EP0101090B1 - Sonde ne nécessitant pas de source d'énergie pour la détermination du contenu en liquides polaires dissociables - Google Patents

Sonde ne nécessitant pas de source d'énergie pour la détermination du contenu en liquides polaires dissociables Download PDF

Info

Publication number
EP0101090B1
EP0101090B1 EP83108032A EP83108032A EP0101090B1 EP 0101090 B1 EP0101090 B1 EP 0101090B1 EP 83108032 A EP83108032 A EP 83108032A EP 83108032 A EP83108032 A EP 83108032A EP 0101090 B1 EP0101090 B1 EP 0101090B1
Authority
EP
European Patent Office
Prior art keywords
probe
electrodes
power source
external power
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83108032A
Other languages
German (de)
English (en)
Other versions
EP0101090A3 (en
EP0101090A2 (fr
Inventor
Rolf Dr. Stockmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to AT83108032T priority Critical patent/ATE33312T1/de
Publication of EP0101090A2 publication Critical patent/EP0101090A2/fr
Publication of EP0101090A3 publication Critical patent/EP0101090A3/de
Application granted granted Critical
Publication of EP0101090B1 publication Critical patent/EP0101090B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4162Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid

Definitions

  • the invention relates to a method for producing an external energy-free probe for determining the content of dissociable polar liquids in gases, extended bodies, beds of granular material or electrically non-conductive liquids.
  • the invention further relates to the external energy-free probe that can be used to carry out the method.
  • the concentration of the liquid for example water, alcohol, acetone
  • its concentration gradient also play a role.
  • Another area of application of a probe for measuring a liquid content relates to the change in the water content in the soil in connection with energy-related issues.
  • Water movements in the soil are important for energy systems in several ways. It is therefore desirable to be able to measure them continuously in situ.
  • coal mining especially open-cast mining
  • the groundwater is pumped away over a large area, and there are arguments about the consequences. But there are no measurements that show to what extent the moisture in the soil, for example in the depths of tree roots or under buildings, is affected, or to what extent the influence of weather on soil moisture is still dominant. It depends on water concentrations, which cause the layered minerals (clay) to swell and shrink, and low water vapor densities in the soil, which are important for the vegetation in the dry season.
  • Another area of application for a probe for measuring the water content relates to the use of the soil as a heat store. Heat transport and water transport are linked. Physical-mathematical models for geothermal energy storage and geothermal heat pumps therefore require a simple, continuous in-situ measurement method of moisture for their experimental verification.
  • Methods for measuring the water content are known. It is known to take samples from the material to be dried and to determine the liquid content by weighing, or else more sophisticated methods, such as light spectroscopy, neutron spectroscopy, microwave absorption.
  • open capacitors can be used as probes for continuous in-situ measurements, the capacitance and dissipation factor of which depend on the water content and the temperature of the dielectric via its dielectric function ⁇ ( ⁇ ) ⁇ '+ s ".
  • the use of such probes is very demanding in terms of measurement technology and only applicable at smaller distances (approx. 1 m) between the probe and the capacitance measuring bridge.
  • This object is achieved - starting from the methods described above - with regard to the manufacture of the probe by a method in which powder has a grain size in the range between 0.001 to 1 mm made of an elastically deformable material of crystalline or amorphous structure with at least partially ionic compound and a specific one Resistance of at least 10 5 Ohm / cm between two electrodes is pressed together under a pressure of at least 100 bar and kept under pressure for a long time, at least some of the parts holding the powder under pressure being permeable to the liquid to be detected in the vicinity of the probe.
  • the powder can be compressed by hand (e.g. by means of one or more screws pressing two pressure plates together) or mechanically, the only thing that is important with regard to the pressure to be applied is the final pressure aimed for and maintained in the probe over the long term. Since this depends on the design of the pressure-absorbing parts, these should be such that a pressure in the probe of at least 100 bar can be maintained. It goes without saying that the only pressure-sensitive powder that can be used is one that deforms elastically under the pressure to be applied and does not have any flow behavior.
  • A1 2 0 3 is expediently used as materials to be pressurized.
  • Si0 2 layered silicates (clay, alumina), aluminosilicates with a framework structure (zeolites), NaCI, Mg0 or Zn0 are used.
  • the probes produced in this way give off an electrical power which depends on the adsorption or desorption of polar molecules.
  • this electrical power can serve as a measure of the polar liquids in the medium to be examined.
  • the probes are to be calibrated, for example by measuring the electrical power emitted by the probe as a function of the liquid content of small samples of the medium to be examined. The probes calibrated in this way can be used for in-situ measurements in the medium to be examined.
  • the object on which the invention is based is achieved, starting from a probe according to the preamble of claim 3, by means of a probe which encloses two electrodes opposing one another and one or more, at least part of the space between the electrodes, in a pressure-tight manner and one in the space said parts under a pressure of at least about 100 bar powder having a grain size in the range between 0.001 and 1 mm, which consists of an elastically deformable material of crystalline or amorphous structure with at least partially ionic bond and a specific resistance of at least 10 5 ohms / cm, at least one electrode and / or at least part of the parts enclosing the space in a pressure-tight manner is permeable to the liquid to be detected in the vicinity of the probe.
  • the permeability to moisture can be achieved in that at least one of the electrodes consists of porous, pressure-resistant and electrically conductive material. It can therefore be expedient to produce the moisture-permeable electrode from sintered metal, such as sintered steel, from metal mesh or from a ceramic body with an applied conductive layer, such as an A1 2 0 3 body with an applied porous metal layer or graphite foil on top.
  • the electrodes and the parts enclosing the space between the electrodes in a pressure-tight manner are dimensioned such that the ratio of surface area to volume of the enclosed space is as large as possible.
  • An expedient embodiment of the probe according to the invention has a rod-shaped or tubular inner electrode and a tubular outer electrode enclosing the inner electrode, the material under pressure being located between the electrodes.
  • the outer electrode expediently consists of a metal mesh surrounded by a graphite foil.
  • Another expedient embodiment of the probe is characterized by two plate-shaped electrodes, between which the material under pressure is located.
  • the electrodes can be disc-shaped.
  • an expedient embodiment of the probe is that the space provided between the electrodes for the material under pressure is closed off by an O-ring located between the two electrode disks, and the two electrode disks are pressurized via two pressure disks.
  • CuBe sintered metal can be provided as the material for the plate-shaped electrodes.
  • the pressurized material of the probe is denoted by D (abbreviation for dielectric) and the two electrodes are denoted by E.
  • the driving force is the balance of chemical potentials.
  • Probes can be installed with long supply cables in larger structures, in which the slow spatial-temporal variation of the humidity is to be measured.
  • Very simple multimeters have an internal resistance of 0.1 MOhm; The insulation resistance of the usual cables is so great that the range of application of the probe is therefore not limited.
  • the probe shown in Figure 2 has a tubular inner electrode E made of brass and an outer electrode E a , which consists of a sieve made of stainless steel of 0.1 mm thickness. (The connections of the electrodes to which a measuring device can be connected are not shown in the drawing). To facilitate the pressing process, the electrode E a is surrounded with a graphite foil G as an outer cylinder jacket. Zeolite NaX was pressed in as dielectric D at a pressure of a few kbar. On the face side, the pressure on the dielectric was made from a ring T of insulating material - only one ring is shown in the drawing. The length and diameter of the probe are 12 mm.
  • a probe of the type shown in FIG. 2 was experimentally installed in a vacuum vessel together with a “Pt 100” temperature sensor.
  • the H 2 0 gas pressure which was displayed by a pressure measuring device, could be set via valves to the vacuum pump and to a water tank.
  • the slowly changing value U of the electrical voltage emitted by the probe averaged over approximately 20 minutes, can be taken as a quantitative indication of the water content or the value slowly changing with the water content after the "switch-on processes" have subsided U- (t) .
  • the two electrodes E and E a were held at one end by a coaxial socket at a distance.
  • the powder was compressed using a press.
  • the height of the filled powder was about 40 mm before pressing, after pressing about 10 to 30 mm depending on the pressure and filling density.
  • the probe was provided with an outer protective grille K, the inner conductor was soldered to the contact sleeve of a BNC coupling piece, and a BNC socket was screwed on for the connection of coaxial cables.
  • FIGS. 4 and 5 Measurements were carried out with a series of probes of the type shown in FIG. 3, the result of which is shown in FIGS. 4 and 5.
  • a zeolite block (850 cm 3 ) cast in cylindrical form from NaX slurry was placed together with 4 probes (as well as temperature sensor “Pt 100”) in a housing that could be heated and ventilated.
  • water could be supplied to the housing via a filter cloth with which the housing was lined, as a result of which the moisture in the zeolite block could be increased.
  • the water content of the zeolite block was determined by continuously determining the weight of the zeolite block.
  • the zeolite block and probes were placed in a dry, steady state by holding the case temperature at 95 ° C ⁇ T ⁇ 100 ° C for one week and ventilating the case.
  • the electrical power emitted by the probes decreased to very low values (pW).
  • Water was then placed in a reservoir from where it flowed through a thin pipe to the felt cloth that lined the case.
  • FIG. 4 shows the course of the water content calculated from the weight of the zeolite block, as well as the simultaneous course of the probe voltages.
  • the scale factor e j associated with the individual probes (e2 to e 5 ) is given by which the values read on the mV scale are to be multiplied.
  • the voltage change for the most sensitive probe is approximately 2 mV per 1% water absorption.
  • FIG. 5 shows the probe voltages, which decrease synchronously with the water content in the range below 3% - after oscillations at the beginning of the drying phase.
  • the schematic structure of a plate-shaped probe can also be seen from FIG.
  • the electrodes E consist of disc-shaped plates made of CuBe, which are kept at a distance by an O-ring R.
  • the two plates are held under pressure by two brass rings T 1 pressed together by means of screws T 2 made of Teflon, as a result of which the zeolite NaX material located in the space between the electrodes E and the O-ring is pressurized.
  • Curve a shows the time course of the voltage after moistening with ethanol (scales left and bottom)
  • curve b shows the relationship between the measured voltage and the content of the probe in ethanol
  • Curve c shows the voltage curve over time after moistening the probe with acetone (scales on the right and below).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (12)

1. Procédé de fabrication d'une sonde ne nécessitant pas de source d'énergie extérieure et destinée à déterminer la teneur en liquides polaires dissociables de gaz, de corps solides ayant une certaine étendue, de tas de matériaux en grains, ou de liquides non conducteurs de l'électricité, caractérisé en ce qu'il consiste à comprimer, entre deux électrodes et sous une pression d'au moins 100 bars environ, de la poudre ayant une granulométrie comprise entre 0,001 et 1 mm, en une matière déformable élastiquement, de structure cristalline ou amorphe, et ayant au moins en partie une liaison ionique et une résistivité d'au moins 15 ohm/cm, et à les maintenir à demeure sous pression, une partie au moins des pièces maintenant la poudre sous pression étant perméable aux liquides à détecter au voisinage de la sonde.
2. Procédé suivant la revendication 1, caractérisé en ce qu'il consiste à utiliser, comme matériau à mettre sous pression, AI203, Si02, des silicates en couche, comme de l'argile, de l'alumine, des aluminosilicates à structure zéolithique, NaCI, MgO ou ZnO.
3. Sonde ne nécessitant pas de source d'énergie extérieure et destinée à déterminer la teneur en liquides polaires dissociables de gaz, de corps solides ayant une certaine étendue, de tas de matériaux en grains ou de liquides non conducteurs de l'électricité, caractérisée par deux électrodes (E, Ej, Ea) opposées et une ou plusieurs pièces (T, Ti, T2) délimitant de manière étanche à la pression au moins une partie de l'espace se trouvant entre les électrodes, ainsi qu'une poudre (D) se trouvant dans l'espace défini par lesdites pièces sous une pression d'au moins 100 bars environ et d'une granulométrie comprise entre 0,001 et 1 mm, qui est constituée d'un matériau déformable élastiquement, de structure cristalline ou amorphe, ayant, au moins en partie, une liaison ionique et une résistivité d'au moins 15 ohm/ cm, l'une au moins des électrodes et/ou au moins une partie des pièces délimitant l'espace de manière étanche à la pression étant perméable aux liquides à détecter au voisinage de la sonde.
4. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 3, caractérisée en ce que l'une au moins des électrodes (E, Ej, Ea) est en un matériau poreux, résistant à la pression et conducteur de l'électricité.
5. Sonde ne nécessitant pas de source d'énergie extérieure suivant l'une des revendications 3 et 4, caractérisée en ce que l'électrode perméable aux liquides à détecter est en métal fritté, comme de l'acier fritté, en toile métallique ou en un corps céramique sur lequel est appliquée une couche conductrice, comme un corps en A1203 sur lequel est déposée une couche métallique poreuse ou est appliquée une feuille en graphite (G).
6. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 3, caractérisée en ce que les électrodes (E, E;, Ea) et les pièces (T, T1, T2) délimitant de manière étanche à la pression l'espace compris entre les électrodes ont des dimensions telles que le rapport de la surface au volume de l'espace délimité est aussi grand que possible.
7. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 3, caractérisée par une électrode intérieure (E;) en forme de barreau ou de tube et une électrode extérieure (Ea) entourant l'électrode intérieure, le matériau (D) sous pression se trouvant entre ces électrodes.
8. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 5, caractérisée en ce que l'électrode extérieure (Ea) est en une toile métallique entourée d'une feuille en graphite (G).
9. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 3, caractérisée par deux électrodes (E) en forme de plaque, entre lesquelles se trouve le matériau sous pression.
10. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 9, caractérisée en ce que les électrodes (E) sont en forme de disque.
11. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 10, caractérisée en ce que l'espace prévu entre les électrodes (E) pour le matériau sous pression est fermé par un joint torique (R) se trouvant entre les deux disques formant électrodes, et les deux disques formant électrodes sont mis sous pression par deux disques (T1) d'application d'une pression.
12. Sonde ne nécessitant pas de source d'énergie extérieure suivant la revendication 7, cartacté- risée en ce que les électrodes (E) en forme de plaque sont en métal fritté à base de CuBe.
EP83108032A 1982-08-17 1983-08-13 Sonde ne nécessitant pas de source d'énergie pour la détermination du contenu en liquides polaires dissociables Expired EP0101090B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83108032T ATE33312T1 (de) 1982-08-17 1983-08-13 Fremdenergiefreie sonde zur bestimmung des gehaltes an dissoziierbaren polaren fluessigkeiten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3230507A DE3230507C2 (de) 1982-08-17 1982-08-17 Fremdenergiefreie Sonde zur Bestimmung des Gehaltes an dissoziierbaren polaren Flüssigkeiten
DE3230507 1982-08-17

Publications (3)

Publication Number Publication Date
EP0101090A2 EP0101090A2 (fr) 1984-02-22
EP0101090A3 EP0101090A3 (en) 1985-05-08
EP0101090B1 true EP0101090B1 (fr) 1988-03-30

Family

ID=6171018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83108032A Expired EP0101090B1 (fr) 1982-08-17 1983-08-13 Sonde ne nécessitant pas de source d'énergie pour la détermination du contenu en liquides polaires dissociables

Country Status (5)

Country Link
US (1) US4606222A (fr)
EP (1) EP0101090B1 (fr)
JP (1) JPS5952742A (fr)
AT (1) ATE33312T1 (fr)
DE (1) DE3230507C2 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147143A (ja) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp 感湿材料の製造方法
JPH0766886B2 (ja) * 1986-11-11 1995-07-19 日本精工株式会社 導電性磁性流体組成物
US8643388B2 (en) 2006-02-17 2014-02-04 Voelker Sensors, Inc. Detection of fuel contamination in lubricating oil
US5435170A (en) * 1993-12-30 1995-07-25 Voelker; Paul J. Method and apparatus for fluid quality sensing
US7521945B2 (en) * 2006-02-17 2009-04-21 Voelker Sensors Inc. Oil monitoring system
US5777210A (en) * 1996-04-25 1998-07-07 Voelker Sensors, Inc. Oil quality sensor measuring bead volume
US5789665A (en) * 1996-04-25 1998-08-04 Voelker Sensors, Inc. Oil quality sensor for use in a motor
US7150184B1 (en) * 2003-08-27 2006-12-19 Phase Dynamics, Inc Density independent moisture analyzer
US8614588B2 (en) 2006-02-17 2013-12-24 Voelker Sensors, Inc. Active filtering of oil
US10989575B1 (en) * 2020-09-08 2021-04-27 King Abdulaziz University Multifunctional pressure, displacement and temperature gradient sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2659701A1 (de) * 1976-12-31 1978-07-06 Nat Res Dev Verfahren und vorrichtung zum nachweis oder zur bestimmung eines elements

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE265701C (fr) *
US2681571A (en) * 1949-03-15 1954-06-22 Gen Electric Electrical moisture indicator
US2800521A (en) * 1954-09-27 1957-07-23 Mallory & Co Inc P R Electrode for electrochemical cell
US2976728A (en) * 1958-01-20 1961-03-28 Union Carbide Corp Electrolytic moisture measuring apparatus
NL267728A (fr) * 1961-07-29
US3523244A (en) * 1967-11-01 1970-08-04 Panametrics Device for measurement of absolute humidity
US3458845A (en) * 1967-11-08 1969-07-29 Johnson Service Co Crosslinked electrical resistance humidity sensing element
US3782179A (en) * 1970-09-04 1974-01-01 L Richards Temperature and salinity compensation for soil water sensitive resistors
FR2142573B1 (fr) * 1971-06-21 1973-05-25 Commissariat Energie Atomique
DD97306A1 (fr) * 1972-06-19 1973-04-23
DE2651136A1 (de) * 1976-11-09 1978-05-18 Nissan Motor Verbesserter sauerstoffuehler zum bestimmen der sauerstoffkonzentration in einem gasgemisch
US4369104A (en) * 1979-10-22 1983-01-18 Hitco Continuous filament graphite composite electrodes
JPS6014482B2 (ja) * 1980-05-14 1985-04-13 松下電器産業株式会社 感温素子の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2659701A1 (de) * 1976-12-31 1978-07-06 Nat Res Dev Verfahren und vorrichtung zum nachweis oder zur bestimmung eines elements

Also Published As

Publication number Publication date
US4606222A (en) 1986-08-19
JPS5952742A (ja) 1984-03-27
DE3230507C2 (de) 1985-01-31
DE3230507A1 (de) 1984-02-23
ATE33312T1 (de) 1988-04-15
EP0101090A3 (en) 1985-05-08
EP0101090A2 (fr) 1984-02-22

Similar Documents

Publication Publication Date Title
DE2911343C2 (fr)
EP0101090B1 (fr) Sonde ne nécessitant pas de source d'énergie pour la détermination du contenu en liquides polaires dissociables
DE10296835B4 (de) Kraftstoffsensor und Verfahren für die Bestimmung einer Zusammensetzung eines Kraftstoffgemischs
US4513608A (en) Moisture sensing and control device
DE102018002573A1 (de) Sensorelement und gassensor
DE2824609C2 (de) Vorrichtung zur Feuchtigkeitsmessung durch elektrostatische Kapazitätsänderung
DE3023337A1 (de) Elektrochemischer messfuehler fuer die bestimmung des sauerstoffgehaltes in gasen, insbesondere in abgasen von brennkraftmaschinen
DE3148611A1 (de) Wasserstoff-fuehler
DE1673178A1 (de) Messgeraet und Regelanlage zur pH-Bestimmung
DE1598401B2 (de) Geraet zur anzeige der konzentration eines anteils eines gasgemisches, beruhend auf der eigenschwingungsaenderung eines piezoelektrischen kristalls
DE2750161A1 (de) Detektor fuer brennbare gase
DE2512401A1 (de) Thermische detektionsvorrichtung
DE4036633C2 (de) Befeuchteter, hochempfindlicher Sauerstoffdetektor
DE1673046A1 (de) Vorrichtung zur Messung der Bodenfeuchte
Mitchell et al. In-situ volume-change properties by electro-osmosis—Evaluation
DE2447828A1 (de) Messzelle fuer die bestimmung der elektrischen leitfaehigkeit einer fluessigkeit
DE1124265B (de) Anordnung zum elektrischen Messen der relativen Luftfeuchtigkeit
DE1598039B1 (de) Verfahren zur Herstellung einer Messelektrode
DE849520C (de) Einrichtung zur Fernmessung des Feuchtigkeitsgehaltes einer erhaertenden Gussmasse, insbesondere von Beton
DE10164018A1 (de) Verfahren zur Ermittlung der Wärmekapazität sowie ggf. der Wärmeleitfähigkeit
DE2316365A1 (de) Elektrochemische messzelle zur kontinuierlichen messung des kohlenmonoxidgehaltes in luft
Rai et al. The effects of saturant salinity and pressure on the electrical resistivity of Hawaiian basalts
DE3442295C2 (de) Verfahren zur Bestimmung des Sauerstoffgehaltes gasförmiger oder flüssiger Medien und Meßsonde zur Durchführung des Verfahrens
EP0911628B1 (fr) Capteur pour la détermination de la teneur en eau
DE2536777A1 (de) Messfuehler zur bestimmung der wasserspannung im boden nach dem waermepulsprinzip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851107

17Q First examination report despatched

Effective date: 19870804

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 33312

Country of ref document: AT

Date of ref document: 19880415

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910816

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910826

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910829

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910904

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910918

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920813

Ref country code: GB

Effective date: 19920813

Ref country code: AT

Effective date: 19920813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920831

Ref country code: CH

Effective date: 19920831

Ref country code: BE

Effective date: 19920831

BERE Be: lapsed

Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H.

Effective date: 19920831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920813

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83108032.0

Effective date: 19930307