EP0108928B1 - Verfahren zum Regeln eines Kraftwerkblockes - Google Patents
Verfahren zum Regeln eines Kraftwerkblockes Download PDFInfo
- Publication number
- EP0108928B1 EP0108928B1 EP83110099A EP83110099A EP0108928B1 EP 0108928 B1 EP0108928 B1 EP 0108928B1 EP 83110099 A EP83110099 A EP 83110099A EP 83110099 A EP83110099 A EP 83110099A EP 0108928 B1 EP0108928 B1 EP 0108928B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- desired value
- steam
- steam generator
- input
- integrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 101150004790 SUB8 gene Proteins 0.000 claims abstract description 8
- 230000001105 regulatory effect Effects 0.000 claims abstract description 7
- 230000001419 dependent effect Effects 0.000 claims description 10
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 claims description 8
- 108050002021 Integrator complex subunit 2 Proteins 0.000 claims description 8
- 230000003111 delayed effect Effects 0.000 claims description 8
- 102100039131 Integrator complex subunit 5 Human genes 0.000 claims description 4
- 101710092888 Integrator complex subunit 5 Proteins 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000008859 change Effects 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 14
- 230000006399 behavior Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 102100024061 Integrator complex subunit 1 Human genes 0.000 description 7
- 101710092857 Integrator complex subunit 1 Proteins 0.000 description 7
- 101710092886 Integrator complex subunit 3 Proteins 0.000 description 6
- 102100025254 Neurogenic locus notch homolog protein 4 Human genes 0.000 description 6
- 101150027645 SUB10 gene Proteins 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 101100382854 Arabidopsis thaliana CCD7 gene Proteins 0.000 description 4
- 102100022002 CD59 glycoprotein Human genes 0.000 description 4
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 description 4
- 101710092887 Integrator complex subunit 4 Proteins 0.000 description 4
- 102100037075 Proto-oncogene Wnt-3 Human genes 0.000 description 4
- 101150080287 SUB3 gene Proteins 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 101100129499 Arabidopsis thaliana MAX2 gene Proteins 0.000 description 3
- 101100327165 Arabidopsis thaliana CCD8 gene Proteins 0.000 description 2
- 101100129496 Arabidopsis thaliana CYP711A1 gene Proteins 0.000 description 2
- 102100024348 Beta-adducin Human genes 0.000 description 2
- 101100171060 Caenorhabditis elegans div-1 gene Proteins 0.000 description 2
- 101100083446 Danio rerio plekhh1 gene Proteins 0.000 description 2
- 102100034004 Gamma-adducin Human genes 0.000 description 2
- 101000689619 Homo sapiens Beta-adducin Proteins 0.000 description 2
- 101000799011 Homo sapiens Gamma-adducin Proteins 0.000 description 2
- 101150061527 SUB7 gene Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102100036464 Activated RNA polymerase II transcriptional coactivator p15 Human genes 0.000 description 1
- 102100034033 Alpha-adducin Human genes 0.000 description 1
- 101000713904 Homo sapiens Activated RNA polymerase II transcriptional coactivator p15 Proteins 0.000 description 1
- 101000799076 Homo sapiens Alpha-adducin Proteins 0.000 description 1
- 101000629598 Rattus norvegicus Sterol regulatory element-binding protein 1 Proteins 0.000 description 1
- 229910004444 SUB1 Inorganic materials 0.000 description 1
- 229910004438 SUB2 Inorganic materials 0.000 description 1
- 101150086029 SUB5 gene Proteins 0.000 description 1
- 101150029328 SUB6 gene Proteins 0.000 description 1
- 101150067183 SUB9 gene Proteins 0.000 description 1
- 101100311330 Schizosaccharomyces pombe (strain 972 / ATCC 24843) uap56 gene Proteins 0.000 description 1
- 101100322582 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) add1 gene Proteins 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 101150018444 sub2 gene Proteins 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
Definitions
- the invention relates to a method for regulating a power plant block containing a turbine and a steam generator, in which the basic setpoint for the block power is supplied to the steam generator as the basic setpoint for the steam generation and the turbine control as the basic setpoint for the electrical power.
- Such methods are usually in the controlled system without compensation, so that stable control of the steam generation can only be achieved with difficulty because of the inertia of the steam generator.
- the delay time is relatively long, so steam pressure, which is already used as a control variable for the steam generator, must be switched proportionally to the regulation of the turbine in addition to stabilization.
- Steam pressure and power control mutually influence each other, so that there is positive feedback between the steam generator and power control with the turbine.
- Another disadvantage of such a control is that even with targeted load changes and heating faults, the steam accumulator is used via the power control with the valve opening of the turbine as an actuator, so that not only the steam pressure control with the steam generator is made difficult, but the steam generator is not gentle is driven.
- the opening of the turbine valve remains constant and only the steam generator is readjusted. Only in the event of sudden changes in the mains frequency is the turbine valve opening changed in this operating mode and thus the steam accumulator is used.
- so-called fixed-pressure operation is used, i.e. the opening of the turbine inlet valve is changed with a constant steam pressure to change the power output. So that the steam accumulator is not used, the setpoint for the valve opening is adjusted via a delay element with which the delay time of the steam generator is simulated. Since this measure first understands the valve opening with the changed steam generation, the steam pressure remains constant when the load changes. In this known method, the storage behavior of the steam generator is only considered incompletely. Also, no measures are proposed with which the valve opening is not changed in the event of a heating fault. An exact replication of the load-dependent time behavior of the steam generator is required for the regulation of frequency deviations.
- the present invention has for its object to provide a method of the type mentioned, in which the dynamic processes in power changes are taken into account more than in the known methods and thereby the control and regulation processes are better separated and in which the commissioning is also simplified .
- a first value corresponding to the opening of the turbine inlet valve is preferably formed and fed to the one input of a multiplier, the output signal of which is subtracted from the basic setpoint for the block power.
- the difference value is applied to the basic setpoint for the steam generator and fed to the input of an integrator emulating the storage behavior of the steam generator, to the output of which the second input of the multiplier is connected.
- the steam accumulator should also be used in the event of a change in output after driving the difference is subtracted from the nominal value for the electrical power.
- a signal which corresponds to the frequency deviation from the desired value is advantageously fed to the desired value for the electrical power, that is to say for controlling the turbine valve, and to the desired value for the steam generator.
- the signal corresponding to the frequency deviation and a delay element corresponding to the delay time of the steam generator can be fed to a subtraction stage, the output signal of which is applied to the setpoint for the steam generator.
- the electrical power is regulated with the turbine inlet valve and the steam pressure with the steam generator.
- the basic setpoint for the block output is set according to a schedule with an adjuster ST1 and passed on to the block control via a downstream setpoint control SWF.
- This basic setpoint for the block power is passed on without delay as a setpoint for the steam generation via a line SWD and via a delay element VZ1, the timing of which is the same as that of the steam generator, as a setpoint for the electrical power via a line SWL.
- the delay and start-up time of the steam generator is simulated in the delay element VZ1.
- This transition function is determined by suddenly changing the setpoint for the steam generator with the steam pressure constantly controlled by the turbine and recording the time profile of the electrical power. Since the time behavior of the steam generator is dependent on the power, the transition function must be used for several, e.g. three different, load points are included. According to these values, the time behavior of the delay elements designated VZ1, VZ2 ... is controlled by the setpoint for the block power.
- a unit 4 with a dashed outline serves to generate a signal which corresponds approximately to the valve opening.
- the pressure setpoint is performance-dependent within limit setpoints Pmin and p max , which are set with adjusters ST4, ST5.
- a constant value Ap which is set with an adjuster ST6, is added to the power setpoint in order to form the pressure setpoint in an adder ADD3.
- a minimum selection MIN3 is connected downstream of the adder ADD3 and the adjuster ST4, to which the one input of a maximum selection MAX3 is connected, to which the limit setpoint p 1 "is also fed.
- At the output of the maximum selection MAX3 a basic setpoint for the steam pressure is produced.
- the steam pressure changes with a delay in accordance with the storage capacity of the steam generator, the opening of the turbine valve and the time behavior of the steam generator. So that there is no control difference for a steam pressure regulator 6 due to a change in the grid setpoint for the block power even in the sliding pressure range (see FIG. 2), the setpoint for the steam pressure must also be delayed in accordance with the actual value.
- the output signal of the integrator INT1 does not change when the setpoint of the block power changes, since then the two signals "basic setpoint / block power" and the product of the output signals of the divider DIV1 and the integrator INT change change to the same extent so that the difference signal at the output of the subtractor SUB7 and thus the input signal of the integrator INT1 remains zero.
- sliding pressure mode when the basic setpoint of the block power changes, a signal is generated at the input of the integrator INT1, which signal corresponds to the difference between the steam generated and emitted caused by the timing of the steam accumulator. This signal is switched to the basic setpoint for steam generation and corresponds to the steam required for charging or discharging the storage tank.
- a delay element VZ3 is connected to the integrator INT1, with which the delay in the change in steam pressure due to the time behavior of the steam generator is taken into account for the setpoint value of the steam pressure.
- a signal thus arises at its output, which is delayed when the basic setpoint for the block output changes in accordance with the valve opening of the turbine, the storage capacity of the steam generator and the time behavior of the steam generator. This signal can be used as a pressure setpoint for the steam pressure regulator 6.
- the steam pressure regulator 6 is used primarily to correct heating faults. In the event of a heating fault, the steam pressure changes, and the setpoint for the steam generator should be changed via the steam pressure regulator so that the steam output generated remains constant.
- a subtractor SUB8 forms the control deviation of the vapor pressure from the setpoint for the vapor pressure supplied by the delay element VZ3 and the vapor pressure multiplied in a multiplier M3 by a constant supplied by a constant generator KG1.
- the basic setpoint for the block power delayed in a delay element VZ2 is divided in a divider DIV2 by the output signal of the delay element VZ3, so that its output signal corresponds to the opening of the turbine valve.
- This is multiplied in a multiplier M2 by the output signal of the subtractor SUB8, which is the control deviation of the steam pressure, and thus generates a signal which corresponds to the missing or excessive steam output.
- This signal is applied to the setpoint for the steam generator in an adder ADD8. So that the valve opening of the turbine remains constant in the event of a heating fault, the output signal of the multiplier M2 corresponding to the control difference "steam flow" is subtracted from the nominal value for the electrical power in a subtractor SUB3. In the event of a heating fault, the valve opening of the turbine is not adjusted and the memory in the steam generator is not additionally used.
- the steam pressure regulator can be set very stable according to a controlled system with 100% compensation.
- this signal is given to the input of a steam generator model, which consists of a delay element VZ4, the timing of which is the same as that of the steam generator, and an integrator INT2, the timing of which is equal to the storage time constant of the steam generator.
- the output signal of the delay element VZ4 corresponds to the changed steam generation due to the changed steam generator setpoint. Since the vapor pressure e.g. in the event of a negative heating fault having to be rebuilt, the steam delivery of the steam generator is delayed by the charge of the steam accumulator.
- the output signal of the integrator INT2 corresponds to the changed steam delivery of the steam generator, since the storage capacity of the steam generator is simulated in this integrator.
- a differential can also be switched off using a differentiating element DF2 and an adder ADD5.
- the lead is derived from the control difference.
- the reserve is from the control difference "Steam flow” and the output signal of the steam generator model VZ4, INT2 derived.
- the signal at the input of the integrator INT1 remains zero in the fixed pressure range. So that the input and output signal of the delay element VZ3 is constant, namely Pmln or p max .
- the setpoint for the electrical power changes with constant opening of the turbine valve without a time lag with the generation of the electrical power. This means that without applying the control difference "steam flow" occurring at the output of the multiplier M2, the control difference at the input of the power controller would remain zero.
- a signal k * Af corresponding to the deviation of the actual frequency from the target frequency is fed to a unit 1, which serves to limit the frequency deviation signal when the upper or the lower limit power is reached.
- unit 1 is supplied with the basic setpoint of the block power and compared in subtractors SUB1, SUB2 with the lower limit power p min or the upper limit power P max , which are set in adjusters ST2, ST3.
- the difference signals are fed to a minimum selection MIN1 or a maximum selection MAX2.
- a maximum selection MAX1 is connected to the former, and a minimum selection MIN2 is connected via an inverter IV1 and is further connected to the maximum selection MAX1, MAX2.
- the output signal of the maximum selection MAX2 is the allowance for a power increase in the event of a frequency drop and the output signal of the minimum selection MIN1 is the allowance for a power decrease in the event of a frequency increase. If the frequency control in the lower power range should not be effective even in the event of a frequency drop, the output signal of the minimum selection MIN1 is given with the opposite sign via the inverter IV1 in the minimum selection MIN2.
- the frequency deviation signal k - Af which may be limited by the minimum selection MIN2, is added by an adder ADD1 to the nominal value for the electrical power and by an adder ADD2 to the basic nominal value for the steam generator.
- the adder ADD2 is arranged so that the frequency signal has the same effect as a change in the basic setpoint value of the block power, ie the power of the steam generator is overridden in order to load or discharge the memory in the steam generator.
- the electrical power follows exactly a setpoint change due to a frequency change if the control difference on the steam pressure controller is kept at zero. Since the opening of the turbine valve is immediately adjusted in the event of a frequency change via the power regulator, a "steam pressure dent" arises from the removal of steam from the storage of the steam generator. If a signal corresponding to this "steam pressure dent" is added to the control difference "steam pressure", a frequency deviation does not change the control difference at the steam pressure controller.
- the signal corresponding to the "vapor pressure dent" is generated in a unit 2, which is described in more detail below.
- the steam pressure changes corresponding to the storage time constant of the steam generator if there is a difference between the steam generated and the steam removed.
- the size of the frequency signal added to the setpoint value of the electric power corresponds to that of the steam removed.
- the time keeping of the steam generator is simulated in a delay element VZ5. Since the setpoint change of the steam generator is switched to the input of the delay element due to a frequency deviation of the same size, its output signal corresponds to the steam generated, which is available for generating the electrical power.
- a subtractor SUB5 therefore forms a signal which corresponds to the difference between the generated and removed steam.
- This signal is fed into an integrator INT3, the time constant of which is equal to the storage time constant of the steam generator. Its output signal is therefore the same size as the vapor pressure deviation due to the change in power due to the change in frequency.
- This integrator signal is added to the control difference "vapor pressure" formed by the subtractor SUB8, so that in the vapor pressure controller 6 the change in the vapor pressure which occurs due to the frequency change is compensated.
- the input signal of the integrator INT3 In the event of a frequency drop, the input signal of the integrator INT3, and thus also its output signal, becomes negative, since more steam is initially extracted than is generated.
- the output signal of the integrator remains when the generated steam is the same size as the extracted steam. In order for the output signal to go back to zero, more steam must be generated than is withdrawn. This is achieved in that the input signal of the delay element VZ5 is increased, for example by a factor of 0.2 to 0.3, by applying the signal corresponding to the pressure dent.
- the frequency rises more steam is initially generated than is withdrawn.
- the ent of the pressure dent speaking signal then causes less steam to be generated than drawn.
- a reference of the frequency signal is additionally generated by means of a differentiating element DF1 and added to the basic setpoint for the steam generator with an adder ADD7, so that the steam generation is increased as early as possible or is reduced in the event of a frequency increase.
- the lead is also given to the input of the delay element VZ5.
- the shape of the pressure dent which is caused by a frequency change, is determined by the size of the connection.
- the opening of the turbine valve is temporarily set to 100% via the electrical power regulator.
- a positive control difference Xd arises at the power controller. Since the steam withdrawn decreases by this amount, the positive control difference of the electrical power is given into the input of the integrator INT3 at 100% valve opening via a maximum selection MAX4, so that the pressure bulge is correctly simulated even when the power control is not effective.
- an adjuster ST7 is provided, which emits a signal corresponding to the valve opening 100%, which is subtracted from the actual valve opening by a subtractor SUB6.
- the control difference Xd of the electrical power is applied to this difference.
- the maximum selection MAX4 only gives the part of the signal thus formed to the integrator INT3 that exceeds the value zero.
- a signal is applied to the setpoint for the steam generator via the adder ADD6 to the basic setpoint for the steam generation, which leads to the steam generator being overridden for charging or discharging the memory.
- the steam generation for charging or discharging the memory is not overridden in the event of schedule changes in power, so that the generation of the electrical power is additionally delayed in the sliding pressure range.
- FIG. 3 only those elements are provided with reference numerals that are necessary for the description of the changes compared to the exemplary embodiment according to FIG. 1. The elements that have the same functions in the two exemplary embodiments are provided with the same reference symbols.
- the input signal of an integrator INT5 is subtracted from the setpoint value of the electrical power before the delay element VZ1, which corresponds to the integrator INT1 according to FIG. 1, ie , a signal corresponding to the amount of the storage steam quantity is subtracted.
- the steam generation is not overridden in this case, so that the steam generator is driven particularly gently.
- the setpoint value of the electrical power must be changed in the event of a frequency deviation, as in the exemplary embodiment according to FIG. 1. It is then also necessary in the sliding pressure range to additionally override the setpoint for the steam generator for loading or unloading the store compared to the fixed pressure range.
- a lead consisting of an integrator INT4 and a multiplier M5 is used for this.
- the time constant of the integrator INT4 is again the same as the storage time constant of the steam generator.
- a limiting device 7 ensures that in the event of a frequency change, the lead to the setpoint of the steam generator is effective only in the sliding pressure range.
- a subtractor SUB9 is provided, in which the input signals of the integration elements INT4, INT5 are compensated.
- the input signal of the integrator INT4 reaches an adder ADD9, in which it is added to the basic setpoint for the steam generator.
- FIG. 4 illustrates an example in which the steam generator's memory is used even in the event of changes in performance.
- the basic setpoint for the power is given to the turbine valve as the setpoint for the electrical power without delay.
- the setpoint for the steam generation and the pressure setpoint are formed as in the exemplary embodiment according to FIG. 1. Since the memory of the steam generator is also used in the event of schedule changes in performance, this mode of operation must be taken into account for the formation of a signal which corresponds to the "pressure dent".
- This signal is generated with an arrangement which is already contained in the exemplary embodiment according to FIG. 1 and is designated by 2.
- the frequency deviation signal k ⁇ ⁇ f but also the basic setpoint for the block power is supplied to this arrangement.
- the steam pressure deviation due to the use of the store can become impermissibly large when the capacity is controlled using the turbine valve.
- the output is only regulated within a specified limit in accordance with the block setpoint (controlled system without compensation).
- a dead band TB is provided for setting the limits. Exceeds the size of the "Pressure dent" the set limit, the power control is changed. The signal then let through by the dead band is multiplied by the setpoint for the valve opening in a multiplier M6. In this way, the signal corresponding to the “power dent” is obtained, which results in a controlled system with compensation due to a change in power.
- This signal which corresponds to the “power bulge” is added to the setpoint value of the block power in an adder ADD10 and also to the setpoint value of the electrical power in an adder ADD11.
- the output signal of the integrator INT3 becomes negative, so that the signal corresponding to the vapor removed and the setpoint for the electrical output become smaller, thus reducing the speed of the output change. Since the input signal of the integrator INT3 corresponds to the difference between the steam withdrawn and the steam generated, the pressure bulge is also correctly simulated in this case.
- the opening of the turbine valve via the power controller is exactly proportional to the setpoint value in the event of a schedule power change by connecting the “power dent” to the setpoint value of the electrical power the block power is adjusted. Since the valve opening is adjusted like a control without overshoot, the control of the steam pressure and the electrical power is very stable.
- this concept can be used to manually change the power by adjusting the opening of the turbine valve.
- the calculated “setpoint steam” for the setpoint formation of the steam generator only has to be applied and the limits of the dead band set to zero.
- the control difference “steam flow rate” which arises due to a disturbance in steam generation is subtracted from the setpoint value of the electrical power so that the valve opening of the turbine remains constant. There is then no control difference at the power regulator of the turbine, since the electrical power has changed by the same amount as the setpoint for the electrical power due to the pressure deviation. Since the valve opening of the turbine is kept constant regardless of the electrical power, it is a controlled system with 100% compensation. If, on the other hand, the electrical power is kept constant by adjusting the turbine valve via the power regulator of the turbine, the steam removed is greater than the steam generated. The vapor pressure therefore drops and only rises again when the generated steam becomes larger than the extracted steam. Since the steam extraction is controlled independently of the steam pressure, the controlled system has no compensation.
- FIG. 5 shows the functional diagram of a steam pressure regulator with which this requirement is met.
- the control difference "vapor pressure" at the output of the subtractor SUB8 is an amplitude-dependent attenuator, e.g. a so-called dead band TD, whose dead zone, in which the damping is 100%, can be set with a steep ST8.
- the output signal of the dead band TD is multiplied by the multiplier M2 by the setpoint for the valve opening of the turbine and the signal thus obtained is subtracted from the setpoint for the electrical power in the subtractor SUB3 and added to the setpoint for the steam generator in the adder ADD8.
- the two inputs of a subtractor SUB10 are connected to the output and the input of the dead band TD, to which a differentiator DF4 and a multiplier M7 are connected.
- the time constant of the differentiator DF4 is set to that of the steam accumulator. Its output signal is added to the signal of the multiplier M2 in an adder ADD13.
- the output signal of the subtractor SUB10 is multiplied in the multiplier M7 by a constant, for example 0.1 ... 0.3, and over Adders ADD12 and ADD8 added to the setpoint for the steam generator.
- the dead zone of the dead band TD is set to zero.
- the input and output signals of the dead band are the same, and the output signal of the subtractor SUB10 is zero.
- the differentiator DF4 and the multiplier M7 thus have no effect on the control.
- the steam pressure regulator according to FIG. 5 then works like that described in FIG. 1.
- the dead zone of the dead band TD is set so large that even the largest difference signal to be expected at the output of the subtractor SUB8 is not passed and thus the compensation signal to the subtractor SUB3 is zero.
- the steam pressure remains constant. If there is a difference, the rate of change in pressure caused by this only depends on the storage time constant of the steam generator. Accordingly, the control difference "steam flow” is simulated via the differentiator DF4 with the control difference "steam pressure” as an input signal.
- the control difference "steam flow rate” determined in this way is applied to the steam pressure regulator via the adders ADD13, ADD4, ADD12 and ADD8.
- the electrical power - can only be kept constant as long as the valve opening of the turbine remains in the control range. If the valve is fully opened in the event of a major disturbance in steam generation, the degree of compensation of the controlled system changes from 0 to 100%. Without taking this limit case into account, the steam pressure regulator would work more slowly than the controlled system allows, but the regulation would remain stable. However, since the change in the degree of compensation at 100% valve opening is already taken into account when the pressure setpoint is controlled with the connection of the “pressure bump” described with reference to FIG. 1, the steam pressure regulator also works optimally in this limit case.
- an amplitude-dependent attenuator can be used, the attenuation of which is large for small amplitudes and small for large amplitudes. If the above-mentioned dead band is used as the amplitude-dependent attenuator, the electrical power is quickly corrected within a certain bandwidth by adjusting the valve opening and the valve opening of the turbine is kept constant outside this bandwidth. If the control difference "vapor pressure" is greater than the dead zone set on the dead band, the difference between the input and output signal of the dead band and thus also the output of the subtractor SUB10 remains constant.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Control Of Eletrric Generators (AREA)
Description
- Die Erfindung betrifft ein Verfahren zum Regeln eines eine Turbine und einen Dampferzeuger enthaltenden Kraftwerkblockes, bei dem der Grundsollwert für die Blockleistung dem Dampferzeuger als Grundsollwert für die Dampferzeugung und der Turbinenregelung als Grundsollwert für die elektrische Leistung zugeführt ist.
- In der Zeitschrift "Regelungstechnische Praxis und Prozeßrechentechnik", 1974, Seiten 9 bis 16 ist ein Verfahren beschrieben, das als gesteuerter bzw. modifizierter Gleitdruckbetrieb bezeichnet wird und bei dem der Regelkreis für den Dampferzeuger mit dem Dampfdruck als Regelgröße und der für die Turbine mit der Leistung als Regelgröße getrennt wird. Durch Verändern der Öffnung des Turbineneinlaßventils wird die Leistung auf den Sollwert eingeregelt. Der Dampferzeuger soll die Lastschwankungen ausregeln, die Öffnung des Turbineneinlaßventils soll in einem weiten Leistungsbereich konstant bleiben. In der DE-OS 24 23 082 ist ferner angegeben, die Frequenz der erzeugten Wechselspannung mit einer Sollfrequenz zu vergleichen und das der Abweichung entsprechende Signal dem Sollwert für die Leistung bze. dem Steuersignal für den Stellantrieb des Turbinenöffnungsventils aufzuschalten. Bei derartigen Verfahren handelt es sich im Regelstrecken ohne Ausgleich, so daß eine stabile Regelung der Dampferzeugung wegen der Trägheit des Dampferzeugers nur schwierig erreicht werden kann. Ist z.B. bei einer Kohlefeuerung die Verzugszeit relativ groß, so muß Dampfdruck, der bereits als Regelgröße für den Dampferzeuger verwendet wird, zusätzlich zur Stabilisierung proportional auf die Regelung der Turbine geschaltet werden. Dampfdruck und Leistungsregelung beeinflussen sich gegenseitig, so daß eine Mitkopplung zwischen der Dampferzeuger- und der Leistungsregelung mit der Turbine vorhanden ist. Ein weiterer Nachteil einer solchen Regelung ist, daß auch bei gezielten Laständerungen und bei Beheizungsstörungen der Dampfspeicher über die Leistungsregelung mit der Ventilöffnung der Turbine als Stellglied in Anspruch genommen wird, so daß nicht nur die Dampfdruckregelung mit dem Dampferzeuger erschwert wird, sondern der Dampferzeuger nicht schonend gefahren wird.
- Aus der DE-OS 29 03 658 ist ein Verfahren bekannt, bei dem keine Mitkopplung zwischen der Dampferzeugerregelung und der Steuerung der Öffnung des Turbinenventils besteht und die Dampferzeugerregelung daher sehr stabil eingestellt werden kann. Der Speicherdampfwird nur im Falle von plötzlichen Abweichungen der Frequenz von der Sollfrequenz in Anspruch genommen, wodurch sich eine schonende Fahrweise für den Dampferzeuger ergibt. Damit einem Frequenzabfall entgegengewirkt werden kann, ist das Ventil im Gleitdruckbetrieb nicht voll, sondern nur teilweise geöffnet. Im Falle eines Frequenzanstieges wird die Ventilöffnung verkleinert. Das bekannte Verfahren soll somit in einem weiten Lastbereich, dem Gleitdruckbereich, in der Weise ablaufen, daß bei Änderungen des Sollwertes für die abzugebende Leistung, also bei gezielten Laständerungen oder bei Schwenkungen der abgegebenen Leistung, z.B. infolge von Beheizungsstörungen, die Öffnung des Turbinenventils konstant bleibt und nur der Dampferzeuger nachgeregelt wird. Nur bei plötzlichen Änderungen der Netzfrequenz wird in dieser Betriebsart die Turbinenventilöffnung geändert und damit der Dampfspeicher in Anspruch genommen. Im unteren und oberen Lastbereich wird im sogenannten Festdruckbetrieb gearbeitet, d.h., zur fahrplanmäßigen Leistungsänderung wird bei konstantem Dampfdruck die Öffnung des Turbineneinlaßventils verändert. Damit der Dampfspeicher nicht in Anspruch genommen wird, erfolgt die Verstellung des Sollwertes für die Ventilöffnung über ein Verzögerungsglied, mit welchem die Verzugszeit des Dampferzeugers nachgebildet wird. Da durch diese Maßnahme die Ventilöffnung erste mit der veränderten Dampferzeugung versteht wird, bleibt der Dampfdruck bei einer Laständerung konstant. Bei diesem bekannten Verfahren wird das Speicherverhalten des Dampferzeugers nur unvollständig berücksichtigt. Auch werden keine Maßnahmen vorgeschlagen, mit denen im Falle einer Beheizungsstörung die Ventilöffnung nicht verändert wird. Für die Ausregelung von Frequenzabweichungen ist eine exakte Nachbildung des lastabhängigen Zeitverhaltens des Dampferzeugers erforderlich.
- Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, bei dem die dynamischen Vorgänge bei Leistungsänderungen stärker berücksichtigt werden als bei den bakannten Verfahren und dadurch die Steuer- und Regelvorgänge besser getrennt sind und bei dem ferner die Inbetriebnahme vereinfacht ist.
- Erfindungsgemäß wird diese Aufgabe mit den im kennzeichnenden Teil des Anspruchs 1 genannten Maßnahmen gelöst.
- Damit im Falle einer veränderten Einstellung des Sollwertes für die Leistung sich der Dampfdruck möglichst schnell auf die geforderte Leistung einstellt, wird der Dampferzeuger vorteilhaft kurzzeitig übersteuert, damit der Speicher des Dampferzeugers auf den neuen Dampfdruck auf- bzw. entladen wird. Hierzu wird vorzugsweise ein erster der Öffnung des Turbineneinlaßventils entsprechender Wert gebildet und dem einen Eingang eines Multiplizierers zugeführt, dessen Ausgangssignal vom Grundsollwert für die Blockleistung subtrahiert wird. Der Differenzwert wird dem Grundsollwert für den Dampferzeuger aufgeschaltet und dem Eingang eines das Speicherverhalten des Dampferzeugers nachbildenden Integrators zugeführt, an dessen Ausgang der zweite Eingang des Multiplizierers angeschlossen ist.
- Sol jedoch der Dampferzeuger besonders schonend gefahren und aus diesem Grunde nicht übersteuert werden und soll auch der Dampfspeicher im Falle einer Leistungsänderung nach Fahrplan nicht in Anspruch genommen werden, wird der Differenzwert vom Sollwert für die elektrische Leistung subtrahiert.
- Zur Frequenzstützung wird vorteilhaft ein der Frequenzabweichung vom Sollwert entsprechendes Signal dem Sollwert für die elektrische Leistung, also zur Steuerung des Turbinenventils, und dem Sollwert für dem Dampferzeuger zugeführt. Zur Auf- bzw. Entladung des Speichers des Dampferzeugers kann das der Frequenzabweichung entsprechende Signal direkt sowie über ein der Verzugszeit des Dampferzeugers entsprechendes Verzögerungsglied auf eine Subtraktionsstufe geführt sein, deren Ausgangssignal dem Sollwert für den Dampferzeuger aufgeschaltet ist.
- Weitere Ausgestaltungen und Vorteile der Erfindung werden im folgenden anhand der Zeichnungen näher beschrieben und erläutert.
- Es zeigen
- Figur 1 den Funktionsplan eines ersten Ausführungsbeispiels der Erfindung, bei dem im Falle einer fahrplanmäßigen Laständerung ohne Inanspruchnahme des Dampfspeichers der Dampferzeuger rasch auf die neue Leistung eingestellt wird,
- Figur 2 Diagramme zur Verdeutlichung der Funktion des Ausführungsbeispiels nach Figur 1,
- Figur 3 den Funktionsplan eines Ausführungsbeispiels, bei dem im Falle einerfahrplanmäßigen Leistungsänderung der Dampferzeuger ohne Übersteuerung auf die neue Leistung eingestellt wird,
- Figur 4 den Funktionsplan eines Ausführungsbeispiels, bei dem im Falle einer fahrplanmäßigen Leistungsänderung der Dampfspeicher in Anspruch genommen wird, und
- Figur 5 den Funktionsplan des Ausführungsbeispiels eines Dampfdruckreglers mit veränderlichem Ausgleichsgrad der Regelstrecke.
- Bie dem in Figure 1 veranschaulichten Ausführungsbeispiel wird, wie bekannt,fdie elektrische Leistung mit dem Turbineneinlaßventil und der Dampfdruck mit dem Dampferzeuger geregelt. Der Grundsollwert für die Blockleistung wird entsprechend eines Fahrplanes mit einem Einsteller ST1 eingestellt und über eine nachgeschaltete Sollwertführung SWF an die Blockregelung weitergegeben. Dieser Grundsollwert für die Blockleistung wird unverzögert als Sollwert für die Dampferzeugung über eine Leitung SWD und über ein Verzögerungsglied VZ1, dessen Zeitverhalten gleich dem des Dampferzeugers ist, als Sollwert für die elektrische Leistung über eine Leitung SWL weitergegeben.
- In dem Verzögerungsglied VZ1 ist die Verzugs-und Anlaufzeit des Dampferzeugers nachgebildet. Diese Übergangsfunktion wird ermittelt, indem bei mit der Turbine konstant geregeltem Dampfdruck der Sollwert für den Dampferzeuger sprunghaft verstellt und der zeitliche Verlauf der elektrischen Leistung aufgenommen wird. Da das Zeitverhalten des Dampferzeugers von der Leistung abhängig ist, muß die Übergangsfunktion bei mehreren, z.B. drei verschiedenen, Lastpunkten aufgenommen werden. Nach diesen Werten wird das Zeitverhalten der mit VZ1, VZ2... bezeichneten Verzögerungsglieder vom Sollwert für die Blockleistung gesteuert.
- Eine gestrichelt umrandete Einheit 4 dient zur Erzeugung eines Signals, das in etwa der Ventilöffnung entspricht. Im Gleitdruckbereich ist innerhalb von Grenzsollwerten Pmin und pmax, die mit Einstellern ST4, ST5 eingestellt werden, der Drucksollwert leistungsabhängig. Bei konstanter Drosselreserve im gesamten Gleitdruckbereich wird für die Bildung des Drucksollwertes in einem Addierer ADD3 zum Leistungssollwert ein konstanter Wert Ap, der mit einem Einsteller ST6 eingestellt wird, addiert. Dem Addierer ADD3 und dem Einsteller ST4 ist eine Minimalauswahl MIN3 nachgeschaltet, an die der eine Eingang einer Maximalauswahl MAX3 angeschlossen ist, dem ferner der Grenzsollwert p 1" zugeführt ist. Am Ausgang der Maximalauswahl MAX3 entsteht ein Grundsollwert für den Dampfdruck. Seine Abhängigkeit vom Sollwert für die Blockleistung ist im Diagramm Psoll der Figur 2 dargestellt. Durch die Addition der Konstanten Ap zum Leistungssollwert stellt sich über die noch zu beschreibende Leistungsregelung entsprechend der vorgegebenen Kennlinie "Dampfdruck in Abhängigkeit von der Leistung" die Ventilöffnung der Turbine lastabhängig ein, wie am Diagramm "Ventilöffnung" in Figur 2 ersichtlich ist. Das der Ventilöffnung in etwa entsprechende Signal wird dadurch gebildet, daß ein Dividierer DIV1 Grundsollwert für die Blockleistung durch dem am Ausgang der Maximalauswahl MAX3 auftretenden Grundsollwert für den Dampfdruck dividiert.
- Bei einer Änderung des Grundsollwertes für die Blockleistung ändert sich der Dampfdruck verzögert entsprechend der Speicherfähigkeit des Dampferzeugers, der Öffnung des Turbinenventils und dem Zeitverhalten des Dampferzeugers. Damit aufgrund einer Änderung des Gruridsollwertes für die Blockleistung auch im Gleitdruckbereich (siehe Figur 2) für einen Dampfdruckregler 6 keine Regeldifferenz entsteht, muß auch der Sollwert für den Dampfdruck entsprechend dem Istwert verzögert werden. Die Verzögerung der Dampfdruckänderung infolge der Ladung bzw. Entladung des Speichers im Dampferzeuger wird mit einer Anordnung 5 berücksichtigt, die aus einem Multiplizierer M1, einem Subtrahierer SUB7 und einem Integrator INT1 besteht, dessen Zeitkonstante gleich der Speicherzeitkonstante des Dampferzeugers ist. Da diese Schaltung entsprechend der Gleichung "VentilöffnungxDruck- =Leistung" aufgebaut ist, hat im statischen Zustand der Ausgang des Integrators den gleichen Wert wie der Drucksollwert am Ausgang der Maximalauswahl MAX3.
- Im Gleitdruckbetrieb wird somit die Leistung des Dampferzeugers für die Beladung bzw. Entladung des Speichers zeitlich und dem Betrage nach so übersteuert, daß zwischen dem verzögerten Sollwert "Leistung" und der elektrischen Leistung keine Differenz entsteht. Während einer Leistungsänderung wird lediglich bei einer Regeldifferenz "Dampfdruck" über den Leistungsregler die Öffnung des Turbinenventils verändert, so daß der Dampfdruck sich auf die vorgegebene Kennlinie einstellt. Bei fahrplanmäßigen Leistungsänderungen wird der Speicher des Dampferzeugers nicht in Anspruch genommen. Dies bedeutet für den Dampferzeuger eine schonende Fahrweise.
- Im Festdruckbereich, wenn der Drucksollwert pmin oder pmax ist, ändert sich bei einer Sollwertänderung der Blockleistung das Ausgangssignal des Integrators INT1 nicht, da dann die beiden Signale "Grundsollwert/Blockleistung" und das Produkt der Ausgangssignale des Dividierers DIV1 und des Integrators INT sich im gleichen Maße ändern, so daß das Differenzsignal am Ausgang des Subtrahierers SUB7 und damit das Eingangssignal des Integrators INT1 Null bleibt. Im Gleitdruckbetrieb entsteht bei einer Änderung des Grundsollwertes der Blockleistung am Eingang des Integrators INT1 ein Signal, welches der durch das Zeitverhalten des Dampfspeichers verursachten Differenz zwischen erzeugtem und abgegebenem Dampf entspricht. Dieses Signal wird auf den Grundsollwert für die Dampferzeugung geschaltet und entspricht dem für die Ladung bzw. Entladung des Speichers erforderlichen Dampf.
- An den Integrator INT1 ist ein Verzögerungsglied VZ3 angeschlossen, mit dem die Verzögerung der Dampfdruckänderung infolge des Zeitverhaltens des Dampferzeugers für den Sollwert des Dampfdruckes berücksichtigt wird. An seinem Ausgangs entsteht somit ein Signal, das bei einer Änderung des Grundsollwertes für die Blockleistung entsprechend der Ventilöffnung der Turbine, der Speicherfähigkeit des Dampferzeugers und dem Zeitverhalten des Dampferzeugers verzögert ist. Dieses Signal kann als Drucksollwert für den Dampfdruckregler 6 verwendet werden.
- Der Dampfdruckregler 6 dient vor allem zum Ausregeln von Beheizungsstörungen. Im Falle einer Beheizungsstörung ändert sich nämlicht der Dampfdruck und über dem Dampfdruckregler soll der Sollwert für den Dampferzeuger so geändert werden, daß die erzeugte Dampfleistung konstant bleibt. Aus dem vom Verzögerungsglied VZ3 gelieferten Sollwert für den Dampfdruck und dem in einem Multiplizierer M3 mit einer von einem Konstantengeber KG1 gelieferten Konstanten multiplizierten Dampfdruck bildet ein Subtrahierer SUB8 die Regelabweichung des Dampfdrucks. Der in einem Verzögerungsglied VZ2 verzögerte Grundsollwert für die Blockleistung wird in einem Dividierer DIV2 durch das Ausgangssignal des Verzögerungsgliedes VZ3 dividiert, so daß dessen Ausgangssignal der Öffnung des Turbinenventils entspricht. Dieser wird in einem Multiplizierer M2 mit dem Ausgangssignal des Subtrahierers SUB8, das ist die Regelabweichung des Dampfdrucks, multipliziert und erzeugt damit ein Signal, das der fehlenden oder zu großen Dampfleistung entspricht. Dieses Signal auf den Sollwert für den Dampferzeuger in einem Addierer ADD8 aufgeschaltet. Damit bei einer Beheizungsstörung die Ventilöffnung der Turbine konstant bleibt, wird das der Regeldifferenz "Dampfdurchfluß" entsprechende Ausgangssignal des Multiplizierers M2 vom Sollwert für die elektrische Leistung in einem Subtrahierer SUB3 subtrahiert. Damit wird bei einer Beheizungsstörung die Ventilöffnung der Turbine nicht verstellt und der Speicher im Dampferzeuger nicht zusätzlich in Anspruch genommen. Der Dampfdruckregler kann entsprechend einer Regelstrecke mit 100% Ausgleich sehr stabil eingestellt werden.
- Bei einer Beheizungsstörung ist, wenn die Öffnung des Turbinenventils konstant und die Dampfdruckregelung abgeschaltet ist, der zeitliche Verlauf des Dampdruckes vom Zeitverhalten und der Speicherzeitkonstanten des Dampferzeugers abhängig. Wenn dem Dampfdruckregler das Verhalten der Regelstrecke mitgeteilt wird, ist dieser Regler aufgrund seines Aufbaus bereits optimiert. Bei einer Beheizungsstörung wird die am Ausgang des Multiplizierers M2 auftretende Regeldifferenz "Dampfdurchfluß" (Regeldifferenz "Dampfdruck"xSollwert "Ventilöffnung") ohne Bewertung, d.h. mit dem Faktor 1, zum Sollwert für die "Dampferzeugung" addiert. Parallel dazu wird dieses Signal in den Eingang eines Dampferzeugermodells gegeben, das aus einem Verzögerungsglied VZ4, dessen Zeitverhalten gleich dem des Dampferzeugers ist, und einem Integrator INT2 besteht, dessen Zeitverhalten gleich der Speicherzeitkonstanten des Dampferzeugers ist. Das Ausgangssignal des Verzögerungsgliedes VZ4 entspricht der veränderten Dampferzeugung aufgrund des veränderten Dampferzeugersollwertes. Da der Dampfdruck z.B. bei einer negativen Beheizungsstörung wieder aufgebaut werden muß, verzögert sich durch die Ladung des Dampfspeichers die Dampfabgabe des Dampferzeugers. Das Ausgangssignal des Integrators INT2 entspricht der veränderten Dampfabgabe des Dampferzeugers, da in diesem Integrator die Speicherfähigkeit des Dampferzeugers nachgebildet ist. Der beschriebene Vorgang am Dampferzeugermodell spielt sich zeitlich und dem Betrage nach im Dampferzeuger in gleicher Weise ab; somit verringert sich die Regeldifferenz "Dampfdurchfluß" um den Betrag, um den das Ausgangssignal des Integrators INT2 steigt. Wenn die Beheizungsstörung ausgeregelt ist, entspricht das Ausgangssignal des Integrators INT2 dem Betrag der bleibenden Beheizungstörung. Wird die Zeitkonstante des Verzögerungsgliedes VZ4 in Abhängigkeit von der Last entsprechend dem lastabhängigen Zeitverhalten des Dampferzeugers gesteuert, ist der Dampfdruckregler 6 für jede Last optimal eingestellt.
- Um die Ausregelung einer Beheizungsstörung zu beschleunigen, kann zusätzlich mittels eines Differenziergliedes DF2 und eines Addierers ADD5 ein Vorhalt augeschaltet werden. Bei einem PID-Regler in der üblichen Ausführung wird der Vorhalt von der Regeldifferenz abgeleitet. Demgegenüber wird in dem Ausführungsbeispiel nach Figur 1 der Vorhalt von der Regeldifferenz "Dampfdurchfluß" und dem Ausgangssignal des Dampferzeugermodelles VZ4, INT2 abgeleitet. Dies hat den Vorteil, daß die Ausgangsgröße des Vorhaltes bei Verringerung der Regeldifferenz "Dampfdurchfluß" ohne die Polarität zu wechseln auf Null zurückgeht.
- Wie schon erläutert, bleibt im Festdruckbereich, wenn der Dampfdruck Pmin oder Pmax ist (siehe Figur 2), das Signal am Eingang des Integrators INT1 Null. Damit ist das Ein- und das Ausgangssignal des Verzögerungsgliedes VZ3 konstant, und zwar Pmln oder pmax. Im Festdruckbetrieb ändert sich bei einer Verstellung des Grundsollwertes für die Blockleistung der Sollwert für die elektrische Leistung bei konstanger Öffnung des Turbinenventils ohne zeitliche Verschiebung mit der Erzeugung der elektrischen Leistung. Dies bedeutet, daß ohne Aufschaltung der am Ausgang des Multiplizierers M2 auftretenden Regeldifferenz "Dampfdurchfluß" die Regeldifferenz am Eingang der Leistungsregler Null bleiben würde. Da jedoch infolge der Leistungsänderung bei konstanter Öffnung des Turbinenventils eine Regeldifferenz "Dampfdruck" entsteht, wird über die Regeldifferenz "Dampfdurchfluß" die Öffnung des Turbinenventils verändert. Es wird also im Festdruckbereich bei fahrplanmäßigen Leistungsänderungen der Dampfdruck konstant gehalten. Dies bedeutet eine schonende Fahrweise für den Dampferzeuger.
- Ein der Abweichung der Ist- von der Sollfrequenz entsprechendes Signal k · Af wird einer Einheit 1 zugeführt, die dazu dient, das Frequenzabweichungssignal bei Erreichen der oberen oder der unteren Grenzleistung zu begrenzen. Hierzu wird der Einheit 1 der Grundsollwert der Blockleistung zugeführt und in Subtrahierern SUB1, SUB2 mit der unteren Grenzleistung pmin bzw. der oberen Grenzleistung Pmax, die in Einstellern ST2, ST3 eingestellt sind, verglichen. Die Differenzsignale werden einer Minimalauswahl MIN1 bzw. einer Maximalauswahl MAX2 zugeführt. An ersterer ist eine Maximalauswahl MAX1 und über einen Inverter IV1 eine Minimalauswahl MIN2 angeschlossen, die ferner mit der Maximalauswahl MAX1, MAX2 verbunden ist. Das Ausgangssignal der Maximal auswahl MAX2 ist der Freibetrag für eine Leistungserhöhung bei einem Frequenzabfall und das Ausgangssignal der Minimalauswahl MIN1 der Freibetrag für eine Leistungsabsenkung bei einem Frequenzanstieg. Soll die Frequenzregelung im unteren Leistungsbereich auch bei einem Frequenzabfall nicht wirksam sein, wird das Ausgangssignal der Minimalauswahl MIN1 mit umgekehrtem Vorzeichen über den Inverter IV1 in die Minimalauswahl MIN2 gegeben. Das von der Minimalauswahl MIN2 durchgelassene, gegebenenfalls begrenzte Frequenzabweichungssignal k - Af wird von einem Addierer ADD1 zum Sollwert für die elektrische Leistung und von einem Addierer ADD2 zum Grundsollwert für den Dampferzeuger addiert. Der Addierer ADD2 ist so angeordnet, daß das Frequenzsignal dieselbe Wirkung wie eine Änderung des Grundsollwertes der Blockleistung hat, d.h., es wird die Leistung des Dampferzeugers übersteuert, um den Speicher im Dampferzeuger zu laden bzw. zu entladen.
- Über den schnellen Leistungsregler mit dem Turbinenventil als Stellglied folgt die elektrische Leistung exakt einer Sollwertänderung aufgrund einer Frequenzänderung, wenn die Regeldifferenz am Dampfdruckregler auf Null gehalten wird. Da bei einer Frequenzänderung über den Leistungsregler die Öffnung des Turbinenventils sofort verstellt wird, entsteht durch die Entnahme von Dampf aus dem Speicher des Dampferzeugers eine "Dampfdruckbeule". Wird ein dieser "Dampfdruckbeule" entsprechendes Signal zu der Regeldifferenz "Dampfdruck" addiert, so bewirkt eine Frequenzabweichung keine Änderung der Regeldifferenz am Dampfdruckregler.
- Das der "Dampfdruckbeule" entsprechende Signal wird in einer Einheit 2 erzeugt, die im folgenden näher beschrieben wird. Der Dampfdruck ändert sich entsprechehd der Speicherzeitkonstante des Dampferzeugers, wenn eine Differenz zwischen erzeugtem und entnommenem Dampf besteht. Bei Leistungsregelung mit Hilfe des Turbinenventils entspricht die Größe des zum Sollwert der elektrischen Leistung addierten Frequenzsignals der des entnommenen Dampfes. In einem Verzögerungsglied VZ5 ist das Zeiterhalten des Dampferzeugers nachgebildet. Da die Sollwertänderung des Dampferzeugers aufgrund einer Frequenzabweichung in der gleichen Größe auf den Eingang des Verzögerungsgliedes geschaltet ist, entspricht dessen Ausgangssignal dem erzeugten Dampf, der für die Erzeugung der elektrischen Leistung zur Verfügung steht. Ein Subtrahierer SUB5 bildet daher ein Signal, das der Differenz zwischen erzeugtem und entnommenem Dampf entspricht. Dieses Signal wird in einen Integrator INT3 gegeben, dessen Zeitkonstante gleich der Speicherzeitkonstante des Dampferzeugers ist. Sein Ausgangssignal hat daher die gleiche Größe wie die Dampfdruckabweichung infolge der Leistungsänderung aufgrund der Frequenzänderung. Dieses Integratorsignal wird zu der vom Subtrahierer SUB8 gebildeten Regeldifferenz "Dampfdruck" addiert, so daß im Dampfdruckregler 6 die aufgrund der Frequenzänderung eingetretene Änderung des Dampfdruckes kompensiert ist.
- Bei einem Frequenzabfall wird das Eingangssignal des Integrators INT3 und somit auch dessen Ausgangssignal negativ, da zunächst mehr Dampf entnommen als erzeugt wird. Das Ausgangssignal des Integrators bleibt bestehen, wenn der erzeugte Dampf die gleiche Größe wie der entnommene Dampf hat. Damit das Ausgangssignal wieder auf Null zurückgeht, muß mehr Dampf erzeugt werden als entnommen wird. Dies wird dadurch erreicht, daß das Eingangssignal des Verzögerungsgliedes VZ5 durch eine Aufschaltung des der Druckbeule entsprechenden Signals, z.B. um einen Faktor 0,2 bis 0,3 vergrößert wird. Bei einem Frequenzanstieg wird zunächst mehr Dampf erzeugt als entnommen wird. Das Aufschalten des der Druckbeule entsprechenden Signals bewirkt dann, daß weniger Dampf erzeugt als entnommen wird.
- Da entsprechend der Speicherzeitkonstante des Dampferzeugers der maximale Wert des der Druckbeule entsprechenden Signals sich verzögert einstellt, wird zusätzlich mittels eines Differenziergliedes DF1 ein Vorhalt des Frequenzsignals erzeugt und mit einem Addierer ADD7 zum Grundsollwert für den Dampferzeuger addiert, damit zu einem möglichst frühen Zeitpunkt die Dampferzeugung erhöht bzw. im Falle eines Frequenzanstiegs erniedrigt wird. Ferner wird der Vorhalt auf den Eingang des Verzögerungsgliedes VZ5 gegeben. Durch die Größe der Aufschaltung wird die Form der Druckbeule bestimmt, die durch eine Frequenzänderung verursacht wird.
- Bei einem starken Frequenzabfall wird über den Regeler für die elektrische Leistung die Öffnung des Turbinenventils vorübergehend auf 100% eingestellt. Am Leistungsregler entsteht dabei eine positive Regeldifferenz Xd. Da der entnommene Dampf sich um diesen Betrag verringert, wird bei 100% Ventilöffnung über eine Maximalauswahl MAX4 die positive Regeldifferenz der elektrischen Leistung in den Eingang des Integrators INT3 gegeben, so daß die Druckbeule auch bie nicht wirksamer Leistungsregelung richtig nachgebildet wird. Zu Durchschalten der Regeldifferenz bei 100% Ventilöffnung ist ein Einsteller ST7 vorgesehen, der ein der Ventilöffnung 100% entsprechendes Signal abgibt, das von der tatsächlichen Ventilöffnung von einem Subtrahierer SUB6 subtrahiert wird. Auf diese Differenz wird die Regeldifferenz Xd der elektrischen Leistung aufgeschaltet. Die Maximalauswahl MAX4 gibt nur den den Wert Null übersteigenden Teil des so gebildeten Signales auf den Integrator INT3.
- Im Ausführungsbeispiel nach Figur 1 wird dem Sollwert für den Dampferzeuger über den Addierer ADD6 dem Grundsollwert für die Dampferzeugung ein Signal aufgeschaltet, das zur Übersteuerung des Dampferzeugers für die Ladung bzw. Entladung des Speichers führt. Im Ausführungsbeispiel nach Figur 3 wird bei fahrplanmäßigen Leistungsänderungen die Dampferzeugung für die Ladung bzw. Entladung des Speichers nicht übersteuert, so daß im Gleitdruckbereich die Erzeugung der elektrischen Leistung zusätzlich verzögert wird. In Figur 3 sind nur die Elemente mit Bezugszeichen versehen, die für die Beschreibung der Änderungen gegenüber dem Ausführungsbeispiel nach Figur 1 erforderlich sind. Dabei sind die Elemente, die in den beiden Ausführungsbeispielen gleiche Funktionen haben, mit den gleichen Bezugszeichen versehen. Damit trotz der fehlenden Übersteuerung des Dampferzeugers für die Ladung bzw. Entladung des Speichers die Regeldifferenz der elektrischen Leistung Null bleibt, wird vom Sollwert der elektrischen Leistung vor dem Verzögerungsglied VZ1 das Eingangssignal eines Integrators INT5 subtrahiert, der dem Integrator INT1 nach Figur 1 entspricht, d.h., es wird ein dem Betrag der Speicherdampfmenge entsprechendes Signal subtrahiert. Die Dampferzeugung wird in diesem Falle nicht übersteuert, so daß der Dampferzeuger besonders schonend gefahren wird.
- Um Frequenzänderungen rasch ausregeln zu können, muß im Falle einer Frequenzabweichung ebenso wie im Ausführungsbeispiel nach Figur 1 der Sollwert der elektrischen Leistung verändert werden. Es ist dann im Gleitdruckbereich auch erforderlich, den Sollwert für den Dampferzeuger für die Ladung bzw. Entladung des Speicher gegenüber dem Festdruckbereich zusätzlich zu übersteuern. Hierzu ist ein Vorhalt, bestehend aus einem Integrator INT4 und einem Multiplizierer M5, eingesetzt. Die Zeitkonstante des Integrators INT4 ist wieder gleich der Speicherzeitkonstanten des Dampferzeugers. Eine Begrenzungseinrichtung 7 sorgt dafür, daß bei einer Frequenzänderung nur im Gleitdruckbereich der Vorhalt auf den Sollwert des Dampferzeugers wirksam wird. Da bei einer Frequenzänderung die Dampferzeugung übersteuert werden soll, darf in diesem Falle das am Eingang des Integrators INT5 auftretende Signal nicht vom Sollwert für die elektrische Leistung subtrahiert werden. Um dieses Signal unwirksam zu machen, ist ein Subtrahierer SUB9 vorgesehen, in dem sich die Eingangssignale der Integrationsglieder INT4, INT5 kompensieren. Das Eingangssignal des Integrators INT4 gelangt aber auf einen Addierer ADD9, in dem es zum Grundsollwert für den Dampferzeuger addiert wird.
- Figure 4 veranschaulicht ein Auführungsbeispiel, in dem auch bei fahrplanmäßigen Leistungsänderungen der Speicher des Dampferzeugers in Anspruch genommen wird. Es sind hier wieder nur die Elemente mit Bezugszeichen versehen, die für die Beschreibung der Änderungen dieses Ausführungsbeispiels gegenüber dem nach Figur 1 erwähnt werden müssen. Im Unterschied zu den Ausführungsbeispielen nach den Figuren 1 und 3 wird der Grundsollwert für die Leistung ohne Verzögerung als Sollwert für die elektrische Leistung auf das Turbinenventil gegeben. Der Sollwert für die Dampferzeugung und der Drucksollwert werden wie im Ausführungsbeispiel nach Figur 1 gebildet. Da der Speicher des Dampferzeugers auch bei fahrplanmäßigen Leistungsänderungen in Anspruch genommen wird, muß diese Fahrweise für die Bildung eines Signals berücksichtigt werden, das der "Druckbeule" entspricht. Dieses Signal wird mit einer Anordnung erzeugt, die schon im Ausführungsbeispiel nach Figur 1 enthalten ist und mit 2 bezeichnet ist. Dieser Anordnung wird hier jedoch nicht nur das Frequenzabweichungssignal k · Δf, sondern auch der Grundsollwert für die Blockleistung zugeführt.
- Bei einem Dampferzeuger mit einer relativ trägen Kohlenfeuerung kann bei einer Leistungsregelung mit Hilfe des Turbinenventils die Dampfdruckabweichung durch die Inanspruchnahme des Speichers unzulässig groß werden. Um dies zu vermeiden, wird die Leistung nur innerhalb einer vorgegebenen Grenze entsprechend dem Blocksollwert geregelt (Regelstrecke ohne Ausgleich). Zur Einstellung der Grenzen ist ein Totband TB vorgesehen. Überschreitet die Größe der "Druckbeule" die eingestellte Grenze, wird die Leistungsregelung geändert. Das dann vom Totband durchgelassene Signal wird mit dem Sollwert für die Ventilöffnung in einem Multiplizierer M6 multipliziert. Es wird so das der "Leistungsbeule" entsprechende Signal erhalten, das sich bei einer Regelstrecke mit Ausgleich aufgrund einer Leistungsänderung ergibt. Dieses, der "Leistungsbeule" entsprechende Signal wird zum Sollwert der Blockleistung in einem Addierer ADD10 addiert und ferner zum Sollwert der elektrischen Leistung in einem Addierer ADD11. Es wird z.B. bei einer Leistungserhöhung das Ausgangssignal des Integrators INT3 negativ, so daß das dem entnommenen Dampg entsprechende Signal und der Sollwert für die elektrische Leistung kleiner werden, womit die Geschwindigkeit der Leistungsänderung verringert wird. Da das Eingangssignal des Integrators INT3 der Differenz zwischen entnommenem und erzeugtem Dampf entspricht, wird die Druckbeule auch in diesem Falle richtig nachgebildet.
- Wird das Ausführungsbeispiel nach Figur 3 im Festdruckbereich betrieben und sind die Grenzen des Totbandes TB auf Null eingestellt, so wird bei einer fahrplanmäßigen Leistungsänderung durch die Aufschaltung der "Leistungsbeule" auf den Sollwert der elektrischen Leistung die Öffnung des Turbinenventils über den Leistungsregler exakt proportional zum Sollwert der Blockleistung verstellt. Da die Ventilöffnung wie bei einer Steuerung ohne Überschwingung verstellt wird, ist die Regelung des Dampfdruckes und der elektrischen Leistung sehr stabil.
- Ist keine Leistungsregelung vorhanden, so können mit diesem Konzept durch Verstellen der Öffnung des Turbinenventils Leistungsänderungen von Hand durchgeführt werden. Es muß lediglich anstelle des Sollwertes für die Blockleistung der errechnete "Solldampf" für die Sollwertbildung des Dampferzeugers aufgeschaltet und die Grenzen des Totbandes auf Null eingestellt werden. Dabei wird der Solldampf nach der Formel So)idampf=So!idruckx istdampf/istdruck errechnet.
- Die Erfindung wurde anhand von Ausführungsbeispielen erläutert, die nach Art eines Schaltbildes gezeichnet sind. Sie sind in mannigfacher Weise abänderbar. Insbesondere können die Funktionen der einzelnen Schaltelemente mit Hilfe eines programmierbaren Rechners realisiert werden.
- In den bisher beschriebenen Ausführungsbeispielen wird die aufgrund einer Störung der Dampferzeugung entstehende Regeldifferenz "Dampfdurchfluß" vom Sollwert der elektrischen Leistung subtrahiert, damit die Ventilöffnung der Turbine konstant bleibt. Am Leistungsregler der Turbine entsteht dann nämlich keine Regeldifferenz, da sich die elektrische Leistung aufgrund der Druckabweichung in der gleichen Größe wie der Sollwert für die elektrische Leistung verändert hat. Da die Ventilöffnung der Turbine unabhängig von der elektrischen Leistung konstant gehalten wird, handelt es sich um eine Regelstrecke mit 100% Ausgleich. Wird dagegen über den Leistungsregler der Turbine durch Verstellen des Turbinenventils die elektrische Leistung konstant gehalten, ist der entnommene Dampf größer als der erzeugte Dampf. Der Dampfdruck fällt daher und steigt erst wieder an, wenn der erzeugte Dampfgrößer wird als der entnommene Dampf. Da die Dampfentnahme unabhängig vom Dampfdruck geregelt wird, hat die Regelstrecke keinen Ausgleich.
- Wird die Regeldifferenz "Dampfdurchfluß" nur zum Teil vom Sollwert der elektrischen Leistung subtrahiert, erhält man eine Regelstrecke mit zwischen 0% und 100% Ausgleich. Da in diesem Falle bei einer Beheizungsstörung die Ventilöffnung verändert und somit die Speicher im Dampferzeuger in Anspruch genommen wird, ist die vorübergehende Abweichung der Leistung geringer und die Dampfdruckabweichung größer als bei einer Regelstrecke mit 100% Ausgleich.
- Oft ist es erwünscht, daß bei kleinen Störungen der Dampferzeugung die elektrische Leistung unabhängig vom Dampfdruck geregelt wird (Regelstrecke ohne Ausgleich), jedoch ab einer bestimmten Druckabweichung die Ventilöffnung der Turbine konstant gehalten wird (Regelstrecke mit 100% Ausgleich). Diese Forderung bedeutet, daß der Ausgleichsgrad der Regelstrecke in Abhängigkeit von der Regeldifferenz "Dampfdruck" sich ändert. Dabei tritt das Problem auf, daß der Regler für alle Ausgleichsgrade zwischen 0% und 100% optimal arbeiten muß.
- Figur 5 zeigt den Funktionsplan eines Dampdruckreglers, mit dem diese Forderung erfüllt ist. In Figur 5 sind mit Bezugszeichen nur die Elemente versehen, die für die Beschreibung der Änderungen gegenüber den Ausführungsbeispielen nach den Figuren 1, 3 und 4 erforderlich sind. Die Elemente, welche die gleiche Funktion wie die Elemente der zuvor beschriebenen Ausführungsbeispiele haben, sind mit den gleichen Bezugszeichen wie dort versehen. Die Regeldifferenz "Dampfdruck" am Ausgang des Subtrahierers SUB8 ist einem amplitudenabhängigen Dämpfungsglied, z.B. einem sogenannten Totband TD, zugeführt, dessen Totzone, in der die Dämpfung 100% ist, mit einem Steiler ST8 einstellbar ist. Das Ausgangssignal des Totbandes TD wird vom Multiplizier M2 mit dem Sollwert für die Ventilöffnung der Turbine multipliziert und das so erhaltene Signal einerseits im Subtrahierer SUB3 vom Sollwert für die elektrische Leistung subtrahiert, andererseits im Addierer ADD8 zum Sollwert für den Dampferzeuger addiert.
- Mit dem Aus- und dem Eingang des Totbandes TD sind die beiden Eingänge eines Subtrahierers SUB10 verbunden, an den ein Differenzierglied DF4 und ein Multiplizierer M7 angeschlossen sind. Die Zeitkonstante des Differenziergliedes DF4 ist auf die des Dampfspeichers eingestellt. Sein Ausgangssignal wird in einem Addierer ADD13 dem Signal des Multiplizierers M2 hinzugefügt. Das Ausgangssignal des Subtrahierers SUB10 wird im Multiplizierer M7 mit einer Konstanten, z.B. 0,1 ... 0,3, multipliziert und über Addierer ADD12 und ADD8 zum Sollwert für den Dampferzeuger addiert.
- Wenn der Ausgleich der Regelstrecke bei allen Größen der Regeldifferenz "Dampfdruck" 100% betragen soll, wird die Totzone des Totbandes TD auf Null gestellt. In diesem Falle sind das Ein- und das Ausgangssignal des Totbandes gleich, und das Ausgangssignal des Subtrahierers SUB10 ist Null. Damit haben das Differenzierglied DF4 und der Multiplizierer M7 keine Wirkung auf die Regelung. Der Dampfdruckregler nach Figur 5 arbeitet dann wie der in Figur 1 beschrieben.
- Wenn der Ausgleichsgrad der Regelstrecke bie allen Größen der Regeldifferenz "Dampfdruck" 0% betragen soll, wird die Totzone des Totbandes TD so groß eingestellt, daß auch das größte zu erwartende Differenzsignal am Ausgang des Subtrahierers SUB8 nicht durchgelassen wird und somit das Ausgleichssignal auf den Subtrahierer SUB3 Null ist. Solange zwischen Dampfentnahme und Dampferzeugung keine Differenz besteht, bleibt der Dampfdruck konstant. Ist eine Differenz vorhanden, so ist die dadurch verursachte Änderungsgeschwindigkeit des Druckes nur von der Speicherzeitkonstante des Dampferzeugers abhängig. Dementsprechend wird die Regeldifferenz "Dampfdurchfluß" über das Differenzierglied DF4 mit der Regeldifferenz "Dampfdruck" als Eingangssignal nachgebildet. Die so ermittelte Regeldifferenz "Dampfdurchfluß" wird über die Addierer ADD13, ADD4, ADD12 und ADD8 dem Dampfdruckregler aufgeschaltet.
- Während eines Regelvorganges entsteht durch die Veränderung der Öffnung des Turbinenventils eine Differenz zwischen erzeugtem und entnommenem Dampf, so daß der Speicher des Dampferzeugers in Anspruch genommen wird. Um die Ladung des Speichers wieder auf den Ursprungswert zu bringen, muß die Dampferzeugung übersteuert werden. Diese übersteuerung wird erreicht, indem die am Ausgang des Subtrahierers SUB10 auftretende Regeldifferenz "Dampfdruck" im Multiplizierer M7 mit dem Faktor von etwa 0,25 multipliziert und dem Sollwert des Dampferzeugers bzw. dem Eingang des Dampferzeugermodells DF2, VZ4, INT2 überlagert wird.
- Die elektrische Leistung - kann nur konstant gehalten werden, solange die Ventilöffnung der Turbine im Regelbereich bleibt. Wird bei einer größeren Störung der Dampferzeugung das Ventil voll geöffnet, so ändert sich der Ausgleichsgrad der Regelstrecke von 0 auf 100%. Ohne Berücksichtigung dieses Grenzfalles würde der Dampfdruckregler träger arbeiten als es die Regelstrecke erlaubt, jedoch würde die Regelung stabil bleiben. Da aber bei der Führung des Drucksollwertes mit der anhand der Figur 1 beschriebenen Aufschaltung der "Druckbeule" mit Hilfe der Einheit 2 die Veränderung des Ausgleichsgrades bei 100% Ventilöffnung bereits berücksichtigt ist, arbeitet dsr Dampfdruckregeler auch in diesem Grenzfall optimal.
- Soll der Ausgleichsgrad in Abhängigkeit von der Größe der Störung, also der Regeldifferenz "Dampfdruck", verändert werden, so kann ein amplitudenabhängiges Dämpfungsglied eingesetzt werden, dessen Dämpfung bei kleinen Amplituden groß und bei großen Amplituden klein ist. Wird als amplitudenabhängiges Dämpfungsglied das oben erwähnte Totband verwendet, so wird innerhalb einer bestimmten Bandbreite die elektrische Leistung durch Verstellen der Ventilöffnung schnell ausgeregelt und außerhalb dieser Bandbreite die Ventilöffnung der Turbine konstant gehalten. Ist die Regeldifferenz "Dampfdruck" größer als die am Totband eingestellte Totzone, so bleibt die Differenz zwischen Eingangs- und Ausgangssignal des Totbandes und somit auch der Ausgang des Subtrahierers SUB10 konstant. Da sich dann das Eingangssignal des Differenziergliedes DF4 nicht mehr ändert, geht dessen Ausgangssignal auf Null zurück. Das Ausgangssignal des Totbandes TD wird im Muitiplizierer M2 mit dem Sollwert der Ventilförmig multipliziert und wirkt über den Subtrahierer SUB3 auf die Regelung der elektrischen Leistung ein, so daß die Öffnung des Turbinenventils konstant bleibt. Aufgrund dieses Aufbaus arbeitet die Dampfdruckregelung bei jedem Ausgleichsgrad der Regelstrecke und auch beim Übergang von einer Regelstrecke ohne Ausgleich auf eine Regelstrecke mit Ausgleich optimal.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83110099T ATE35166T1 (de) | 1982-11-11 | 1983-10-10 | Verfahren zum regeln eines kraftwerkblockes. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3241799 | 1982-11-11 | ||
DE3241799 | 1982-11-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0108928A2 EP0108928A2 (de) | 1984-05-23 |
EP0108928A3 EP0108928A3 (en) | 1985-09-25 |
EP0108928B1 true EP0108928B1 (de) | 1988-06-15 |
Family
ID=6177921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83110099A Expired EP0108928B1 (de) | 1982-11-11 | 1983-10-10 | Verfahren zum Regeln eines Kraftwerkblockes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0108928B1 (de) |
AT (1) | ATE35166T1 (de) |
DE (1) | DE3377072D1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3528292A1 (de) * | 1985-08-07 | 1987-02-19 | Gutehoffnungshuette Man | Verfahren und einrichtung zur regelung einer dampfturbine eines kraftwerkblocks |
DE3541148C3 (de) * | 1985-11-21 | 1995-12-07 | Man Energie Gmbh | Verfahren zur Regelung einer Dampfturbine |
DE19828446C1 (de) * | 1998-06-26 | 1999-09-23 | Hartmann & Braun Gmbh & Co Kg | Verfahren zur koordinierten Regelung eines Dampfkraftwerksblockes |
EP3014178A2 (de) * | 2013-08-28 | 2016-05-04 | Siemens Aktiengesellschaft | Betriebsverfahren für einen extern beheizten zwangdurchlaufdampferzeuger |
CN108678821A (zh) * | 2018-05-11 | 2018-10-19 | 华电能源股份有限公司富拉尔基发电厂 | 一种实现火电机组热电解耦的汽轮机启停调峰供热系统 |
CN113406883B (zh) * | 2021-06-28 | 2022-08-12 | 广东电网有限责任公司 | 一种开度指令的生成方法及其装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3338054A (en) * | 1964-12-29 | 1967-08-29 | Combustion Eng | Method and apparatus for increasing control response of a vapor generator |
US3802189A (en) * | 1972-01-13 | 1974-04-09 | Leeds & Northrup Co | Boiler-turbine control system |
JPS53102405A (en) * | 1977-02-18 | 1978-09-06 | Hitachi Ltd | Speed governing of steam turbine |
DE2730415C2 (de) * | 1977-07-06 | 1983-02-24 | Saarbergwerke AG, 6600 Saarbrücken | Verfahren zur pendelungsfreien Regelung eines Kraftwerksblocks im gesteuerten Gleitdruck |
DE2903658A1 (de) * | 1979-01-31 | 1980-08-07 | Siemens Ag | Verfahren und anordnung zum regeln eines kraftwerkblockes |
-
1983
- 1983-10-10 EP EP83110099A patent/EP0108928B1/de not_active Expired
- 1983-10-10 AT AT83110099T patent/ATE35166T1/de not_active IP Right Cessation
- 1983-10-10 DE DE8383110099T patent/DE3377072D1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3377072D1 (en) | 1988-07-21 |
EP0108928A3 (en) | 1985-09-25 |
EP0108928A2 (de) | 1984-05-23 |
ATE35166T1 (de) | 1988-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3116340C2 (de) | Verfahren und Regeleinrichtung zum Begrenzen der bei Belastungsänderungen auftretenden thermischen Beanspruchung von Bauteilen einer Dampfturbine | |
EP0132487B1 (de) | Verfahren zum Regeln von mindestens zwei parallel geschalteten Turbokompressoren | |
DE19846818A1 (de) | Maximumregler | |
CH702608B1 (de) | Verfahren zum Starten einer Gasturbine und System zum Steuern eines Hochfahrvorgangs einer Gasturbine. | |
DE3304292C2 (de) | ||
EP3156646A1 (de) | Windenergieanlage mit einem drehzahl- und einem generatorregler | |
EP0642707B1 (de) | Verfahren und regeleinrichtung zur regelung einer turbinen-generator-anordnung | |
EP0108928B1 (de) | Verfahren zum Regeln eines Kraftwerkblockes | |
WO2019016056A1 (de) | Verfahren zum regeln von wenigstens zwei ventilatoren | |
EP0100532B1 (de) | Verfahren und Einrichtung zur Leistungsregelung an einem Kraftwerksblock | |
DE3434644A1 (de) | Verfahren und einrichtung zur erzeugung einer getakteten stellspannung | |
DE3632041A1 (de) | Verfahren und einrichtung zur regelung der leistung eines dampfkraftwerkblocks | |
CH679235A5 (de) | ||
EP1490735A1 (de) | Verfahren und regler zur adaptiven regelung mindestens einer komponente einer technischen anlage | |
DE3541148C2 (de) | ||
WO2022268785A1 (de) | Regeleinrichtung zur regelung einer eine brennkraftmaschine und einen mit der brennkraftmaschine antriebswirkverbundenen generator umfassenden leistungsanordnung, regelanordnung mit einer solchen regeleinrichtung, leistungsanordnung und verfahren zur regelung einer leistungsanordnung | |
DE2356367C2 (de) | Regelanordnung zur Luftmangelsicherung für Dampferzeuger | |
DE3910869A1 (de) | Reglereinheit fuer gasturbinen | |
DE19510342C2 (de) | Verfahren zum Regeln der Ausgangsgröße eines Kraftwerksparks | |
DE4322366A1 (de) | Regeleinrichtung | |
DE2903658A1 (de) | Verfahren und anordnung zum regeln eines kraftwerkblockes | |
DE4124678A1 (de) | Verfahren und einrichtung zur wiederherstellung der turbinenstellreserve nach dem ausregeln einer leistungs-sollwertaenderung in einem dampfkraftwerksblock | |
DE19828446C1 (de) | Verfahren zur koordinierten Regelung eines Dampfkraftwerksblockes | |
DE19547487C2 (de) | Verfahren und Einrichtung zur Steuerung und Regelung der Leistung eines Dampfkraftwerkblocks | |
DE893080C (de) | Gleichstromhochspannungskraftuebertragungsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19841220 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19861024 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 35166 Country of ref document: AT Date of ref document: 19880715 Kind code of ref document: T |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19880630 |
|
REF | Corresponds to: |
Ref document number: 3377072 Country of ref document: DE Date of ref document: 19880721 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20021004 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021021 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021216 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030115 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20031009 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20031009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20031010 Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20031010 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20031010 |