • the output signal of the subtractor SUB10 is multiplied in the multiplier M7 by a constant, for example 0.1 ... 0.3, and over Adders ADD12 and ADD8 added to the setpoint for the steam generator.
  • the dead zone of the dead band TD is set to zero.
  • the input and output signals of the dead band are the same, and the output signal of the subtractor SUB10 is zero.
  • the differentiator DF4 and the multiplier M7 thus have no effect on the control.
  • the steam pressure regulator according to FIG. 5 then works like that described in FIG. 1.
  • the dead zone of the dead band TD is set so large that even the largest difference signal to be expected at the output of the subtractor SUB8 is not passed and thus the compensation signal to the subtractor SUB3 is zero.
  • the steam pressure remains constant. If there is a difference, the rate of change in pressure caused by this only depends on the storage time constant of the steam generator. Accordingly, the control difference "steam flow” is simulated via the differentiator DF4 with the control difference "steam pressure” as an input signal.
  • the control difference "steam flow rate” determined in this way is applied to the steam pressure regulator via the adders ADD13, ADD4, ADD12 and ADD8.
  • the electrical power - can only be kept constant as long as the valve opening of the turbine remains in the control range. If the valve is fully opened in the event of a major disturbance in steam generation, the degree of compensation of the controlled system changes from 0 to 100%. Without taking this limit case into account, the steam pressure regulator would work more slowly than the controlled system allows, but the regulation would remain stable. However, since the change in the degree of compensation at 100% valve opening is already taken into account when the pressure setpoint is controlled with the connection of the “pressure bump” described with reference to FIG. 1, the steam pressure regulator also works optimally in this limit case.
  • an amplitude-dependent attenuator can be used, the attenuation of which is large for small amplitudes and small for large amplitudes. If the above-mentioned dead band is used as the amplitude-dependent attenuator, the electrical power is quickly corrected within a certain bandwidth by adjusting the valve opening and the valve opening of the turbine is kept constant outside this bandwidth. If the control difference "vapor pressure" is greater than the dead zone set on the dead band, the difference between the input and output signal of the dead band and thus also the output of the subtractor SUB10 remains constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (21)

1. Procédé pour réguler une unité de centrale de production d'énergie comportant une turbine et un générateur de vapeur, dans lequel la valeur de consigne de base pour la puissance de l'unité est appliquée au générateur de vapeur, en tant que valeur de consigne de base pour la génération de vapeur, et à la régulation de la turbine, en tant que valeur de consigne de base pour la puissance électrique, caractérisé en ce que, à partir de la valeur de consigne de base pour la puissance de l'unité, sont formés une valeur de consigne pour la pression de vapeur et un signal correspondant à l'ouverture de la soupape de turbine, que la différence (SUB8), formée par soustraction de la valeur réelle de la pression de vapeur, de la valeur de consigne, est multipliée (M2) par le signal correspondant à l'ouverture de la soupape de turbine et le résultat est soustrait (SUB3) de la valeur de consigne de base pour la puissance électrique, et est additionnée (ADD8) à la valeur de consigne de base pour la génération de vapeur.
2. Procédé selon la revendication 1, caractérisé en ce que le signal correspondant à la différence entre la valeur réelle de la puissance et la valeur de consigne de la puissance, est retardé du temps de retard du générateur de vapeur, et est additionné (ADD8) à la valeur de consigne de base pour le générateur de vapeur.
3. Procédé selon la revendication 2, caractérisé en ce que le signal correspondant à la différence entre la valeur réelle de puissance et la valeur de consigne de puissance, est appliqué, à la première entrée d'un additionneur (ADD4), dont le signal de sortie est, par l'intermédiaire d'un montage retardateur (VZ4, INT2) dont le temps du retard est identique au temps de retard du générateur de vapeur et du comportement accumulateur du générateur de vapeur, réappliqué à la seconde entrée de l'additionneur (ADD4) et est incorporé à la valeur de consigne de base pour la génération de vapeur.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le signal correspondant à la différence entre la valeur réelle de la puissance et la valeur de consigne de la puissance, est incorporé à la valeur de consigne de base pour la production de vapeur, par l'intermédiaire d'un élément différenciateur (DF2) formant une dérivation.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le signal correspondant à l'ouverture de la soupape de turbine, est généré au moyen de la formation du rapport entre la valeur de consigne de base de la puissance d'unité et la valeur de consigne de pression.
6. Procédé selon la revendication 5, caractérisé en ce qu'une valeur de consigne de base pour la pression de vapeur est formée dans une unité (4), que le rapport entre la valeur de consigne de base pour la puissance de l'unité et la valeur de consigne de base pour la pression de vapeur, est appliqué à la première entrée d'un multiplicateur (M1), dont la seconde entrée est raccordée à un intégrateur (INT1) dont la constante de temps est la même que le comportement temporel de l'accumulateur du générateur de vapeur, et dont le signal de sortie est soustrait de la valeur de consigne de base pour la puissance de l'unité dans une soustracteur (SUB7), et que l'entrée de l'intégrateur ()NT1) est raccordée au soustracteur (SUB7), et la valeur de consigne pour la pression de vapeur est dérivée du signal de sortie de l'intégrateur (INT1).
7. Procédé selon la revendication 6, caractérisé en ce que pour former la valeur de consigne pour la pression de vapeur, le signal de sortie de l'intégrateur (INT1) est conduit à travers un éié- ment retardateur (VZ3), dont le comportement dans le temps est le même que le temps de retard du générateur de vapeur.
8. Procédé selon les revendications 5 et 7, caractérisé en ce que la valeur de consigne de base pour la puissance de l'unité est conduite à travers un élément retardateur (VZ2), dont le comportement dans le temps est le même que le temps de retard du générateur de vapeur, et que pour générer le signal correspondant à l'ouverture de la soupape de turbine, on forme le rapport entre le signal de sortie de l'élément retardateur (VZ2) et le signal de sortie de l'élément retardateur (VZ3).
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'une valeur de consigne de base pour la pression de vapeur est formée dans une unité (4) que le rapport entre la valeur de consigne de base pour la puissance de l'unité et la valeur de consigne de base pour la pression de vapeur est appliqué à la première entrée d'un multiplicateur (M1), dont la seconde entrée est raccordée à un intégrateur (INT1) dont le comportement dans le temps est identique à celui de l'accumulateur du générateur de vapeur, le signal de sortie dudit multiplicateur est soustrait à la valeur de consigne de base pour la puissance de l'unité dans un soustracteur (SUB7), et que le signal de sortie du soustracteur (SUB7) est incorporé à la valeur de consigne de base pour le générateur de vapeur.
10. Procédé pour réguler la fréquence de l'unité de centrale de production d'énergie comprenant un générateur de vapeur, une turbine et un générateur couplé à celle-ci, selon l'une des revendications 1 à 9, caractérisé en ce qu'un signal correspondant à l'écart de la fréquence réelle sur la fréquence de consigne est, éventuellement après une limitation de la valeur de consigne de base pour le générateur de vapeur et de la valeur de consigne pour la puissance électrique, incorporé à la fréquence de consigne dans le sens d'un réglage de la fréquence réelle.
11. Procédé selon la revendication 10, caractérisé en ce que le signal correspondant à l'écart en fréquence, est conduit d'une part instantanément à l'entrée (-) d'un soustracteur (SUB5), et d'autre part à la seconde entrée (+) du soustracteur (SUB5), par l'intermédiaire d'un élément retardateur (VZ5) dont le comportement dans le temps est identique à celui du générateur de vapeur, que le signal de sortie du soustracteur (SUB5) est conduit à travers un intégrateur (INT3) dont le comportement dans le temps est identique à celui de l'accumulation du générateur de vapeur, et un signal proportionnel au signal de sortie de l'intégrateur (INT3) inverse la valeur de consigne de base pour la génération de vapeur et/ou est incorporé à l'entrée de l'élément retardateur (VZ5).
12. Procédé selon la revendication 11, caractérisé en ce que le signal correspondant à l'écart en fréquence, est incorporé, par l'intermédiaire d'un élément différenciateur (DF1), à la valeur de consigne de base pour la génération de vapeur et/ ou à l'entrée de l'élément retardateur (VZ5).
13. Procédé selon la revendication 11 ou 12, caractérisé en ce que l'intégrateur (INT3) est attaqué par la partie de la déviation de réglage (Xd) de la puissance électrique, qui ne peut pas être régulée par modification de l'ouverture de la soupape de turbine.
14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que le signal de sortie de l'intégrateur (INT3) est appliqué à une bande morte (TB), à la sortie duquel est raccordée une des entrées d'un multiplicateur (M6), dont l'autre entrée est attaquée par un signal correspondant à l'ouverture de la soupape de turbine, et dont le signal de sortie est d'une part appliqué à l'entrée de l'intégrateur (INT3) et d'autre part incorporé à la valeur de consigne pour la puissance électrique.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que dans le domaine de pressions glissantes, le signal correspondant à l'écart en fréquence est appliqué à un intégrateur (INT4) dont le comportement dans le temps est identique à celui de l'accumulation de vapeurs, que dans une unité (4), une valeur de consigne de base pour la pression de vapeur est formée, et le rapport entre la valeur de consigne de base pour la puissance de l'unité, augmentée du signal correspondant à l'écart en fréquence, et la valeur de consigne pour la pression de vapeur est appliqué à la première entrée d'un multiplicateur (M5), dont la seconde entrée est raccordée à un intégrateur (INT4) et dont le signal de sortie est réappliqué, inversé, sur l'entrée de l'intégrateur (INT4), et que le signal présent à l'entrée de l'intégrateur (INT4) est incorporé à la valeur de consigne de base pour la génération de vapeur, augmentée du signal correspondant à l'écart en fréquence.
16. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que dans une unité (4), est formée une valeur de consigne de base pour la pression de vapeur, et le rapport entre la valeur de consigne de base pour la puissance de l'unité, augmentée du signal correspondant à l'écart en fréquence, et la valeur de consigne pour la pression de vapeur, est appliqué à la première entrée d'un multiplicateur (M6), dont la seconde entrée est raccordée à un intégrateur (INT5) dont le comportement dans le temps est identique à celui de l'accumulation de vapeur, et dont le signal de sortie est réappliqué, inversé, à l'entrée de l'intégrateur (lNT5), et que le signal présent à l'entrée de l'intégrateur (lNT5) est soustrait de la valeur de consigne de base pour la puissance électrique, augmentée du signal correspondant à l'écart en fréquence.
17. Procédé selon la revendication 15 et 16, caractérisé en ce que la différence des signaux délivrés par les intégrateurs (INT4, INT5) est soustraite à la valeur de consigne de base pour la puissance électrique.
18. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la différence entre la valeur réelle de pression et la valeur de consigne de pression (SUB8) est conduite à travers un atténuateur dépendant de l'amplitude (TD), dont le signal de sortie est multiplié (M2) par la valeur de consigne pour l'ouverture de la soupape et le résultat est soustrait de la valeur de consigne pour la puissance électrique et est additionné (ADD8) à la valeur de consigne pour la génération de vapeur.
19. Procédé selon la revendication 18, caractérisé en ce que la différence entre le signal d'entrée et le signal de sortie de l'atténuateur dépendant de l'amplitude (TD) est formé et est appliquée à un élément différenciateur (DF4), dont la constante de temps est identique à celle de l'accumulation du générateur de vapeur et dont le signal de sortie est additionné à la valeur de consigne pour le générateur de vapeur.
20. Procédé selon la revendication 18 ou 19, caractérisé en ce que la différence entre le signal d'entrée et le signal de sortie de l'atténuateur dépendant de l'amplitude (TD) est, après la multiplication par un facteur inférieur à 1, de préférence un facteur de 0,2... 0,3, additionné à la valeur de consigne du générateur de vapeur.
21. Procédé selon l'une des revendications 18 à 20, caractérisé en ce que, en aval de l'élément différenciateur, est connectée une simulation du générateur de vapeur (DF2, VZ4, INIT2), dont le signal de sortie est additionné à la valeur de consigne pour le générateur de vapeur.
EP83110099A 1982-11-11 1983-10-10 Méthode de régulation d'une centrale de force motrice Expired EP0108928B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110099T ATE35166T1 (de) 1982-11-11 1983-10-10 Verfahren zum regeln eines kraftwerkblockes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241799 1982-11-11
DE3241799 1982-11-11

Publications (3)

Publication Number Publication Date
EP0108928A2 EP0108928A2 (fr) 1984-05-23
EP0108928A3 EP0108928A3 (en) 1985-09-25
EP0108928B1 true EP0108928B1 (fr) 1988-06-15

Family

ID=6177921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110099A Expired EP0108928B1 (fr) 1982-11-11 1983-10-10 Méthode de régulation d'une centrale de force motrice

Country Status (3)

Country Link
EP (1) EP0108928B1 (fr)
AT (1) ATE35166T1 (fr)
DE (1) DE3377072D1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528292A1 (de) * 1985-08-07 1987-02-19 Gutehoffnungshuette Man Verfahren und einrichtung zur regelung einer dampfturbine eines kraftwerkblocks
DE3541148C3 (de) * 1985-11-21 1995-12-07 Man Energie Gmbh Verfahren zur Regelung einer Dampfturbine
DE19828446C1 (de) * 1998-06-26 1999-09-23 Hartmann & Braun Gmbh & Co Kg Verfahren zur koordinierten Regelung eines Dampfkraftwerksblockes
US20160208656A1 (en) * 2013-08-28 2016-07-21 Siemens Aktiengesellschaft Operating method for an externally heated forced-flow steam generator
CN108678821A (zh) * 2018-05-11 2018-10-19 华电能源股份有限公司富拉尔基发电厂 一种实现火电机组热电解耦的汽轮机启停调峰供热系统
CN113406883B (zh) * 2021-06-28 2022-08-12 广东电网有限责任公司 一种开度指令的生成方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338054A (en) * 1964-12-29 1967-08-29 Combustion Eng Method and apparatus for increasing control response of a vapor generator
US3802189A (en) * 1972-01-13 1974-04-09 Leeds & Northrup Co Boiler-turbine control system
JPS53102405A (en) * 1977-02-18 1978-09-06 Hitachi Ltd Speed governing of steam turbine
DE2730415C2 (de) * 1977-07-06 1983-02-24 Saarbergwerke AG, 6600 Saarbrücken Verfahren zur pendelungsfreien Regelung eines Kraftwerksblocks im gesteuerten Gleitdruck
DE2903658A1 (de) * 1979-01-31 1980-08-07 Siemens Ag Verfahren und anordnung zum regeln eines kraftwerkblockes

Also Published As

Publication number Publication date
ATE35166T1 (de) 1988-07-15
EP0108928A3 (en) 1985-09-25
EP0108928A2 (fr) 1984-05-23
DE3377072D1 (en) 1988-07-21

Similar Documents

Publication Publication Date Title
DE3116340C2 (de) Verfahren und Regeleinrichtung zum Begrenzen der bei Belastungsänderungen auftretenden thermischen Beanspruchung von Bauteilen einer Dampfturbine
EP0132487B1 (fr) Procédé de régulation d'au moins deux turbo-compresseurs branchés en parallèle
DE19846818A1 (de) Maximumregler
CH702608B1 (de) Verfahren zum Starten einer Gasturbine und System zum Steuern eines Hochfahrvorgangs einer Gasturbine.
DE3304292C2 (fr)
EP0066651B1 (fr) Procédé et appareil pour commander un turbogénérateur
EP2579112A1 (fr) Dispositif de régulation
EP3156646A1 (fr) Éolienne dotee d'un regulateur d'alternateur et de vitesse
EP0108928B1 (fr) Méthode de régulation d'une centrale de force motrice
WO1993024991A1 (fr) Procede et dispositif de regulation d'un ensemble turbine-generateur
EP0100532B1 (fr) Procédé et dispositif pour la régulation de la puissance d'une centrale
DE3434644A1 (de) Verfahren und einrichtung zur erzeugung einer getakteten stellspannung
DE3632041A1 (de) Verfahren und einrichtung zur regelung der leistung eines dampfkraftwerkblocks
CH679235A5 (fr)
EP1490735A1 (fr) Procede et regulateur permettant la regulation adaptative d'au moins une composante d'une installation technique
DE3541148C2 (fr)
WO2022268785A1 (fr) Dispositif de commande en boucle fermée pour la commande en boucle fermée d'un ensemble d'alimentation comprenant un moteur à combustion interne et un générateur ayant un raccordement d'entraînement fonctionnel au moteur à combustion interne, agencement de commande en boucle fermée doté d'un tel dispositif de commande en boucle fermée, et procédé de commande en boucle fermée d'un ensemble d'alimentation
EP3655663A1 (fr) Procédé de réglage d'au moins deux ventilateurs
DE3910869C2 (de) Reglereinheit für Gasturbinen
DE2356367C2 (de) Regelanordnung zur Luftmangelsicherung für Dampferzeuger
DE19510342C2 (de) Verfahren zum Regeln der Ausgangsgröße eines Kraftwerksparks
DE2903658A1 (de) Verfahren und anordnung zum regeln eines kraftwerkblockes
DE19828446C1 (de) Verfahren zur koordinierten Regelung eines Dampfkraftwerksblockes
DE19547487C2 (de) Verfahren und Einrichtung zur Steuerung und Regelung der Leistung eines Dampfkraftwerkblocks
DE893080C (de) Gleichstromhochspannungskraftuebertragungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE IT LI NL SE

17P Request for examination filed

Effective date: 19841220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE IT LI NL SE

17Q First examination report despatched

Effective date: 19861024

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI NL SE

REF Corresponds to:

Ref document number: 35166

Country of ref document: AT

Date of ref document: 19880715

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880630

REF Corresponds to:

Ref document number: 3377072

Country of ref document: DE

Date of ref document: 19880721

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021004

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030115

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031009

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031010

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20031010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20031010