EP0099331B1 - Kathodenwanne einer Aluminiumelektrolysezelle - Google Patents

Kathodenwanne einer Aluminiumelektrolysezelle Download PDF

Info

Publication number
EP0099331B1
EP0099331B1 EP83810282A EP83810282A EP0099331B1 EP 0099331 B1 EP0099331 B1 EP 0099331B1 EP 83810282 A EP83810282 A EP 83810282A EP 83810282 A EP83810282 A EP 83810282A EP 0099331 B1 EP0099331 B1 EP 0099331B1
Authority
EP
European Patent Office
Prior art keywords
carbon
layer
shear strength
lining
tank according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83810282A
Other languages
English (en)
French (fr)
Other versions
EP0099331A1 (de
Inventor
Max Zollinger
Raoul Jemec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Publication of EP0099331A1 publication Critical patent/EP0099331A1/de
Application granted granted Critical
Publication of EP0099331B1 publication Critical patent/EP0099331B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to a cathode tub of a melt flow electrolysis cell for the production of aluminum, consisting of an outer steel tub supported or supported by metal components, a heat-insulating layer and an electrically conductive inner lining made of carbon which is resistant to the molten aluminum and the electrolytes.
  • the carbon lining experiences a significant increase in volume over the course of its operating life. This is caused by the penetration of components that come from the electrolyte.
  • Components are understood to mean, for example, sodium or salts from which the fluoride melt is composed, and chemical compounds which have arisen from the fluoride melt by reactions which are not known in more detail.
  • the swelling carbon lining presses on the thermal insulation and thus indirectly on the steel tub. This can cause irreversible deformations that can strain them into the plastic area of the steel and cause them to tear.
  • DE-AS 2633055 proposes to form a bulge in the steel trough. This includes a storage space which is completely filled with a first, easily deformable material and a second material which can only be deformed with greater forces, in order to accommodate the bottom of the carbon lining, which expands in the horizontal direction during operation.
  • the second material has such mechanical properties that the forces are transmitted to the bulged steel jacket without permanent deformation and / or cracking. The opposing forces acting on the bottom of the carbon lining reduce its bulging and cracking.
  • an electrolysis cell for the production of aluminum in which the insulation and the cathode blocks made of carbon or the side walls made of anthracite and the carbon-containing ramming masses are separated by a shell-shaped intermediate layer.
  • This intermediate layer consists of powder or granular silicon carbide, which represents an insurmountable barrier for the molten metal.
  • the inventors have set themselves the task of creating a new concept for a cathode trough of a melt flow electrolysis cell for the production of aluminum, which can prevent uncontrolled deformations in cells of all sizes without causing damage to the cell in the form of cracking.
  • the concept should continue to make do with low investment costs and be flexible to use.
  • the object is achieved according to the invention by a layer which is arranged horizontally and exclusively in the area of the electrolyte and separates the carbon lining into a lower and an upper part from a material which is resistant to the electrolyte and which is resistant to temperatures up to 1000 ° C. Lich lower shear strength than that of the carbon lining.
  • the side wall of the carbon lining is divided.
  • the electric field between the cathode bars and the anodes passes through the bottom and lower part of the side wall of the carbon liner.
  • practically no electrical current flows through the part of the side wall of the carbon lining that lies above the layer with low shear strength. Therefore, the lower part of the carbon lining swells much more than the upper part.
  • the resulting tensions are absorbed by the layer with low shear strength tearing. Since it must lie completely in the area of the molten electrolyte, no liquid aluminum can enter the cracks formed.
  • the crack in the layer with low shear strength is self-healing; the molten electrolyte penetrating the crack cools so much in the outer area of the wall that it solidifies and thus prevents the electrolyte from flowing out.
  • the self-healing of the predetermined breaking point can be improved by arranging a collecting zone made of very good heat-conducting material that extends in the direction of the side wall of the outer steel trough directly outside the layer with low shear strength and the area of the carbon lining adjoining it below. This means that the heat given off by the electrolytes entering the crack can be dissipated more quickly, and self-healing through solidification takes place more quickly.
  • the upper limit of this collecting zone is expediently at approximately the same level as the upper limit of the layer with low shear strength. However, the collecting zone is thicker than this layer, it is advantageously two to three times as thick as the layer with low shear strength.
  • Metallic materials, such as steel wool or aluminum chips, are particularly well suited for the rapid dissipation of heat in the collecting zone.
  • the shear strength of the layer which separates the carbon lining into a lower and an upper part, is preferably at least five times less than that of carbon.
  • this layer with low shear strength is expediently between 2 and 15 cm, preferably between 5 and 10 cm.
  • the layer separating the carbon lining into two parts is expediently built up from prefabricated blocks.
  • the materials for these blocks must meet the three requirements of temperature resistance, resistance to the electrolyte and low shear strength.
  • foamed carbon, foamed ceramic materials and compressed carbon fiber layers can be used for the production of the blocks.
  • the layer with low shear strength is expediently glued to the carbon lining at the top with a known adhesive and placed on the carbon lining at the bottom via a carbon felt.
  • the compressed carbon felt is preferably between 5 and 15 mm thick and in turn glued to the lower part of the carbon lining.
  • this lower part can be graphitized more.
  • a melt flow electrolysis cell for the production of aluminum has an outer steel trough 10.
  • the lower insulation 12 and the lateral insulation 14 are embedded therein.
  • the lower insulation 12, which forms the substructure, is the lower one Part 16 of the carbon lining with cast or embedded, iron cathode bars 18 arranged.
  • the approximately 8 cm thick layer 20 with low shear strength is arranged on the horizontally delimited edge region of the lower part 16 of the carbon lining. Between this layer 20 and the lower part 16 of the carbon lining there is a base (not visible) made of carbon felt, which is glued to the lower part 16 of the carbon lining.
  • the upper part 22 of the carbon lining is glued to the layer 20 with low shear strength, it projects beyond the lower part laterally.
  • the uppermost area is formed by stone blocks 24, which ensures an insulating tub shelf that protects against the effects of oxygen.
  • Prestressed «crunch elements» 26 are arranged within the steel trough 10, at the level of the upper region of the bottom of the carbon lining, and are supported by a bulge in the steel trough 10.
  • the “crunch elements” 26 oppose the expanding lower part 16 of the carbon lining with a constant, path-independent resistance.
  • a very good heat-conducting layer is designed as a collecting zone 30. It extends in the vertical direction, downward, beyond the layer 20 with low shear strength and extends partially along the lower part 16 of the carbon lining.
  • a flexible wall 32 part of the side region of the steel tub 10 is replaced by a flexible wall 32.
  • fabrics made of carbon fibers, which are combined in a layered construction with metal foils, can be used.
  • the prestressed “crunch elements” 26 arranged outside the flexible wall 32 consist, as in FIG. 1, of packages of plastically deformable, vertically arranged tubes. Towards the outside, the “crunch elements” 26 are supported by a fixed abutment 28.
  • a sliding layer can be arranged between the flexible wall 32 and the lateral insulation.
  • Fig. 3 shows a block of carbon foam 20 lying on a carbon felt 34 with low shear strength. Because of the different expansion of the lower part 16 and the upper part 22 of the carbon lining, the layer 20 with low shear strength has cracked for the first time, liquid electrolyte has penetrated and partially solidified.
  • the layer 20 with low shear strength has been torn once, according to FIG. 4 several times.
  • the carbon felt 34 has partially dissolved after the repeated tearing and the solidified electrolyte 36 has penetrated further outwards.
  • 3 to 5 show - based on electrolysis cells with different dimensions of the individual components - the self-healing effect of the predetermined breaking point:
  • the trough containing the melt flow electrolyte and the separated liquid aluminum can tear only at one point, the layer 20 with low shear strength. There is only molten electrolyte in this area, no metal.
  • the electrolyte escaping through cracks in this layer 20 solidifies and although it continues to extend outwards, it always has a self-healing effect in that the solidified material prevents the flowing material from escaping further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kathodenwanne einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium, bestehend aus einer von Metallbauteilen getragenen bzw. gestützten äusseren Stahlwanne, einer wärmedämmenden Isolationsschicht und einer elektrisch leitenden, gegen das schmelzflüssige Aluminium und den Elektrolyten beständigen Innenauskleidung aus Kohlenstoff.
  • Für die Gewinnung von Aluminium durch Schmelzflusselektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In den Elektrolyten tauchen von oben Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet. Die Elektrolyse findet in einem Temperaturbereich von etwa 940 bis 970°C statt.
  • Die Kohlenstoffauskleidung erfährt im Verlaufe der Betriebsdauer eine bedeutsame Volumenzunahme. Diese wird durch das Eindringen von Komponenten, die aus dem Elektrolyten stammen, verursacht. Unter Komponenten werden beispielsweise Natrium oder Salze, aus denen die Fluoridschmelze zusammengesetzt ist, sowie chemische Verbindungen, die durch nicht näher bekannte Reaktionen aus der Fluoridschmelze entstanden sind, verstanden.
  • Weiter sind insbesondere zwei wesentliche Einflussfaktoren, welche das Aufquellen der Kathodenkohle im Betrieb steuern, bekannt:
    • - Die angelegte Stromdichte: Je grösser die Stromdichte, umso grösser ist die Volumenzunahme.
    • - Die Qualität des Kohlenstoffs: Je höher der Graphitisierungsgrad, desto kleiner ist die Volumenzunahme.
  • Die aufquellende Kohlenstoffauskleidung drückt auf die thermische Isolation und damit indirekt auf die Stahlwanne. Diese kann dadurch nichtreversible Verformungen erleiden, die sie bis in den plastischen Bereich des Stahles beanspruchen und zum Reissen bringen können.
  • Die Neigung zur Aufwölbung des Kohlenstoffbodens steigt mit zunehmendem Zellenalter; bei der Aufwölbung entstehen Risse. Das flüssige Aluminium kann dann durch diese Risse eindringen und die eisernen Kathodenbarren, welche den elektrischen Gleichstrom abführen, angreifen. Die Zerstörung der Auskleidung der Zelle kann soweit fortschreiten, dass das flüssige Aluminium aus der Zelle ausfliesst. In diesem Fall muss die Zelle im allgemeinen vorzeitig ausser Betrieb gesetzt werden. Dies führt zu teuren Reparaturen; ausserdem erleidet man durch den Stillstand derZelle einen Produktionsverlust.
  • Es sind zahlreiche Versuche unternommen worden, durch das Anbringen von Versteifungen auf der Stahlwanne Verformungen und Risse im Kohlenstoffboden zu vermeiden. Diese konnten jedoch üblicherweise nicht verhindert, sondern lediglich vermindert werden. Weiter stellen Versteifungen einen wesentlichen wirtschaftlichen Nachteil dar, die Zelle wird verteuert und das Gesamtgewicht der Kathodenwanne erheblich erhöht.
  • Andere Anstrengungen hatten das Ziel, die Tränkung der Kohlenstoffauskleidung mit Elektrolytkomponenten und die daraus resultierenden Volumenvergrösserungen zu beseitigen. Es hat sich jedoch gezeigt, dass sich diese Volumenvergrösserung nicht vermeiden lässt und als unabdingbare Voraussetzung hingenommen werden muss. In der DE-AS 2633055 wird vorgeschlagen, in der Stahlwanne eine Ausbuchtung auszuformen. Diese umfasst einen mit einem ersten, leicht verformbaren Material und einem zweiten, erst bei grösseren Kräften verformbaren Material vollständig gefüllten Stauraum zur Aufnahme des Bodens der Kohlenstoffauskleidung, welcher sich während des Betriebes in horizontaler Richtung ausdehnt. Das zweite Material weist solche mechanische Eigenschaften auf, dass die Kräfte ohne dauernde Verformung und/oder Rissbildung auf den ausgebuchteten Stahlmantel übertragen werden. Die auf den Boden der Kohlenstoffauskleidung einwirkenden Gegenkräfte vermindern dessen Aufwölbung und Durchsetzen mit Rissen.
  • Obwohl die nach dem Stand der Technik vorgeschlagenen Lösungen, insbesondere diejenige der oben genannten DE-AS 2633055, teilweise Abhilfe bringen, bestehen für Elektrolysezellen mit extrem hohen Stromstärken noch erhebliche Probleme.
  • Weiter ist aus der GB-A 1 209 541 eine Elektrolysezelle zur Herstellung von Aluminium bekannt, bei welcher die Isolation und die Kathodenblöcke aus Kohlenstoff bzw. die Seitenwände aus Anthrazit und die kohlenstoffhaltigen Stampfmassen durch eine schalenförmig ausgebildete Zwischenschicht getrennt sind. Diese Zwischenschicht besteht aus pulver- oder granulatförmigem Siliziumkarbid, welches für das geschmolzene Metall eine unüberwindliche Barriere darstellt.
  • Die Erfinder haben sich die Aufgabe gestellt, ein neues Konzept für eine Kathodenwanne einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium zu schaffen, das in Zellen aller Grössenordnungen unkontrollierte Deformationen verhindern kann, ohne dass der Zelle Schaden in Form von Rissbildung zugefügt wird. Das Konzept soll weiter mit geringen Investitionskostenauskommen und flexibel anwendbar sein.
  • Die Aufgabe wird erfindungsgemäss gelöst durch eine ausschliesslich im Bereich des Elektrolyten horizontal umlaufend angeordnete, die Kohlenstoffauskleidung in einen untern und einen obern Teil trennende Schicht aus einem bei Temperaturen bis zu 1000°C beständigen, gegen den Elektrolyten resistenten Material von wesentlich geringerer Scherfestigkeit als diejenige der Kohlenstoffauskleidung.
  • Nach diesem Konzept ist die Seitenwand der Kohlenstoffauskleidung geteilt. Das elektrische Feld zwischen den Kathodenbarren und den Anoden verläuft durch den Boden und den unteren Teil der Seitenwand der Kohlenstoffauskleidung. Durch den oberhalb der Schicht mit geringer Scherfestigkeit liegenden Teil der Seitenwand der Kohlenstoffauskleidung dagegen fliesst praktisch kein elektrischer Strom. Deshalb quillt der untere Teil der Kohlenstoffauskleidung wesentlich stärker auf als der obere Teil. Die dadurch entstehenden Spannungen werden aufgefangen, indem die Schicht mit geringer Scherfestigkeit reisst. Da sie vollständig im Bereich des schmelzflüssigen Elektrolyten liegen muss, kann kein flüssiges Aluminium in die gebildeten Risse eintreten.
  • Die als Sollbruchstelle bezeichnete Rissstelle in der Schicht mit geringer Scherfestigkeit ist selbstheilend, der in den Riss eindringende schmelzflüssige Elektrolyt kühlt sich im äusseren Bereich der Wandung so stark ab, dass er erstarrt und so das Ausfliessen des Elektrolyten verhindert.
  • Die Selbstheilung der Sollbruchstelle kann verbessert werden, indem unmittelbar ausserhalb der Schicht mit geringer Scherfestigkeit und dem Bereich der unten anschliessenden Kohlenstoffauskleidung eine sich in Richtung der Seitenwand der äusseren Stahlwanne erstreckende Auffangzone aus sehr gut wärmeleitendem Material angeordnet ist. Damit kann die von in den Riss eintretenden Elektrolyten abgegebene Wärme rascher abgeführt werden, die Selbstheilung durch Erstarren erfolgt rascher. Zweckmässig ist die obere Begrenzung dieser Auffangzone auf ungefähr gleichem Niveau wie die obere Begrenzung der Schicht mit geringer Scherfestigkeit. Die Auffangzone ist jedoch dicker als diese Schicht, sie ist vorteilhaft zwei bis dreimal so dick wie die Schicht mit geringer Scherfestigkeit. Für die rasche Abfuhr der Wärme in der Auffangzone sind insbesondere metallische Werkstoffe sehr gut geeignet, beispielsweise Stahlwolle oder Aluminiumspäne.
  • Damit die Rissbildung stets im erwünschten Bereich erfolgt, ist die Scherfestigkeit der Schicht, welche die Kohlenstoffauskleidung in einen unteren und oberen Teil trennt, vorzugsweise mindestens fünfmal kleiner als diejenige von Kohlenstoff.
  • Die Dicke dieser Schicht mit geringer Scherfestigkeit liegt in der Praxis zweckmässig zwischen 2 und 15 cm, vorzugsweise zwischen 5 und 10 cm.
  • Die die Kohlenstoffauskleidung in zwei Teile trennende Schicht wird zweckmässig aus vorfabrizierten Blöcken aufgebaut. Die Materialien für diese Blöcke müssen die drei Anforderungen der Temperaturbeständigkeit, der Resistenz gegenüber dem Elektrolyten und der geringen Scherfestigkeit erfüllen. In der Praxis können für die Herstellung der Blöcke geschäumter Kohlenstoff, geschäumte keramische Materialien und komprimierte Kohlefaserschichten eingesetzt werden.
  • Die Schicht mit geringer Scherfestigkeit wird oben zweckmässig mit einem bekannten Kleber an die Kohlenstoffauskleidung geklebt und unten über einen Kohlenstoffilz auf die Kohlenstoffauskleidung gelegt. Der komprimierte Kohlenstoffilz ist vorzugsweise zwischen 5 und 15 mm dick und seinerseits an den unteren Teil der Kohlenstoffauskleidung geklebt.
  • Soll der untere Teil der Kohlenstoffauskleidung weniger rasch aufquellen, so kann dieser untere Teil stärker graphitisiert werden.
  • Weiter hat es sich als vorteilhaft erwiesen, im Bereich des Bodens der Kohlenstoffauskleidung plastisch verformbare Metallteile oder spröde poröse Materialien anzuordnen, welche bei einer Ausdehnung dieses Bodens einen nahezu konstanten Widerstand erzeugen. Die Angriffsfläche dieser sogenannten «Crunchelemente» liegt vorzugsweise oberhalb der Kernzone des Bodens der Kohlenstoffauskleidung. Damit wird die Ausbildung von Rissen und unzulässigen Deformationen verhindert. Der negative Einfluss von allfällig im Bereich des Bodens der Kohlenstoffauskleidung vorhandenen Rissen wird zweckmässig dadurch vermindert bzw. verhindert, dass die eingesetzten «Crunchelemente» mit bekannten Mitteln vorgespannt werden.
  • Als plastisch verformbare Metallteile werden zweckmässig hochgestellte Rohre bzw. Rohrpakete verwendet. Anstelle der hochgradig plastischen Metalle ist auch die Verwendung von relativ spröden Materialien mit unzähligen kleinsten Hohlräumen eine vorzugsweise Ausführungsform der «Crunchelemente». Beim Zermalmen eines solchen Materials brechen die von Auge kaum sichtbaren Materialbrücken eine nach der anderen ein, während die restlichen, noch intakten Zonen einen nahezu konstanten Widerstand gegen den sich ausdehnenden unteren Teil der Kohlenstoffauskleidung bieten.
  • Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen schematisch:
    • Fig. 1 eine aufgeschnittene perspektivische Darstellung des Seitenbereichs einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium,
    • Fig. 2 einen Vertikalschnitt durch den Seitenbereich einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium,
    • Fig. 3 einen teilweisen Vertikalschnitt im Bereich einer Schicht mit geringer Scherfestigkeit, nach dem ersten Reissen,
    • Fig. 4 einen Ausschnitt wie Fig. 3 nach dem x-ten Reissen, und
    • Fig. 5 einen Ausschnitt wie Fig. 3 und 4 nach dem Durchriss der Schicht mit geringer Scherfestigkeit.
  • Eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium hat eine äussere Stahlwanne 10. Darin eingebettet ist die untere Isolation 12 und die seitliche Isolation 14. Auf der den Unterbau bildenden unteren Isolation 12 ist der untere Teil 16 der Kohlenstoffauskleidung mit eingegossenen bzw. eingebetteten, eisernen Kathodenbarren 18 angeordnet. Auf dem horizontal begrenzten Randbereich des unteren Teils 16 der Kohlenstoffauskleidung ist die etwa 8 cm dicke Schicht 20 mit geringer Scherfestigkeit angeordnet. Zwischen dieser Schicht 20 und dem unteren Teil 16 der Kohlenstoffauskleidung liegt - nicht sichtbar-eine Unterlage aus Kohlenstoffilz, welcher am unteren Teil 16 der Kohlenstoffauskleidung angeklebt ist.
  • Auf der Schicht 20 mit geringer Scherfestigkeit ist der obere Teil 22 der Kohlenstoffauskleidung angeklebt, er überragt den unteren Teil seitlich. Den obersten Bereich bilden Steinblöcke 24, womit ein isolierendes, gegen Sauerstoffeinwirkung schützendes Wannenbord gewährleistet ist.
  • Innerhalb der Stahlwanne 10, auf der Höhe des oberen Bereichs des Bodens der Kohlenstoffauskleidung sind vorgespannte «Crunchelemente» 26 angeordnet, die von einer Ausbuchtung der Stahlwanne 10 gestütztwerden.
  • Die «Crunchelemente» 26 setzen dem sich ausdehnenden unteren Teil 16 der Kohlenstoffauskleidung einen konstanten, wegunabhängigen Widerstand entgegen.
  • Zwischen der seitlichen Isolation 14 und dem oberen Teil 22 der Kohlenstoffauskleidung ist eine als Auffangzone 30 ausgestaltete, sehr gut wärmeleitende Schicht ausgebildet. Sie geht in vertikaler Richtung, nach unten, über die Schicht 20 mit geringer Scherfestigkeit hinaus und erstreckt sich teilweise entlang des unteren Teils 16 der Kohlenstoffauskleidung.
  • In Fig. 2 ist ein Teil des Seitenbereichs der Stahlwanne 10 durch eine flexible Wand 32 ersetzt. Dazu können beispielsweise Gewebe aus Kohlefasern, die in Schichtbauweise mit Metallfolien kombiniert sind, eingesetzt werden. Die ausserhalb der flexiblen Wand 32 angeordneten, vorgespannten «Crunchelemente» 26 bestehen, wie in Fig. 1, aus Paketen von plastisch verformbaren, vertikal angeordneten Rohren. Gegen aussen werden die «Crunchelemente» 26 von einem festen Widerlager 28 gestützt. Zwischen der flexiblen Wand 32 und der seitlichen Isolation kann eine Gleitschicht angeordnet werden.
  • Fig. 3 zeigt einen auf einem Kohlestoffilz 34 liegenden Kohleschaumblock 20 mit geringer Scherfestigkeit. Wegen unterschiedlicher Ausdehnung des unteren Teils 16 und des oberen Teils 22 der Kohlenstoffauskleidung ist die Schicht 20 mit geringer Scherfestigkeit ein erstes Mal gerissen, flüssiger Elektrolyt ist eingedrungen und teilweise erstarrt.
  • In der Darstellung nach Fig. 3 ist die Schicht 20 mit geringer Scherfestigkeit einmal, nach Fig. 4 bereits mehrmals gerissen. Der Kohlefilz 34 hat sich nach dem mehrmaligen Reissen teilweise aufgelöst und der erstarrte Elektrolyt 36 ist weiter nach aussen vorgedrungen.
  • In Fig. 5 schliesslich ist der erstarrte Elektrolyt vollständig durch die Schicht 20 mit geringer Scherfestigkeit nach aussen durchgedrungen und in der Auffangzone 30 erstarrt.
  • Der Fig. 3 bis 5 zeigen - anhand von Elektrolysezellen mit unterschiedlichen Dimensionierungen der einzelnen Bauteile - deutlich den selbstheilenden Effekt der Sollbruchstelle: Die den Schmelzflusselektrolyten und das abgeschiedene flüssige Aluminium enthaltende Wanne kann nur an einer Stelle, der Schicht 20 mit geringer Scherfestigkeit, reissen. In diesem Bereich befindet sich nur schmelzflüssiger Elektrolyt, kein Metall. Der durch Risse in dieser Schicht 20 austretende Elektrolyt erstarrt und obwohl er sich zunehmend nach aussen fortsetzt, wirkt er immer selbstheilend, indem das erstarrte Material das nachfliessende am weiteren Austreten hindert.

Claims (10)

1. Kathodenwanne einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium, bestehend aus einer von Metallbauteilen getragenen bzw. gestützten äusseren Stahlwanne, einer wärmedämmenden Isolationsschicht und einer elektrisch leitenden, gegen das schmelzflüssige Aluminium und den Elektrolyten beständigen Innenauskleidung aus Kohlenstoff, gekennzeichnet durch eine ausschliesslich im Bereich des Elektrolyten horizontal umlaufend angeordnete, die Kohlenstoffauskleidung in einen untern (16) und einen obern Teil (22) trennende Schicht (20) aus einem bei Temperaturen bis zu 1000°C beständigen, gegen den Elektrolyten resistenten Material von wesentlich geringerer Scherfestigkeit als diejenige der Kohlenstoffauskleidung.
2. Kathodenwanne nach Anspruch 1, dadurch gekennzeichnet, dass die Scherfestigkeit der die Kohlenstoffauskleidung trennenden Schicht (20) mindestens fünfmal kleiner als diejenige der Kohlenstoffauskleidung ist.
3. Kathodenwanne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dicke der Schicht (20) mit geringer Scherfestigkeit 2-15 cm, vorzugsweise 5-10 cm, beträgt.
4. Kathodenwanne nach mindestens einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Schicht (20) mit geringer Scherfestigkeit aus geschäumtem Kohlenstoff, Kohlefaserschichten oder geschäumtem keramischem Material besteht.
5. Kathodenwanne nach mindestens einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Schicht (20) mit geringer Scherfestigkeit mit einem bekannten Kleber an den oberen Teil (22) der Kohlenstoffauskleidung geklebt und über einen Kohlenstoffilz (34) auf dem unteren Teil (16) der Kohlenstoffauskleidung liegt.
6. Kathodenwanne nach Anspruch 5, dadurch gekennzeichnet, dass der komprimierte Kohlenstoffilz (34) 5-15 mm dick und mit einem bekannten Kleber auf den unteren Teil (16) der Kohlenstoffauskleidung geklebt ist.
7. Kathodenwanne nach mindestens einem der Ansprüche 1-6, dadurch gekennzeichnet, dass unmittelbar ausserhalb der Schicht (20) mit geringer Scherfestigkeit und teilweise dem unten anschliessenden unteren Teil (16) der Kohlenstoffauskleidung eine sich in Richtung der Seitenwand der äusseren Stahlwanne (10) erstrekkende Auffangzone (30) aus sehr gut wärmeleitendem Material angeordnet ist, wobei die Höhe dieser Auffangzone (30) vorzugsweise das zweibis dreifache der Dicke der Schicht (20) mit geringer Scherfestigkeit beträgt.
8. Kathodenwanne nach Anspruch 7, dadurch gekennzeichnet, dass die Auffangzone (30) aus Stahlwolle oder Aluminiumspänen besteht.
9. Kathodenwanne nach mindestens einem der Ansprüche 1-8, dadurch gekennzeichnet, dass der untere Teil (16) der Kohlenstoffauskleidung stärker graphitisiert ist als deren oberer Teil (22).
10. Kathodenwanne nach mindestens einem der Ansprüche 1-9, dadurch gekennzeichnet, dass im Bereich des Bodens des unteren Teils (16) der Kohlenstoffauskleidung, vorzugsweise oberhalb von dessen Kernzone, einen nahezu konstanten, wegunabhängigen Widerstand erzeugende, vorzugsweise vorgespannte «Crunchelemente» (26) in Form von plastisch verformbaren Metallrohren oder spröden porösen Materialien angeordnet sind.
EP83810282A 1982-07-12 1983-06-24 Kathodenwanne einer Aluminiumelektrolysezelle Expired EP0099331B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4249/82A CH660030A5 (de) 1982-07-12 1982-07-12 Kathodenwanne einer aluminiumelektrolysezelle.
CH4249/82 1982-07-12

Publications (2)

Publication Number Publication Date
EP0099331A1 EP0099331A1 (de) 1984-01-25
EP0099331B1 true EP0099331B1 (de) 1986-12-10

Family

ID=4272579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810282A Expired EP0099331B1 (de) 1982-07-12 1983-06-24 Kathodenwanne einer Aluminiumelektrolysezelle

Country Status (11)

Country Link
US (1) US4537671A (de)
EP (1) EP0099331B1 (de)
JP (1) JPS5923891A (de)
AU (1) AU1660983A (de)
CA (1) CA1215941A (de)
CH (1) CH660030A5 (de)
DE (1) DE3368292D1 (de)
NO (1) NO832497L (de)
NZ (1) NZ204762A (de)
SU (1) SU1308201A3 (de)
ZA (1) ZA834667B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687566A (en) * 1985-03-06 1987-08-18 Swiss Aluminium Ltd. Protective collar for anode spade pin
NO157462C (no) * 1985-10-24 1988-03-23 Hydro Aluminium As Laminert karbonkatode for celler til smelte-elektrolytisk fremstilling av aluminium.
US4900249A (en) * 1987-01-12 1990-02-13 Dresser Industries, Inc. Aluminum reverberatory furnace lining
WO2009080167A1 (de) * 2007-12-22 2009-07-02 Jünger+Gräter Gmbh Feuerfestbau Wandauskleidung von industrieöfen
DE102010041082A1 (de) * 2010-09-20 2012-03-22 Sgl Carbon Se Kathode für Eletrolysezellen
DE102010041081B4 (de) * 2010-09-20 2015-10-29 Sgl Carbon Se Kathode für Elektrolysezellen
ITVE20110026A1 (it) * 2011-05-05 2012-11-06 Tito Monticelli Canalizzazione latente per forno elettrolitico per la produzione di al. da al2o3 + na3alf3. l'invenzione riguarda la realizzazione nella parte catodica di una vasca/forno standard a difesa dal danneggiamento provocato da corrosione prima, e da infilt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1209541A (en) * 1967-02-01 1970-10-21 Montedison Spa Electrolytic furnaces for the production of aluminium
US3514520A (en) * 1967-02-01 1970-05-26 Montedison Spa Linings of electrolysis,remelting,and similar furnaces,containing molten metals,alone or together with molten salts
CH606496A5 (de) * 1976-06-16 1978-10-31 Alusuisse
CH643602A5 (de) * 1979-10-17 1984-06-15 Alusuisse Elektrolysewanne.
US4339316A (en) * 1980-09-22 1982-07-13 Aluminum Company Of America Intermediate layer for seating RHM tubes in cathode blocks

Also Published As

Publication number Publication date
DE3368292D1 (en) 1987-01-22
JPS5923891A (ja) 1984-02-07
CH660030A5 (de) 1987-03-13
ZA834667B (en) 1984-03-28
CA1215941A (en) 1986-12-30
AU1660983A (en) 1984-01-19
SU1308201A3 (ru) 1987-04-30
US4537671A (en) 1985-08-27
NZ204762A (en) 1986-05-09
EP0099331A1 (de) 1984-01-25
NO832497L (no) 1984-01-13

Similar Documents

Publication Publication Date Title
DE2312439C2 (de) Kathodenwanne einer Aluminiumschmelzflußelektrolysezelle
DE1251962B (de) Kathode fur eine Elektrolysezelle zur Herstellung von Aluminium und Verfahren zur Herstellung derselben
DE2817202A1 (de) Aus expandiertem graphit bestehende barriere am boden einer elektrolytischen zelle
DE3015244A1 (de) Kathoden-strom-zufuhr-element fuer zellen zur elektrolytischen reduktion von aluminium
EP0099331B1 (de) Kathodenwanne einer Aluminiumelektrolysezelle
EP2440688B1 (de) Kathodenboden, verfahren zur herstellung eines kathodenbodens und verwendung desselben in einer elektrolysezelle zur herstellung von aluminium
DE1533439A1 (de) Elektrolytische Zelle zur Gewinnung von Aluminium und Verfahren zum Betrieb derselben
DE3634076C2 (de)
EP3472373B1 (de) Kathodenblock aufweisend eine nut-geometrie
DE3506200A1 (de) Kathodenwanne fuer eine aluminium-elektrolysezelle und verfahren zur herstellung von deren seitenwand bildenden verbundkoerpern
DE1092215B (de) Kathode und Zelle zur Gewinnung von Aluminium aus Aluminiumoxyd durch Schmelzflusselektrolyse
EP0052577B1 (de) Verankerung für einen Kathodenbarren
EP2989235B1 (de) Kathodenblock mit einer nut mit variierender tiefe und einer fixiereinrichtung
CH647820A5 (de) Unterteil einer schmelzflusselektrolysezelle.
DE3116273A1 (de) Elektrolysewanne
EP0412146B1 (de) Wärmespeicher mit expansionsbereich
DE2633055B1 (de) Elektrolysezelle zur herstellung von aluminium
EP0193491A1 (de) Elektrolysewanne
DE2162893A1 (de) Boden für einen Schachtofen und Verfahren zum Kühlen desselben
EP3350358B1 (de) Kathodenboden zur herstellung von aluminium
EP0109358A1 (de) Kathode für eine Schmelzflusselektrolysezelle
DE3538016C2 (de)
DE3135083C1 (de) Elektrolysewanne zur Herstellung von Aluminium mittels Schmelzflusselektrolyse und Verfahren zum Einsetzen der Eisenbarren
EP0197003A1 (de) Elektrolysewanne für die Herstellung von Aluminium
DE102011004010A1 (de) Kathodenanordnung mit einem oberflächenprofilierten Kathodenblock mit Nut variabler Tiefe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840629

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3368292

Country of ref document: DE

Date of ref document: 19870122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870630

Ref country code: CH

Effective date: 19870630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122