EP0099840A1 - Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant - Google Patents
Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant Download PDFInfo
- Publication number
- EP0099840A1 EP0099840A1 EP83420109A EP83420109A EP0099840A1 EP 0099840 A1 EP0099840 A1 EP 0099840A1 EP 83420109 A EP83420109 A EP 83420109A EP 83420109 A EP83420109 A EP 83420109A EP 0099840 A1 EP0099840 A1 EP 0099840A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screen
- anode
- floating
- electrolytic cell
- cell according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000007667 floating Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 239000004411 aluminium Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 10
- 229910001610 cryolite Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 238000009626 Hall-Héroult process Methods 0.000 claims abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004020 conductor Substances 0.000 claims abstract 2
- 239000003792 electrolyte Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 7
- 229910033181 TiB2 Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
Definitions
- the present invention relates to a tank for the production of aluminum by electrolysis of alumina dissolved in the molten cryolite according to the Hall-Héroult process, comprising a floating conductive screen, between the anode and the cathode.
- the consumption of electrical energy is at least equal to 13,000 KWh per tonne of metal, and often exceeds 14,000.
- the voltage drop in the electrolyte represents approximately 1.5 volts, it is therefore responsible for more than a third of the total energy consumption.
- cathodes based on electrically conductive refractories, such as titanium diboride TiB 2 , which is perfectly wet. by liquid aluminum and undergoes practically no attack by this metal at the temperature of electrolysis.
- Such cathodes have been described, in particular, in English patents 784,695, 784,696, 784,697 to BRITISH ALUMINUM C °, and in the article by KB BILLEHAUG and HA OYE in "ALUMINUM", Oct. 1980, pages 642. -648 and Nov. 1980, pages 713 to 718.
- the present invention constitutes another solution to the problem of reducing the interpolar distance without the risk of entraining the cathode aluminum towards the anode.
- the floating screen must consist of elements whose overall density is between about 2.15 and 2.30 at 960 °.
- Sealing can be carried out in two stages: depositing a medium dense bonding layer with plasma, then a thin sealing layer by chemical deposition or else by a chemical vapor deposition carried out in two stages, the first being performed at lower pressure and temperature than the second.
- the TiB 2 floating balls (2) form a substantially continuous layer at the interface (3) of the metal (4) and the electrolyte (5). It is this layer which forms the screen (1) between the anode (6) and the metal (4) and, at the same time, acts as a cathode on which the liquid aluminum droplets produced by electrolysis are formed. . These droplets wet the floating balls (2) and collect in the already formed layer (4). The risk of entrainment of droplets to the anode, where they would reoxidize, is therefore practically eliminated, which makes it possible to reduce the interpolar distance d to approximately 20 millimeters and to lower the voltage drop in the electrolyte to less than 1 volt.
- the floating balls (2) have been drawn above the interface (3), but it is obvious that their exact position depends on their density ratio with the bath and the metal.
- the floating screen is formed from TiB 2- based balls
- this shape is not compulsory and any other shape may be suitable, for example cylindrical elements which, according to their length / diameter ratio, will float with the axis in vertical or horizontal position.
- Flat discs for example, can be used.
- the largest dimension of the elements used does not exceed 50 nm and, preferably, 40 mm, that is to say twice the target interpolar distance.
- FIG. 2 represents a solution in which the floating conductive screen is confined to the plumb of the anodes (6) by means of barriers (7) made of dense refractory material. Openings (8) should preferably be made in these barriers to ensure the circulation of the liquid aluminum (4).
- FIG. 3 represents another embodiment of the floating conductive screen; the screen is no longer made up of individual elements which are simply juxtaposed, but of a monolithic unit arranged at the base of the anode.
- This monolithic screen (8) can be produced in different variants, without departing from the scope of the invention, in so far as it meets the two basic criteria: density between that of the electrolyte and that of liquid aluminum, and sufficient electrical conductivity, i.e. less than that of the electrolyte (at least 10 times lower, for example).
- the screen (8) can, moreover, be kept in line with the anode by the barriers (7) and it can, optionally, be provided with bosses (9) of refractory material resistant to the electrolyte and to liquid aluminum, and not very conductive of electricity such as boron nitride, aluminum nitride, or various carbides such as silicon carbide.
- bosses (9) of refractory material resistant to the electrolyte and to liquid aluminum, and not very conductive of electricity such as boron nitride, aluminum nitride, or various carbides such as silicon carbide.
- the purpose of these bosses is to avoid any accidental contact between the anode (6) and the screen (8).
- the freedom of movement of the screen in the vertical direction is in fact almost total due to the absence of any anchoring means on the carbonaceous cathode substrate (12).
- the screen is made of porous carbon composite, it is preferably subjected to an impregnation to the core with titanium diboride, in a proportion such that an apparent average density of the order of 2 is reached, 20, then a surface seal with a compact layer of titanium diboride 10 to 100 micrometers thick.
- FIG. 4 Another embodiment of the conductive floating screen is shown in FIG. 4.
- Graphite slabs (10) are provided with hooking means (11 A, 11 B), which cooperate to form assemblies provided with '' sufficient flexibility to adapt to any unevenness of the electrolyte metal interface (3).
- these tiles can be covered with TiB 2 on the face opposite the anode, and the density necessary to the flotation is obtained by any of the means previously described.
- the implementation of the invention allows a significant reduction in the interpolar distance, up to around 20 mm, without loss of the electrolysis efficiency.
- the difference in potential across the terminals of the electrolysis cells thus modified is reduced from 4 volts to approximately 3.2 to 3.3 volts, with a proportional reduction in the energy consumption per tonne of aluminum produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Conductive Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
- La présente invention concerne une cuve de production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue selon le procédé Hall-Héroult, comportant un écran conducteur flottant, entre l'anode et la cathode.
- Dans les installations les plus performantes produisant de l'aluminium selon le procédé Hall-Héroult, la consommation d'énergie électrique est au moins égale à 13000 KWh par tonne de métal, et dépasse souvent 14 000. Dans une cuve moderne fonctionnant sous une différence de potentiel de 4 volts, la chute de tension dans l'électrolyte représente environ 1,5 volts, elle est donc responsable de plus du tiers de la consommation énergétique totale. Elle est dûe à l'obligation de maintenir une distance suffisante entre l'anode et la nappe d'aluminium liquide cathodique (au moins égale à 40 mm et, le plus souvent, de l'ordre de 50 à 60 mm) pour éviter la réoxydation de l'aluminium entraîné vers l'anode par les mouvements de la nappe de métal liquide dûs aux effets magnétiques et facilités par la non-mouillabilité du substrat cathodique en carbone par l'aluminium liquide.
- Pour réduire la distance interpolaire, sans provoquer l'entraînement de l'aluminium cathodique vers l'anode, on a proposé d'utiliser des cathodes à base de réfractaires électro-conducteurs, tels que le diborure de titane TiB2, qui est parfaitement mouillé par l'aluminium liquide et ne subit pratiquement pas d'attaque par ce métal à la température de l'électrolyse. De telles cathodes ont été décrites, en particulier, dans les brevets anglais 784 695, 784 696, 784 697 de BRITISH ALUMINUM C°, et dans l'article de K.B. BILLEHAUG et H.A. OYE dans "ALUMINUM", Oct. 1980, pages 642-648 et nov. 1980, pages 713 à 718.
- Un des problêmes majeurs que posent ces cathodes en diborure de titane est leur mise en solution progressive dans l'aluminium liquide, phénomène lent mais non négligeable, qui nécessite le remplacement périodique des éléments usés et implique l'arrêt total et le démontage de la cuve.
- La présente invention constitue une autre solution au problème de la réduction de la distance interpolaire sans risque d'entraînement de l'aluminium cathodique vers l'anode.
- Elle se caractérise par la mise en place, entre l'anode et la cathode, à l'interface de la nappe d'aluminium liquide et de la couche d'électrolyte, d'un écran flottant conducteur du courant électrique, et non lié au substrat cathodique carboné. Cet écran devant résister à la fois à l'action de l'aluminium et à l'action du bain de cryolithe fondue, il doit être constitué en un matériau carboné tel que le graphite, ou en réfractaire électro-conducteur tel que le diborure de titane.
-
- Les figures 1 à 4 représentent différents modes de mise en oeuvre de l'invention :
- Sur la figure 1, l'écran conducteur flottant (1) est constitué par des billes (2) de TiB2 poreuses, mais étanchéisées en surface, d'une densité moyenne de 2,25. Ces billes peuvent être fabriquées par exemple selon la technique décrite dans le brevet français 1 579 540 au nom d'ALUMINUM PECHINEY, et qui consiste à fritter un mélange de TiB2 et d'une substance éliminable à la température de frittage. Le diamètre de ces billes est compris entre 5 et 50 mn et, de préférence, entre 10 et 40 mm. La limite inférieure de diamètre est liée aux coûts de fabrication et la limite supérieure correspond à environ deux fois la distance interpolaire prévue.
- (De telles billes ayant une porosité d'environ 50 % peuvent être es- limées trop fragiles. Dans ce cas, on fritte un mélange de TiB2 et de nitrure de bore (d = 2,20 à 2,25 à 960°) ou de graphite (d = 1,7 à 1,9), avec la proportion voulue de substance éliminable à chaud pour obtenir une densité finale sensiblement égale à 2,25 à 960°C.
- Il est indispensable d'étanchéiser les billes par un revêtement superficiel pour éviter leur imprégnation progressive par l'électrolyte et/ou le métal, qui détruirait leur flottabilité. Cette étarichéisa- tion est effectuée par différents procédés connus permettant d'effectuer un dépôt conptact de TiB2, par exemple la projection au plasma ou le dépôt chimique. L'épaisseur de cette couche étanche est suffisante pour que la dissolution par l'aluminium liquide permette une durée de vie d'au moins quelques années, c'est-à-dire au moins égale à 20 micromètres.
- L'étanchéisation peut être effectuée en deux étapes : dêpôt d'une couche d'accrochage moyennement dense au plasma, puis d'une couche fine d'étanchéité par dépôt chimique ou encore par un dépôt chimique en phase vapeur effectué en deux étapes, la première s'effectuant à pression et température plus basses que la seconde.
- Une autre solution, pour obtenir la densité moyenne de 2,25 consiste à fabriquer des billes composites avec un noyau en graphite et une écorce en TiB2 compact, la proportion pondérale des deux constituants étant déterminée pour obtenir d = 2,25 (sensiblement 20 % de TiB2 et 80 % de graphite), la qualité de graphite étant alors choisie pour que le coefficient de dilation du graphite soit sensiblement égal à celui de TiB2 entre O et 1 000°C.
- Les billes flottantes (2) en TiB2 forment une couche sensiblement continue à l'interface (3) du métal (4) et de l'électrolyte (5). C'est cette couche qui forme l'écran (1) entre l'anode (6) et le métal (4) et, en même temps, agit comme cathode sur laquelle se forment les gouttelettes d'aluminium liquide produites par l'électrolyse. Ces gouttelettes mouillent les billes flottantes (2) et se rassemblent dans la couche déjà formée (4). Le risque d'entraînement des gouttelettes vers l'anode, où elles se réoxyderaient, est donc pratiquement supprimé, ce qui permet de réduire la distance interpolaire d à environ 20 millimètres et d'abaisser la chute de tension dans l'électrolyte à moins de 1 volt. Sur les figures 1 et 2, les billes flottantes (2) ont été dessinées au-dessus de l'interface (3), mais il est bien évident que leur position exacte dépend de leur rapport de densité avec le bain et le métal.
- Bien que l'invention ait été décrite dans le cas particulier où l'écran flottant est formé de billes à base de TiB2, cette forme n'est pas obligatoire et tout autre forme peut convenir, par exemple des éléments cylindriques qui, selon leur rapport longueur/diamètre, flotteront avec l'axe en position verticale ou horizontale. Des disques plats, par exemple, peuvent être utilisés. Dans un tel cas, (éléments non liés entre eux), il est souhaitable que la plus grande dimension des éléments utilisés ne dépasse par 50 nm et, de préférence, 40 mm c'est-à-dire deux fois la distance interpolaire visée.
- La solution de la figure 1 présente l'inconvénient que toute l'interface du métal (4) et de l'électrolyte (5) est recouverte par l'écran de billes (2) alors que sa présence n'est nécessaire qu'à l'aplomb des anodes (6).
- La figure 2 représente une solution dans laquelle l'écran conducteur flottant est confiné à l'aplomb des anodes (6) au moyen des barrières (7) en matériau réfractaire dense. Des ouvertures (8) doivent être, de préférence, ménagées dans ces barrières pour assurer la circulation de l'aluminium liquide (4).
- La figure 3 représente un autre mode de réalisation de l'écran conducteur flottant ; l'écran n'est plus constitué par des éléments individuels simplement juxtaposés, mais par un ensemble monolithique disposé à l'aplomb de l'anode. Cet écran monolithique (8) peut être réalisé sous différentes variantes, sans sortir du cadre de l'invention, dans la mesure où il répond aux deux critères de base : densité comprise entre celle de l'électrolyte et celle de l'aluminium liquide, et conductivité électrique suffisante, c'est-à-dire inférieure à celle de l'électrolyte (au moins 10 fois inférieure, par exemple).
- L'écran (8) peut, en outre, être maintenu à l'aplomb de l'anode par les barrières (7) et il peut, éventuellement, être muni de bossages (9) en matériau réfractaire résistant à l'électrolyte et à l'aluminium liquide, et peu conducteur de l'électricité tel que le nitrure de bore, le nitrure d'aluminium, ou divers carbures tels que le carbure de silicium. Ces bossages ont pour but d'éviter tout contact accidentel entre l'anode (6) et l'écran (8). La liberté de mouvement de l'écran dans le sens vertical est en effet quasi totale du fait de l'absence de tout moyen d'ancrage sur le substrat cathodique carboné (12).
- L'écran (8) peut être constitué en graphite ou en feutre de carbone ou en composite carbone-carbone, recouvert de TiB2 sur au moins sa face supérieure. Si la proportion de TiB2 n'est pas suffisante pour obtenir la densité moyenne requise (2,25), on peut lester l'écran au moyen d'inserts en réfractaire dense, ou encore le constituer non par du graphite pur, mais par un mélange aggloméré de graphite et de carbure de silicium (d = 3 à 3,10) ou de diborure de titane (d = 4,5 à 4,6).
- Dans le cas où l'écran est en composite carboné poreux, on lui fait subir, de préférence, une imprégnation à coeur par du diborure de titane, dans une proportion telle qu'on atteint une densité moyenne apparente de l'ordre de 2,20, puis une étanchéisation superficielle par une couche compacte de diborure de titane de 10 à 100 micromètres d'épaisseur.
- Un autre mode de réalisation de l'écran flottant conducteur est représenté sur la figure 4. Des dalles de graphite (10) sont-munies de- moyens d'accrochage (11 A, 11 B), qui coopèrent pour former des assemblages dotés d'une souplesse suffisante pour s'adapter aux éventuelles dénivellations de l'interface (3) métal électrolyte.
- Comme dans le cas précédent, ces dalles peuvent être recouvertes de TiB2 sur la face en regard de l'anode, et la densité nécessaire à la flottaison est obtenue par l'une quelconque des moyens précédemment décrits.
- La mise en oeuvre de l'invention, sous les différentes variantes, permet une réduction importante de la distance interpolaire, jusqu'aux environs de 20 mm, sans perte du rendement d'électrolyse. La différence de potentiel aux bornes des cellules d'électrolyse ainsi modifiées est réduite de 4 volts à environ 3,2 à 3,3 volts, avec diminution proportionnelle de la consomation énergétique par tonne d'aluminium produite.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8211873A FR2529580B1 (fr) | 1982-06-30 | 1982-06-30 | Cuve d'electrolyse pour la production d'aluminium, comportant un ecran conducteur flottant |
FR8211873 | 1982-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0099840A1 true EP0099840A1 (fr) | 1984-02-01 |
EP0099840B1 EP0099840B1 (fr) | 1986-08-13 |
Family
ID=9275740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83420109A Expired EP0099840B1 (fr) | 1982-06-30 | 1983-06-29 | Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant |
Country Status (17)
Country | Link |
---|---|
US (1) | US4533452A (fr) |
EP (1) | EP0099840B1 (fr) |
JP (1) | JPS5920484A (fr) |
KR (1) | KR840006510A (fr) |
AU (1) | AU562447B2 (fr) |
BR (1) | BR8303459A (fr) |
CA (1) | CA1190892A (fr) |
DE (1) | DE3365289D1 (fr) |
ES (1) | ES523678A0 (fr) |
FR (1) | FR2529580B1 (fr) |
GR (1) | GR77515B (fr) |
IN (1) | IN159794B (fr) |
NO (1) | NO832365L (fr) |
OA (1) | OA07473A (fr) |
SU (1) | SU1356967A3 (fr) |
YU (1) | YU140683A (fr) |
ZA (1) | ZA834761B (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR850003825A (ko) * | 1983-11-29 | 1985-06-26 | 로이 앨버어트 하인 | 알루미늄 환원전지 |
US4631121A (en) * | 1986-02-06 | 1986-12-23 | Reynolds Metals Company | Alumina reduction cell |
US4919782A (en) * | 1989-02-21 | 1990-04-24 | Reynolds Metals Company | Alumina reduction cell |
US5129998A (en) * | 1991-05-20 | 1992-07-14 | Reynolds Metals Company | Refractory hard metal shapes for aluminum production |
EP0572896B1 (fr) * | 1992-05-25 | 1998-01-07 | Canon Kabushiki Kaisha | Développateur magnétique et procédé de reconnaissance de caractères à encre magnétique |
US5486278A (en) * | 1993-06-02 | 1996-01-23 | Moltech Invent S.A. | Treating prebaked carbon components for aluminum production, the treated components thereof, and the components use in an electrolytic cell |
US5472578A (en) * | 1994-09-16 | 1995-12-05 | Moltech Invent S.A. | Aluminium production cell and assembly |
US5753382A (en) * | 1996-01-10 | 1998-05-19 | Moltech Invent S.A. | Carbon bodies resistant to deterioration by oxidizing gases |
WO2018092103A1 (fr) * | 2016-11-19 | 2018-05-24 | Jan Petrus Human | Électrodes destinées à être utilisées dans l'électro-extraction des métaux |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287247A (en) * | 1962-07-24 | 1966-11-22 | Reynolds Metals Co | Electrolytic cell for the production of aluminum |
US4177128A (en) * | 1978-12-20 | 1979-12-04 | Ppg Industries, Inc. | Cathode element for use in aluminum reduction cell |
US4224128A (en) * | 1979-08-17 | 1980-09-23 | Ppg Industries, Inc. | Cathode assembly for electrolytic aluminum reduction cell |
EP0033630A1 (fr) * | 1980-01-28 | 1981-08-12 | Diamond Shamrock Corporation | Cellule électrolytique pour l'obtention d'aluminium par électrolyse de sels fondus |
DE3110490A1 (de) * | 1980-04-03 | 1981-12-24 | Schweizerische Aluminium AG, 3965 Chippis | Schmelzflusselektrolysezelle zur herstellung von aluminium |
EP0042658A2 (fr) * | 1980-06-23 | 1981-12-30 | KAISER ALUMINUM & CHEMICAL CORPORATION | Electrode pour une cellule destinée à la réduction d'aluminium |
EP0082096A1 (fr) * | 1981-12-11 | 1983-06-22 | Aluminium Pechiney | Eléments cathodiques flottants, à base de réfractaire électroconducteur, pour la production d'aluminium par électrolyse |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE433408A (fr) * | 1938-04-08 | |||
OA02156A (fr) * | 1965-10-21 | 1970-05-05 | Montecatini Edison S A | Four et procédé pour la production, en bain fondu, de métaux à partir de leurs oxydes, et four à électrolyse à cellules multiples, composées par des éléctrodes de carbone horizontales bipolaires. |
US4338177A (en) * | 1978-09-22 | 1982-07-06 | Metallurgical, Inc. | Electrolytic cell for the production of aluminum |
ZA824255B (en) * | 1981-06-25 | 1983-05-25 | Alcan Int Ltd | Electrolytic reduction cells |
CH648870A5 (de) * | 1981-10-23 | 1985-04-15 | Alusuisse | Kathode fuer eine schmelzflusselektrolysezelle zur herstellung von aluminium. |
US4436598A (en) * | 1983-09-28 | 1984-03-13 | Reynolds Metals Company | Alumina reduction cell |
-
1982
- 1982-06-30 FR FR8211873A patent/FR2529580B1/fr not_active Expired
-
1983
- 1983-06-23 GR GR71761A patent/GR77515B/el unknown
- 1983-06-27 SU SU833610550A patent/SU1356967A3/ru active
- 1983-06-28 OA OA58040A patent/OA07473A/fr unknown
- 1983-06-28 CA CA000431303A patent/CA1190892A/fr not_active Expired
- 1983-06-28 BR BR8303459A patent/BR8303459A/pt unknown
- 1983-06-28 YU YU01406/83A patent/YU140683A/xx unknown
- 1983-06-29 ZA ZA834761A patent/ZA834761B/xx unknown
- 1983-06-29 EP EP83420109A patent/EP0099840B1/fr not_active Expired
- 1983-06-29 DE DE8383420109T patent/DE3365289D1/de not_active Expired
- 1983-06-29 JP JP58118052A patent/JPS5920484A/ja active Granted
- 1983-06-29 ES ES523678A patent/ES523678A0/es active Granted
- 1983-06-29 NO NO832365A patent/NO832365L/no unknown
- 1983-06-30 KR KR1019830002971A patent/KR840006510A/ko not_active Application Discontinuation
- 1983-06-30 AU AU16460/83A patent/AU562447B2/en not_active Ceased
- 1983-06-30 US US06/509,585 patent/US4533452A/en not_active Expired - Fee Related
- 1983-07-11 IN IN855/CAL/83A patent/IN159794B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287247A (en) * | 1962-07-24 | 1966-11-22 | Reynolds Metals Co | Electrolytic cell for the production of aluminum |
US4177128A (en) * | 1978-12-20 | 1979-12-04 | Ppg Industries, Inc. | Cathode element for use in aluminum reduction cell |
US4224128A (en) * | 1979-08-17 | 1980-09-23 | Ppg Industries, Inc. | Cathode assembly for electrolytic aluminum reduction cell |
EP0033630A1 (fr) * | 1980-01-28 | 1981-08-12 | Diamond Shamrock Corporation | Cellule électrolytique pour l'obtention d'aluminium par électrolyse de sels fondus |
DE3110490A1 (de) * | 1980-04-03 | 1981-12-24 | Schweizerische Aluminium AG, 3965 Chippis | Schmelzflusselektrolysezelle zur herstellung von aluminium |
EP0042658A2 (fr) * | 1980-06-23 | 1981-12-30 | KAISER ALUMINUM & CHEMICAL CORPORATION | Electrode pour une cellule destinée à la réduction d'aluminium |
EP0082096A1 (fr) * | 1981-12-11 | 1983-06-22 | Aluminium Pechiney | Eléments cathodiques flottants, à base de réfractaire électroconducteur, pour la production d'aluminium par électrolyse |
Also Published As
Publication number | Publication date |
---|---|
JPS6141997B2 (fr) | 1986-09-18 |
OA07473A (fr) | 1984-12-31 |
FR2529580A1 (fr) | 1984-01-06 |
AU1646083A (en) | 1984-01-05 |
IN159794B (fr) | 1987-06-06 |
DE3365289D1 (en) | 1986-09-18 |
SU1356967A3 (ru) | 1987-11-30 |
CA1190892A (fr) | 1985-07-23 |
NO832365L (no) | 1984-01-02 |
YU140683A (en) | 1985-12-31 |
GR77515B (fr) | 1984-09-24 |
EP0099840B1 (fr) | 1986-08-13 |
US4533452A (en) | 1985-08-06 |
ZA834761B (en) | 1984-03-28 |
AU562447B2 (en) | 1987-06-11 |
JPS5920484A (ja) | 1984-02-02 |
BR8303459A (pt) | 1984-02-07 |
FR2529580B1 (fr) | 1986-03-21 |
ES8403984A1 (es) | 1984-04-01 |
ES523678A0 (es) | 1984-04-01 |
KR840006510A (ko) | 1984-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4338177A (en) | Electrolytic cell for the production of aluminum | |
US4670110A (en) | Process for the electrolytic deposition of aluminum using a composite anode | |
US3028324A (en) | Producing or refining aluminum | |
US4333813A (en) | Cathodes for alumina reduction cells | |
EP0082096B1 (fr) | Eléments cathodiques flottants, à base de réfractaire électroconducteur, pour la production d'aluminium par électrolyse | |
AU698926B2 (en) | Improved lining for aluminum production furnace | |
US4462886A (en) | Cathode for a fused salt electrolytic cell | |
US5028301A (en) | Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells | |
US5227045A (en) | Supersaturation coating of cathode substrate | |
EP0099840A1 (fr) | Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant | |
CN110760887B (zh) | 氧铝联产电解用的电极结构 | |
US5158655A (en) | Coating of cathode substrate during aluminum smelting in drained cathode cells | |
NO800727L (no) | Katodiske stroemledere til bruk ved aluminiumreduksjon | |
AU2005205239A1 (en) | Ceramic material for use at elevated temperature | |
FR2542326A1 (fr) | Cuve de l'affinage de l'aluminium par electrolyse | |
EP0169152B1 (fr) | Bloc cathodique modulaire et cathode à faible chute de tension pour cuves d'électrolyse hall-héroult | |
RU2281987C2 (ru) | Пористый керамический материал, смачиваемый алюминием | |
US4383910A (en) | Alumina reduction cell | |
US4595475A (en) | Solid cathode in a fused salt reduction cell | |
US5129998A (en) | Refractory hard metal shapes for aluminum production | |
JPH0379439B2 (fr) | ||
EP0020576B1 (fr) | Procede de garnissage de cuves d'electrolyse pour la production d'aluminium | |
CH649102A5 (fr) | Cellule electrolytique pour la production electrolytique d'aluminium. | |
EP0069681B1 (fr) | Cellule de production électrolytique d'un métal à partir de son halogénure | |
US4450054A (en) | Alumina reduction cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH DE GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19840228 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI NL SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3365289 Country of ref document: DE Date of ref document: 19860918 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870630 Year of fee payment: 5 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19880629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19880630 Ref country code: LI Effective date: 19880630 Ref country code: CH Effective date: 19880630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19890101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19890301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83420109.7 Effective date: 19890220 |