EP0100178A1 - Elément de polarisation - Google Patents
Elément de polarisation Download PDFInfo
- Publication number
- EP0100178A1 EP0100178A1 EP83304027A EP83304027A EP0100178A1 EP 0100178 A1 EP0100178 A1 EP 0100178A1 EP 83304027 A EP83304027 A EP 83304027A EP 83304027 A EP83304027 A EP 83304027A EP 0100178 A1 EP0100178 A1 EP 0100178A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polarizing
- polarizing element
- flat plate
- layer
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 5
- 239000011521 glass Substances 0.000 claims description 27
- 230000010287 polarization Effects 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
Definitions
- the present invention relates to polarizing elements, for example to a polarizing element for use in an optical switch, optical circulator, etc.
- An optical switch comprising a polarizing element and a Faraday rotator is well known. Further, an optical circulator comprising a polarizing element and a Faraday rotator is also well known.
- Such a polarizing element used in an optical switch and an optical circulator provides polarized light beams or rays that are separated by a distance which is undesirably large, for example approximately ten millimeters. In the structure of a conventional polarizing element, it is difficult to make the distance less than one millimeter.
- An embodiment of the present invention can provide a polarizing element comprising a transparent flat plate having at least two parallel surfaces, a polarizing separate layer provided on a portion of one parallel surface of the transparent flat plate, and an optical reflecting material provided on a portion of the other parallel surface of the transparent flat plate.
- the transparent flat plate be a glass plate.
- the thickness of the transparent flat plate range from 0.2 to 1.5 mm.
- the dielectric multilayer may be made of Ti0 2 and 5i0 2 .
- the reflecting layer be a dielectric multilayer or a metal layer.
- the dielectric multilayer may be made of Ti0 2 and 5i0 2 .
- the metal layer is advantageously made of. copper having a thickness of about 3000 A.
- the present invention can be embodied in a polarizing element comprising a first rectangular prism and a second rectangular prism, the polarizing separate layer being disposed between the first rectangular prism and the transparent flat plate and the optical reflecting material being disposed between the transparent flat plate and the second rectangular prism.
- the polarizing separate layer is disposed between a surface of the first rectangular prism not forming (i.e. facing towards) a right angle and one surface of the transparent flat plate
- the optical reflecting layer is disposed between a surface of the second rectangular prism not forming a right angle and the other surface of the transparent flat plate.
- the polarizing separate layer is disposed between a surface of first rectangular prism not forming a right angle and one surface of the transparent flat plate, and the optical reflecting layer is disposed between a surface of the second rectangular prism forming a right angle and the other surface of the transparent plate.
- An embodiment of the pesent invention can provide a polarizing element which can be efficiently used for near infrared rays.
- a horizontal polarization ray passes through a polarizing separate film la and is reflected by a reflection surface lb, and the horizontal polarization ray is transmitted to a Faraday rotator 3.
- a vertical polarization ray is reflected by the polarizing separate film la and is transmitted to the Faraday rotator 3.
- the distance d between the optical paths of horizontal polarization ray and vertical polarization ray separated by a polarizing element 1 is approximately ten millimeters.
- the distance d l is based on the geometric size of the polarizing element 1, namely, the distance between the surface of the polarizing separate film la and the reflection surface lb.
- the structure of a conventional polarizing element is composed of segments A and B as shown in Fig. 2.
- the segments A and B are separately produced.
- the polarization separate film la is provided on part of the segment A and then the segment B is laminated to the segment A since it is necessary that the surfaces 4 and 5 of Fig. 2 be kept precisely parallel and that the surfacs 6, 7, 8, and 9 of Fig. 2 be precisely and plainly polished. Further, the segments A and B are assembled so that the surface 6 of the segment A and the surface 7 of the segment B are aligned on the same level.
- reference numeral 31 denotes a glass plate having a thickness of about 1 mm and a parallel plane. On a portion of a surface of the glass plate 31, a polarizing separate layer 32 consisting of a dielectric multilayer of, for example, Ti0 2 and SiO 2 is formed.
- a reflecting layer 33 consisting of a metal layer of, for example, copper or a dielectric multilayer of, for example, Ti0 2 and SiO 2 is formed.
- the polarizing element can be used in a wavelength ranging from 1.3 ⁇ m to 1.55 ⁇ m.
- the polarizing separate layer 32 and the reflecting mirror 33 can be formed by ordinal vacuum evaporation or sputtering and a photoetching process.
- incident light from the direction X 3 is separated and passed therethrough in the direction Y 3 with respect to horizontal polarization and in the direction Y 4 with respect to vertical polarization in accordance with the line.
- incident light from the direction X 4 is separated and passed through the polarizing element in the direction Y4 with respect to horizontal polarization ray and in the direction Y 3 with respect to vertical polarization ray.
- the values of t, ⁇ , and n are 1 mm, 45°, and 1.5, respectively, the value of d 2 calculated from the above equation is approximately equal to 1.26 mm.
- a polarizing element using a glass 31 having a thin thickness can be used so that the distance d 2 can be decreased in accordance with the thinness of the glass.
- Figures 4A and 4B show an example of a polarizing element wherein a glass plate 31 provided with the polarizing separate layer 32 and the reflecting layer 33 shown in Fig. 3 is assembled with right-angled triangular prisms 41 and 42 having the same refractive index as that of the glass plate 31 so that the glass plate 31 is disposed between the respective hypotenuse faces of the rectangular prisms 41 and 42.
- Figure 4A is a perspective view of the rectangular prisms and glass plate before the assembly thereof
- Fig. 4B is a view thereof after the assembly thereof. Since the light from the direction X 3 and X 4 is transmitted to the respective surfaces 43 and 44 of a polarizing element substantially vertically as shown in Fig. 4B, reflection loss on the incident surface 43 or 44 is reduced so that the incident light angle and the reflection angle are increased at the interface between the polarizing separate layer 32 and the glass plate 31. Thus, the separation property in polarization can be improved.
- the polarizing element shown in Fig. 4B is used as an optical switch a as shown in Fig. 5.
- the optical switch is composed of polarizing elements 51 and 52 and a Faraday rotator of, for example, yttrium-iron-garnet (YIG).
- YIG yttrium-iron-garnet
- FIG. 6 another type of optical switch is shown.
- the optical switch in fig. 6 is composed of other examples of polarizing elements 61 and 62, a Faraday rotator 63 of, for example, YIG, and a wave plate 64.
- Reference numerals 65 and 66 are input optical systems, and reference numerals 67 and 68 are output optical systems.
- the polarizing element 61 and 62 consist of a glass plate 31 a polarizing separate layer 32, a reflecting layer 33, and right angled triangular prisms 60 and 69.
- the polarizing separate layer 32 is disposed between a surface of the glass plate 31 and the hypotenuse face of the prism 69, and the reflecting layer 33 is disposed between a surface of the glass plate 31 and one of the two faces bounding the right angle of the rectangular prism 60.
- the structure of an optical switch as shown in Fig. 6 can be advantageously used so that the optical system can be arranged in a direction parallel to the input rays and the output rays. Therefore, the structure of the optical switch can make the optical switch compact.
- the wave plate 64 is advantageously provided to adjust a polarizing angle of an output ray to obtain the angle of 90° when the polarizing angle is not 90° between the polarizing surface before passing through Faraday rotator and the polarizing surface after passing through the Faraday rotator.
- a wave plate 73 (Fig. 7) be adhered to the rectangular prism 69 with a bonding medium 71. Further, in order to prevent the surface of the wave plate from undergoing mechanical shock, etc; a glass plate 72 may be adhered to the wave plate 73 as shown in Fig. 7. Such a structure can make a polarizing element having a wave plate compact.
- a polarizing separate layer 32 is provided in such a manner that the polarizing separate layer is disposed between a rectangular prism 82 and the glass plate 31.
- a reflecting layer is not provided on the opposite side surface of the glass plate 31.
- a prism 83 is provided on the surcface of the glass so that a plane surface f of the prism 83 is parallel to a plane surface 81 of the glass plate 31.
- the ray I transmitted vertically onto a surface h of the prism 83 is reflected on the surface f.
- the reflected ray I is passed through the glass plate 31 to the polarizing separate layer 32.
- a horizontal polarization ray is passed through the polarizing separate layer 32.
- a vertical polarization ray is reflected on the polarizing separate layer 32 and is passed through the glass plate 31.
- the vertical polarization ray is reflected on a surface g of the glass plate 31, which surface forms a boundary between the air and the glass, i.e. the ray I is separated into a horizontal polarization namely, and a vertical polarization S.
- the ray I is also separated into a horizontal polarization P' and a vertical polarization S'.
- the polarizing element shown in Fig. 8 is also used in an optical switch.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12264182A JPS5913224A (ja) | 1982-07-14 | 1982-07-14 | 偏光素子 |
JP122641/82 | 1982-07-14 | ||
JP151530/82 | 1982-08-31 | ||
JP15153082A JPS5940606A (ja) | 1982-08-31 | 1982-08-31 | 偏光素子 |
JP151529/82 | 1982-08-31 | ||
JP15152982A JPS5940605A (ja) | 1982-08-31 | 1982-08-31 | 偏光素子 |
JP53593/83 | 1983-03-31 | ||
JP5359383A JPS59180512A (ja) | 1983-03-31 | 1983-03-31 | 偏光素子 |
JP76573/83 | 1983-04-30 | ||
JP7657383A JPS59201026A (ja) | 1983-04-30 | 1983-04-30 | 偏光素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0100178A1 true EP0100178A1 (fr) | 1984-02-08 |
EP0100178B1 EP0100178B1 (fr) | 1988-09-28 |
Family
ID=27523088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83304027A Expired EP0100178B1 (fr) | 1982-07-14 | 1983-07-11 | Elément de polarisation |
Country Status (3)
Country | Link |
---|---|
US (1) | US4641926A (fr) |
EP (1) | EP0100178B1 (fr) |
DE (1) | DE3378140D1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0256685A2 (fr) * | 1986-08-14 | 1988-02-24 | Optical Coating Laboratory, Inc. | Système optique et composants pour lecteur de disque optique |
EP0313682A1 (fr) * | 1987-10-30 | 1989-05-03 | Ibm Deutschland Gmbh | Analyseur de faisceau pour dispositifs d'enregistrement optique |
EP0345889A1 (fr) * | 1988-06-10 | 1989-12-13 | Koninklijke Philips Electronics N.V. | Dispositif pour la détection hétérodyne optique et composant optique intégré pouvant être utilisé dans un tel dispositif |
EP0417709A2 (fr) * | 1989-09-12 | 1991-03-20 | Fujitsu Limited | Instrument de mesure du spectre |
FR2654844A1 (fr) * | 1989-11-21 | 1991-05-24 | Scanera Sc Ste Civile Rech | Dispositif de polarisation de la lumiere. |
WO2001020387A1 (fr) * | 1999-09-14 | 2001-03-22 | Corning Incorporated | Diviseur de faisceau produisant des faisceaux de sortie paralleles |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4844584A (en) * | 1986-06-26 | 1989-07-04 | Fuji Photo Film Co., Ltd. | Semiconductor laser beam splitting device |
JPH0777038B2 (ja) * | 1986-12-25 | 1995-08-16 | ソニー株式会社 | 光学ピツクアツプ装置 |
GB8720923D0 (en) * | 1987-09-05 | 1987-10-14 | Emi Plc Thorn | Optical image rotators |
EP0383923B1 (fr) * | 1988-02-26 | 1997-05-28 | Fujitsu Limited | Dispositif isolant polarisant et isolateur optique l'utilisant |
FR2654275B1 (fr) * | 1989-11-09 | 1994-07-29 | Dassault Electronique | Procede et dispositif de transmission d'un signal electromagnetique dans une fibre optique. |
JP2823649B2 (ja) * | 1990-04-05 | 1998-11-11 | 旭光学工業株式会社 | 光束合成装置 |
US5245174A (en) * | 1990-10-15 | 1993-09-14 | Applied Magnetics Corporation | Focus sensing apparatus utilizing a reflecting surface having variable reflectivity |
GB2248989B (en) * | 1990-10-15 | 1995-05-24 | Applied Magnetics Corp | Focus sensing apparatus and method |
US5751480A (en) * | 1991-04-09 | 1998-05-12 | Canon Kabushiki Kaisha | Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit |
US5331622A (en) * | 1991-05-28 | 1994-07-19 | Applied Magnetics Corporation | Compact optical head |
US5657164A (en) * | 1991-05-28 | 1997-08-12 | Discovision Associates | Optical beamsplitter |
US5790306A (en) * | 1995-06-16 | 1998-08-04 | Global Surgical Corporation | Microscope beamsplitter |
DE19814969A1 (de) * | 1998-04-03 | 1999-10-07 | Daimler Chrysler Ag | Optisches Bauelement |
US6661579B2 (en) * | 2000-01-31 | 2003-12-09 | Pentax Corporation | Beam splitting for camera using a multilayer film |
JP2002148435A (ja) * | 2000-11-10 | 2002-05-22 | Fdk Corp | 偏光分離合成素子及びそれを用いる光デバイス |
CN1314978C (zh) * | 2002-04-26 | 2007-05-09 | 国际商业机器公司 | 偏振光束分离器 |
JP6233366B2 (ja) | 2015-08-12 | 2017-11-22 | 富士通オプティカルコンポーネンツ株式会社 | 光変調装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE932636C (de) * | 1953-09-20 | 1955-09-12 | Zeiss Carl Fa | Optische Vorrichtung zur Aufteilung eines Lichtbuendels und zur Wiedervereinigung von (aufgeteilten) Lichtbuendeln |
US3058393A (en) * | 1958-03-27 | 1962-10-16 | Polaroid Corp | Light-polarizing film material and the process of preparation |
CH369918A (de) * | 1958-03-21 | 1963-06-15 | Jenaer Glaswerk Schott & Gen | Polarisator |
GB1126392A (en) * | 1967-05-19 | 1968-09-05 | Standard Telephones Cables Ltd | Optical polariser |
GB1141599A (en) * | 1965-07-02 | 1969-01-29 | Ibm | Polarized light separator |
US4121883A (en) * | 1974-04-22 | 1978-10-24 | Canon Kabushiki Kaisha | Scanning device for radiation beams |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US703929A (en) * | 1902-05-21 | 1902-07-01 | Frederic E Ives | Photochromoscopic and trichromatic apparatus. |
US2285515A (en) * | 1937-10-21 | 1942-06-09 | Bendix Aviat Corp | Light dividing apparatus |
US2403731A (en) * | 1943-04-01 | 1946-07-09 | Eastman Kodak Co | Beam splitter |
US2476014A (en) * | 1944-04-17 | 1949-07-12 | Wright Edwin Herbert | Light polariser for producing light beams polarised in planes mutually at right angles from a single light beam |
US2933994A (en) * | 1956-04-24 | 1960-04-26 | Bauer William Charles | Polarized light process and means for producing stereograms |
GB1035990A (en) * | 1962-06-06 | 1966-07-13 | Soc Optique Mec Haute Prec | Optical system focussing device |
US3449576A (en) * | 1965-07-02 | 1969-06-10 | Ibm | Compensated path length polarized light deflector-selector |
US3460883A (en) * | 1965-10-01 | 1969-08-12 | Ibm | Total internal reflection deflector |
US3565514A (en) * | 1968-11-15 | 1971-02-23 | Ibm | Light deflector system |
US3743378A (en) * | 1971-07-30 | 1973-07-03 | Ampex | Optical intensity matching means for two light beams |
US4215938A (en) * | 1978-09-28 | 1980-08-05 | Farrand Industries, Inc. | Method and apparatus for correcting the error of a position measuring interferometer |
SU838628A1 (ru) * | 1979-05-31 | 1981-06-15 | Предприятие П/Я Х-5827 | Устройство дл пол ризации и разделени СВЕТОВОгО излучЕНи |
SE8103251L (sv) * | 1980-06-03 | 1981-12-04 | Western Electric Co | Polarisationsoberoende optisk switch |
-
1983
- 1983-07-11 DE DE8383304027T patent/DE3378140D1/de not_active Expired
- 1983-07-11 EP EP83304027A patent/EP0100178B1/fr not_active Expired
-
1985
- 1985-12-26 US US06/815,279 patent/US4641926A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE932636C (de) * | 1953-09-20 | 1955-09-12 | Zeiss Carl Fa | Optische Vorrichtung zur Aufteilung eines Lichtbuendels und zur Wiedervereinigung von (aufgeteilten) Lichtbuendeln |
CH369918A (de) * | 1958-03-21 | 1963-06-15 | Jenaer Glaswerk Schott & Gen | Polarisator |
US3058393A (en) * | 1958-03-27 | 1962-10-16 | Polaroid Corp | Light-polarizing film material and the process of preparation |
GB1141599A (en) * | 1965-07-02 | 1969-01-29 | Ibm | Polarized light separator |
GB1126392A (en) * | 1967-05-19 | 1968-09-05 | Standard Telephones Cables Ltd | Optical polariser |
US4121883A (en) * | 1974-04-22 | 1978-10-24 | Canon Kabushiki Kaisha | Scanning device for radiation beams |
Non-Patent Citations (1)
Title |
---|
ELECTRONICS LETTERS, vol. 15, no. 25, 1979 IWAMURA et al. "Simple polarisation-independent optical circulator for optical transmission systems", pages 830, 831 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0256685A2 (fr) * | 1986-08-14 | 1988-02-24 | Optical Coating Laboratory, Inc. | Système optique et composants pour lecteur de disque optique |
EP0256685A3 (en) * | 1986-08-14 | 1988-11-30 | Optical Coating Laboratory, Inc. | Optical system and components for optical disk reader optical system and components for optical disk reader |
EP0313682A1 (fr) * | 1987-10-30 | 1989-05-03 | Ibm Deutschland Gmbh | Analyseur de faisceau pour dispositifs d'enregistrement optique |
US4974219A (en) * | 1987-10-30 | 1990-11-27 | International Business Machines | Polarizing beam splitter using dielectric multilayers |
EP0345889A1 (fr) * | 1988-06-10 | 1989-12-13 | Koninklijke Philips Electronics N.V. | Dispositif pour la détection hétérodyne optique et composant optique intégré pouvant être utilisé dans un tel dispositif |
EP0417709A2 (fr) * | 1989-09-12 | 1991-03-20 | Fujitsu Limited | Instrument de mesure du spectre |
EP0417709A3 (en) * | 1989-09-12 | 1991-11-21 | Fujitsu Limited | Spectrum measuring equipment |
FR2654844A1 (fr) * | 1989-11-21 | 1991-05-24 | Scanera Sc Ste Civile Rech | Dispositif de polarisation de la lumiere. |
WO2001020387A1 (fr) * | 1999-09-14 | 2001-03-22 | Corning Incorporated | Diviseur de faisceau produisant des faisceaux de sortie paralleles |
Also Published As
Publication number | Publication date |
---|---|
DE3378140D1 (en) | 1988-11-03 |
US4641926A (en) | 1987-02-10 |
EP0100178B1 (fr) | 1988-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0100178A1 (fr) | Elément de polarisation | |
US3704934A (en) | Laser polarizing beam splitter | |
JPS62187826A (ja) | 液晶光スイツチング装置 | |
EP0488211A2 (fr) | Dispositif optique independent de la polarisation | |
US4981331A (en) | Low reflection optical reticle and method of making same | |
EP0653662A1 (fr) | Isolateur optique à "walk-off" relatif réduit | |
JPH0230490B2 (fr) | ||
JP2000180789A (ja) | 光アイソレータ | |
JPH0357459B2 (fr) | ||
CN113156584A (zh) | 单纤双向三端口环形器 | |
JPH0139561B2 (fr) | ||
JPH0372961B2 (fr) | ||
JPH06324289A (ja) | 偏光ビームスプリッタとこれを用いた光サーキュレータ及び光スイッチ | |
JPS6116961B2 (fr) | ||
JPH07306314A (ja) | 偏光子 | |
JP2003172901A (ja) | 光非相反デバイス | |
JP2741731B2 (ja) | 偏光子 | |
JP2518137Y2 (ja) | 偏光ビームスプリッタ | |
JPH0830789B2 (ja) | 偏光分離合成プリズム | |
JP2538100B2 (ja) | 偏光子とその偏光子を使用した光学素子 | |
JPH05323234A (ja) | 3ポート型光サーキュレータ | |
JP2775103B2 (ja) | 偏光プリズム | |
JP3263501B2 (ja) | 偏光分離素子 | |
JPH0738049B2 (ja) | 光デバイス | |
KR940002317B1 (ko) | 이중편광빔 분리소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19840802 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3378140 Country of ref document: DE Date of ref document: 19881103 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990709 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990712 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19990730 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010330 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010711 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020711 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020711 |