EP0093826A1 - Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke - Google Patents

Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke Download PDF

Info

Publication number
EP0093826A1
EP0093826A1 EP82890070A EP82890070A EP0093826A1 EP 0093826 A1 EP0093826 A1 EP 0093826A1 EP 82890070 A EP82890070 A EP 82890070A EP 82890070 A EP82890070 A EP 82890070A EP 0093826 A1 EP0093826 A1 EP 0093826A1
Authority
EP
European Patent Office
Prior art keywords
heating
heat
heat pump
refrigerant
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82890070A
Other languages
English (en)
French (fr)
Inventor
Alois Dipl.-Ing. Rechberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Austria GmbH
Original Assignee
Shell Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Austria GmbH filed Critical Shell Austria GmbH
Priority to EP82890070A priority Critical patent/EP0093826A1/de
Publication of EP0093826A1 publication Critical patent/EP0093826A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the invention relates to a system for carrying out a heat pump process for heating purposes, in particular for heating or cooling building interiors, which system is an expander which is operated by the vapor of a refrigerant brought to elevated pressure and temperature, and a heat pump compressor coupled directly to the expander includes.
  • the principle of operation of this system is essentially based on a combined Rankine / Lorenz heat pump process, in which a halogenated hydrocarbon-based refrigerant can be used to operate the expander and any energy source can be used to heat the boiler system.
  • a better use of the energy content of the energy source used is brought about by the diesel or gas piston engine as the driving machine, in particular if the waste heat contained in the combustion gases is also used.
  • a major disadvantage of such an arrangement is the noise and vibration tendency inherent in an internal combustion engine, and the need for maintenance, such as e.g. Oil change, etc .; in addition, there is a commitment to a liquid fuel.
  • DE-OS 2 751 003 describes a heat pump system with an air source and a rotary piston compressor and expander with several slide valves, which can be used for area heating of a building to be air-conditioned.
  • This known system is a complicated system with a large number of units, including a special control device for the refrigerant flow, but the thermal link is limited to the actual heat pump system and neither the use of residual flue gas heat nor the use of the heat content, which significantly improves the overall efficiency of heating return water is provided.
  • the invention is based on such a system that an expander operated with refrigerant vapor and one directly with it coupled heat pump compressor comprises.
  • this system is now characterized by a refrigerant evaporator heated by means of a liquid, gaseous or solid energy source or by means of thermal energy from radioactive decay processes for evaporating the refrigerant conducted in a closed circuit, by a low-noise and low-vibration screw expander, which drives a compressor heat pump serves, through a condenser acted upon by heating return water for the condensation of the refrigerant vapor coming from the screw expander as well as through a collecting container for the liquid refrigerant together with the return line to the evaporator and boiler feed pump.
  • a particular advantage of the system according to the invention lies in the special thermal connection of the energy flows here, which are supplied by the flue gas or another carrier of thermal energy, by the outside air used as heat carrier and by the heating water supply and return, and which this system, make it technically and economically usable, especially in the power range from 5 to 40 kW already mentioned.
  • the refrigerant evaporator preferably a once-through boiler
  • a downstream heater for the reheating of the heating water which is connected to the flue gases or the heat transfer medium in the case of radioactive decay processes, and forms a unit with it.
  • This combination of refrigerant evaporator, downstream heat recovery boiler for reheating the heating water whereby there is also the possibility of a pure heating operation with the refrigerant evaporator switched off, provides an economical and particularly low-noise and low-vibration provision of low heat (5 to 40 kW).
  • the reheater can advantageously be arranged and dimensioned in such a way that heating operation is also possible if the heat pump fails.
  • the system according to the invention is advantageously designed in such a way that the condenser for the refrigerant vapor emerging from the screw expander with the heating water circuit for releasing part of the heat content of the heating return water for heating the useful heat transfer medium supplied to the heat pump circuit, e.g. Air, is connected.
  • the heat pump circuit e.g. Air
  • This embodiment of the system has the advantage that part of the heating return water for preheating and de-icing the air / heat exchanger of the heat pump is used or prevents the exchange surface from freezing, which also enables improved condensation heat dissipation and improves the coefficient of performance by reducing the temperature spread becomes.
  • the heat pump itself is operated and controlled in a known manner.
  • the system according to the invention which comprises an expander-operated, encapsulated heat pump in a low-vibration and low-noise design, combines the important advantages that. Iie waste heat is largely exploited and that all liquid and gaseous energy sources can be used directly or indirectly to operate the system, the changeover can be carried out in a simple manner by exchanging or adapting the burner. Heating using solid energy sources, such as coal in half-gas or fluidized bed combustion systems, is also technically easy to carry out. The decay heat of radioisotopes can also be used advantageously as a heat source.
  • a microcomputer control system can be used for the operation of the heat pump according to the invention, which makes it possible to automatically control the individual functions of the system elements, depending on the outside temperature or heat demand on the heating circuit.
  • the system can be designed for a range of heating power from 3 to 200 kW.
  • a heat output of 5 to 40 kW is preferred.
  • the described design of refrigerant evaporator, reheater for the heating water and the possibility of operating it without switching on the refrigerant circuit ensures optimal and safe provision of heating energy and at the same time achieves a very compact unit that - assembled together - can be set up like a boiler.
  • Example: For heating a single-family house is a heat pump system of the type according to the invention, which has a heating output of -10 ° C at an outside temperature 24 kW, in the manner shown in the attached drawing:
  • the refrigerant vapor entering a condenser 2 of the refrigerant circuit is condensed there by means of heating return water 7, which has a temperature of about 30 ° C., and returned to a container 3 with level control, about 9.5 kW being given off to the heating water.
  • the refrigerant is recirculated from the container 3 via the pump 4 and the valve 5 to the evaporator 12, where it is liquid, e.g. at 40 ° C / 26 bar.
  • the heating return water 7 heated in the condenser 2, for example to 41 ° C., is fed to the condenser 11 of a conventionally operating compressor heat pump 8 - 11, the compressor 8 of which is directly coupled to the screw expander 1 and operates at 3000 rpm, and there at approximately 56 ° 0 warmed.
  • the circulating heat transfer medium after exiting the condenser 11, passes through a throttle 10 into the heat pump evaporator 9, in which the medium, e.g.
  • the heating water coming from the condenser 11, preheated to 56 ° C, is now fed to a downstream heating water reheater 13, where it absorbs a further 2.5 kW of useful heat and then supplies the heating system of the house with a flow temperature of 60 ° C as the heating water flow 20.
  • the reheater 13 for the heating water like the evaporator 12 for the refrigerant, is installed in a boiler arrangement 14, which thus comprises both the refrigerant circuit and the heating water circuit.
  • the boiler arrangement is operated by means of a burner / or.
  • the required thermal energy is supplied by means of a half-gas or fluidized-bed combustion and released to the two aforementioned circulation systems via the flue gas.
  • a control cap 15, which is intended for regulating the heating water temperature, is advantageously installed in the boiler arrangement 14.
  • the control flap is controlled depending on the heating water outlet temperature.
  • the heating water reheater 13 is operated alone, which, for example, enables the heating to continue to be operated in the event of a fault restricted to the refrigerant circuit.
  • This operation of the downstream heating water reheater as the sole heating unit can be brought about by a corresponding design of the control flap as a flue gas deflection device.
  • the flue gas deflecting device can also be designed in such a way that the heating surface of the heating water reheater 13 is bypassed, which is important in the event that it can be found that the heating water has a lower supply temperature.
  • the heating return water 7 is passed through an upstream air heater 6, which prevents icing of the air / heat exchange of the air / heat exchanger of the heat pump evaporator.
  • An additionally provided bypass line 16 with a switching valve 17 enables the heating return water 7 to be fed directly to the condenser 2 of the screw expander 1 at higher outside temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Die Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke, insbesondere für das Heizen oder Kühlen von Gebäude-Innenräumen, umfaßt einen Expander (1), der durch den unter erhöhten Druck und erhöhte Temperatur gebrachten Dampf eines Kältemittels betrieben wird, und einen direkt damit gekoppelten Wärmepumpenkompressor (8). Bei dieser auf einen kombinierten Rankine/Lorenz-Wärmepumpenprozeß beruhenden Anlage kann ein Kältemittel auf Halogenkohlenwasserstoff-Basis zum Betrieb des Expanders (1) und ein beliebiger Energieträger zur Beheizung der Kesselanlage (14) dienen. Zur Erzielung einer rationellen Ausnützung der bei solchen Anlagen eingesetzten Energieträger, einschließlich der anfallenden Abwärme, sind ein von dem Energieträger beheizter Kältemittelverdampfer (12) zum Verdampfen des in einem geschlossenen Kreislauf geführten Kältemittels. ein gerausch- und vibrationsarmer Schraubenexpander (1), der als Antrieb für eine Kompressorwärmepumpe (8, 9, 10, 11) dient, ein mittels Heizrücklaufwasser (7) beaufschlagter Kondensator (2) für die Kondensation des aus dem Schraubenexpander (1) kommenden Kältemitteldampfes sowie ein Sammelbehälter (3) für das flüssige Kältemittel samt Rücklaufleitung zum Verdampfer (12) und eine Kesselspeisepumpe (4) vorgesehen. Die Anlage ist insbesondere für eine wirtschaftliche und besonders geräusch- und vibrationsarme Bereitstellung von Heizwärme kleiner Leistung (5 bis 40 kW) bestimmt.

Description

  • Die Erfindung betrifft eine Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke, insbesondere für das Heizen oder Kühlen von Gebäudeinnenräumen, welche Anlage einen Expander, der durch den unter erhöhten Druck und erhöhte Temperatur gebrachten Dampf eines Kältemittels betrieben wird, und einen direkt mit dem Expander gekoppelten Wärmepumpenkompressor umfaßt. Das Wirkungsprinzip dieser Anlage beruht im wesentlichen auf einem kombinierten Rankine/ Lorenz-Wärmepumpenprozeß, bei welchem ein Kältemittel auf Halogenkohlenwasserstoffbasis zum Betrieb des Expanders und ein beliebiger Energieträger zur Beheizung der Kesselanlage dienen können.
  • Für den Antrieb von Kompressorwärmepumpen sind Elektromotoren, aber auch leistungsgeregelte bzw. drehzahlgeregelte Verbrennungsmotoren seit langem bekannt und technisch realisiert. Auch die Verwendung von Turbinenantrieben für größere Wärmepumpenanlagen ist bereits technisch verwirklicht worden.
  • Während der Antrieb durch Elektromotoren für Kleinanlagen mit einer Wärmeleistung von 5 bis 40 kW an sich ideal ist, liegt - energietechnisch gesehen - ein Nachteil darin, daß die so verwendete Elektroenergie im Regelfall in kalorischen Kraftwerken mit relativ niedrigem Wirkungsgrad, bezogen auf die eingesetzte Primärenergie, erzeugt wird und die dort anfallende Abwärme derzeit meist nicht genützt wird. Selbst eine hohe Leistungszahl der Wärmepumpenanlage erbringt daher keine entscheidende Verbesserung der Gesamtnutzung des eingesetzten Energieträgers.
  • Eine bessere Nutzung des Energieinhalts des eingesetzten Energieträgers bringt zwar der Diesel- oder Gaskolbenmotor als Antriebsmaschine mit sich, insbesondere wenn die in den Verbrennungsgasen enthaltene Abwärme mitgenutzt wird. Ein wesentlicher Nachteil einer solchen Anordnung ist aber die einem Verbrennungsmotor innewohnende Geräuschentwicklung und Vibrationsneigung sowie die Wartungsnotwendigkeit, wie z.B. Schmierölwechsel usw.; hinzu kommt die Gebundenheit an einen flüssigen Brennstoff.
  • Bei einer Dampfturbine mit einer sehr kleinen Leistung ergeben sich sehr hohe Drehzahlen, die für den Betrieb eines Kolbenkompressors mittels eines Untersetzungsbetriebes reduziert werden müssen, was wegen der besonderen Schwierigkeit der Getriebeschmierung sowie der hochfrequenten Geräuschentwicklung für eine Verwendung in Wohnhäusern nicht geeignet erscheint.
  • In der DE-OS 2 751 003 ist ein Wärmepumpensystem mit einer Luftquelle und einem Drehkolbenkompressor und -entspanner mit mehreren Schieberventilen beschrieben, das zum Bereichsheizen eines zu klimatisierenden Gebäudes verwendet werden kann. Bei dieser bekannten Anlage handelt es sich um ein kompliziertes System mit einer Vielzahl von Einheiten einschließlich einer besonderen Steuereinrichtung für den Kältemittelstrom, wobei jedoch die wärmetechnische Verknüpfung auf das eigentliche Wärmepumpensystem beschränkt ist und weder eine Nutzung von Rauchgasrestwärme noch eine den Gesamtwirkungsgrad wesentlich verbessernde Nutzung des Wärmeinhaltes von Heizrücklaufwasser vorgesehen ist.
  • Die Erfindung geht von einem solchen System aus, das einen mit Kältemitteldampf betriebenen Expander und einen direkt damit gekoppelten Wärmepumpenkompressor umfaßt. Gemäß der Erfindung ist nun diese Anlage gekennzeichnet durch einen mittels eines flüssigen, gasförmigen oder festen Energieträgers oder mittels Wärmeenergie aus radioaktiven Zerfallsprozessen beheizten Kältemittelverdampfer zum Verdampfen des in einem geschlossenen Kreislauf geführten Kältemittels, durch einen geräusch- und vibrationsarmen Schraubenexpander, der als Antrieb für eine Kompressorwärmepumpe dient, durch einen mittels Heizrücklaufwasser beaufschlagten Kondensator für die Kondensation des aus dem Schraubenexpander kommenden Kältemitteldampfes sowie durch einen Sammelbehälter für das flüssige Kältemittel samt Rücklaufleitung zum Verdampfer und Kesselspeisepumpe.
  • Ein besonderer Vorteil der erfindungsgemäßen Anlage ist in der hier vorliegenden speziellen wärmetechnischen Verknüpfung der Energieströme gelegen, die vom Rauchgas oder einem anderen Träger von Wärmeenergie, von der als Wärmeträger verwendeten Außenluft und von dem Heizwasser-Vor-und Rücklauf geliefert werden und die dieses System, insbesondere in dem bereits angeführten Leistungsbereich von 5 bis 40 kW, erst technisch und wirtschaftlich nutzbar machen.
  • Gemäß einer besonders günstigen Weiterbildung der Anlage ist der Kältemittel verdampfer, bevorzugt ein Zwangsdurchlaufkessel, mit einem dahintergeschalteten und mit den Rauchgasen bzw. mit dem Wärmeträgermedium im Falle von radioaktiven Zerfallsprozessen beaufschlagten Nacherhitzer für die Nacherhitzung des Heizwassers kombiniert und bildet mit diesem eine Einheit. Durch diese Kombination von Kältemittelverdampfer, dahintergeschaltetem Abhitzekessel für die Nacherhitzung des Heizwassers, wobei auch die Möglichkeit eines reinen Heizbetriebes unter Ausschaltung des Kältemittelverdampfers besteht, wird eine wirtschaftliche und besonders geräusch- und vibrationsarme Bereitstellung von Heizwärme kleiner Leistung (5 bis 40 kW) sichergestellt. Bei der erfindungsgemäßen Anlage kann der Nacherhitzer vorteilhafterweise so angeordnet und dimensioniert werden, daß auch ein Heizbetrieb bei Ausfall der Wärmepumpe möglich ist.
  • In diesem Zusammenhang erweist es sich als besonders günstig, wenn für die Kondensation des aus dem Schraubenexpander austretenden Kältemitteldampfes wenigstens ein Teilstrom des Heizrücklaufwassers verwendet wird. Zu diesem Zweck ist die erfindungsgemäße Anlage vorteilhaft in der Weise ausgestaltet, daß der Kondensator für den aus dem Schraubenexpander austretenden Kältemitteldampf mit dem Heizwasserkreislauf zur Abgabe eines Teiles des Wärmeinhalts des Heizrücklaufwassers für die Erwärmung des dem Wärmepumpenkreislauf zugeführten Nutzwärmeträgermediums, wie z.B. Luft, verbunden ist. Diese Ausführungsform der Anlage ergibt den Vorteil, daß ein Teil des Heizrücklaufwassers zur Vorwärmung sowie zur Enteisung des Luft/Wärme-Austauschers der Wärmepumpe Verwendung findet bzw. ein Vereisen der Austauschfläche verhindert, wodurch auch eine verbesserte Kondensationswärmeabführung ermöglicht und die Leistungszahl durch Absenkung der Temperaturspreizung verbessert wird. Die Wärmepumpe selbst wird in bekannter Weise betrieben und geregelt.
  • Für die praktische Ausführung der erfindungsgemäßen Anlage ist es besonders zweckmäßig, wenn alle Teile der Anlage, einschließlich der Wärmepumpe, auf einem gemeinsamen Träger montiert, kompakt sowie wärme- und schallisoliert gekapselt ausgeführt sind. Mit dieser Bauart ist eine besonders weitgehende Nutzung der im Kapselinnenraum aufgenommenen Abwärme möglich.
  • Die erfindungsgemäße Anlage, die eine expanderbetriebene, gekapselte Wärmepumpe in vibrations- und geräuscharmer Ausführung umfaßt, vereinigt die wichtigen Vorteile, daß. iie anfallende Abwärme weitgehend ausgenützt wird und daß alle flüssigen und gasförmigen Energieträger direkt oder indirekt zum Betrieb der Anlage eingesetzt werden können, wobei die Umstellung in einfacher Weise durch Austausch bzw. Adaptierung des Brenners vorgenommen werden kann. Ebenso ist eine Beheizung mittels fester Energieträger, wie z.B. mit Kohle in Halbgas- oder Wirbelschichtfeuerungsanlagen, technisch leicht ausführbar. Vorteilhaft kann auch die Zerfallswärme von Radioisotopen als Wärmequelle Anwendung finden.
  • Für den Betrieb der erfindungsgemäß arbeitenden Wärmepumpe kann schließlich eine Mikrocomputer-Steuerungsanlage eingesetzt werden, die es ermöglicht, je nach Außentemperatur bzw. Wärmeanforderung an den Heizkreislauf, die einzelnen Funktionen der Anlagenelemente automatisch zu steuern.
  • Die erfindungsgemäße Anlage ergibt aufgrund der Anwendung neuartiger Kombinationen von Kreisprozessen und Wärmeaustauschvorgängen, verbunden mit einem hohen Nutzungsgrad der eingesetzten Energieträger, einen erheblichen technischen Fortschritt. Die Anlage kann für einen Bereich der Heizleistung von 3 bis 200 kW ausgelegt werden. Für die Anwendung in einem Heizungssystem in kleineren Bauwerken, z.B. in Ein-oder Mehrfamilienhäusern, wird eine Heizleistungsabgabe von 5 bis 40 kW bevorzugt. Durch die beschriebene Bauart von Kältemittelverdampfer, Nacherhitzer für das Heizwasser und die Betriebsmöglichkeit desselben ohne Einschaltung des Kältemittelkreislaufes wird eine optimale und sichere Bereitstellung von Heizwärme gewährleistet und gleichzeitig ein sehr kompaktes Aggregat erreicht, das - zusammen montiert - wie ein Heizkessel aufgestellt werden kann.
  • Beispiel : Für die Beheizung eines Einfamilienhauses ist eine Wärmepumpenanlage der erfindungsgemäßen Art, die bei einer Außentemperatur von -10° C eine Heizleistung von 24 kW abgibt, in der aus der angeschlossenen Zeichnung ersichtlichen Weise aufgebaut:
  • In einem als Zwangsdurchlaufkessel ausgebildeten Kältemittelverdampfer 12 von 60 cm Durchmesser und 70 cm Länge, ausgerüstet mit Kesselspeisepumpe 4 und Druckregelventil 5, werden stündlich 220 kg eines Kältemittels auf Basis von 1,2,2-Trifluortrichloräthan (Frigen 113) mittels eines Ölbrenners 21 mit Ein- und Ausregelung erhitzt und als Dampf von 192° C/25 bar in einem Schraubenexpander 1, der selbstschmierend arbeitet und über ein Regelventil 18 geregelt wird, auf 48° C/1,0 bar mit einer Leistungsabgabe von 4 kW abgearbeitet.
  • Der in einen Kondensator 2 des Kältemittelkreislaufes eintretende Kältemitteldampf wird dort mittels Heizrücklaufwasser 7, das eine Temperatur von etwa 30° C aufweist, kondensiert und in einen Behälter 3 mit Niveauregelung zurückgeführt, wobei etwa 9,5 kW an das Heizwasser abgegeben werden. Das Kältemittel wird von dem Behälter 3 im Kreislauf,über die Pumpe 4 und das Ventil 5, dem Verdampfer 12 wieder zugeführt, wo es flüssig, z.B. mit 40° C/26 bar, eintritt.
  • Das im Kondensator 2, z.B. auf 41° 0 erwärmte Heizrücklaufwasser 7 wird dem Kondensator 11 einer konventionell arbeitenden Kompressorwärmepumpe 8 - 11, deren Kompressor 8 mit dem Schraubenexpander 1 direkt gekoppelt ist und mit 3000 Umdr/min arbeitet, zugeführt und dort auf etwa 56° 0 erwärmt. Im Kreislauf der Wärmepumpe, die vorteilhaft bei entsprechender Anpassung mit dem gleichen Kältemittel wie für den Verdampfer 12 betrieben werden kann, gelangt das umlaufende Wärmeübertragungsmedium nach dem Austritt aus dem Kondensator 11 über eine Drossel 10 in den Wärmepumpenverdampfer 9, worin das Medium, z.B. ein mit 2° 0/3 bar eintretendes Kältemittel Frigen 12, verdampft und die als Wärmeträger verwendete Außenluft 19 auf -2° C abkühlt; der so gebildete Kältemitteldampf wird vom Kompressor 8 angesaugt und der Kreisprozeß neu begonnen.
  • Das aus dem Kondensator 11 kommende, auf 56° 0 vorgewärmte Heizwasser wird nun einem nachgeschalteten Heizwassernacherhitzer 13 zugeführt, wo es weitere 2,5 kW an Nutzwärme aufnimmt und dann mit einer Vorlauftemperatur von 60° C als Heizwasservorlauf 20 das Heizsystem des Hauses versorgt.
  • Der Nacherhitzer 13 für das Heizwasser ist ebenso wie der Verdampfer 12 für das Kältemittel in eine Kesselanordnung 14 eingebaut, die somit sowohl den Kältemittelkreislauf als auch den Heizwasserkreislauf umfaßt. Der Kesselanordnung wird mittels eines mit Brennstoffen oder Gas gespeisten Brenners/bzw. mittels einer Halbgas- oder Wirbelschichtfeuerung die erforderliche Wärmeenergie zugeführt und über das Rauchgas an die beiden vorerwähnten Kreislaufsysteme abgegeben. In die Kesselanordnung 14 ist vorteilhaft eine Regelkappe 15 eingebaut, die zur Regelung der Heizwassertemperatur bestimmt ist. Die Regelklappe wird dabei in Abhängigkeit von der Heizwasser-Austrittstemperatur gesteuert.
  • Im Rahmen der Erfindung kann auch vorgesehen werden, den Heizwassernacherhitzer 13 allein zu betreiben, was beispielsweise in einem auf den Kältemittelkreislauf beschränkten Störungsfall ein fortgesetztes Inganghalten der Heizung ermöglicht. Dieser Betrieb des nachgeschalteten Heizwassernacherhitzers als alleiniges Heizaggregat läßt sich durch eine entsprechende Ausbildung der Regelklappe als Rauchgasumlenkungsvorrichtung herbeiführen. Anderseits kann die Rauchgasumlenkungsvorrichtung auch derart ausgeführt sein, daß die Heizfläche des Heizwassernacherhitzers 13 umgangen wird, was für den Fall von Bedeutung ist, daß mit einer niedrigeren Vorlauftemperatur des Heizwassers das Auslangen gefunden werden kann.
  • Bei dem in der Zeichnung dargestellten, als Luft/Wasser-Wärmepumpe arbeitenden System wird das Heizrücklaufwasser 7 durch einen vorgeschalteten Lufterwärmer 6 geleitet, wodurch ein Vereisen des Luft/Wärme-Austausches des Luft/ Wärme-Austauschers des Wärmepumpenverdampfers verhindert wird. Eine zusätzlich vorgesehene Umgehungsleitung 16 mit Schaltventil 17 ermöglicht bei höheren Außentemperaturen den direkten Zulauf des Heizrücklaufwassers 7 zum Kondensator 2 des Schraubenexpanders 1.

Claims (4)

1. Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke, insbesondere für das Heizen oder Kühlen von Gebäude-Innenräumen, umfassend einen Expander, der durch den unter erhöhten Druck und erhöhte Temperatur gebrachten Dampf eines Kältemittels betrieben wird, und einen direkt damit gekoppelten Wärmepumpenkompressor, gekennzeichnet durch einen mittels eines flüssigen, gasförmigen oder festen Energieträgers oder mittels Wärmeenergie aus radioaktiven Zerfallsprozessen beheizten Kältemittelverdampfer (12) zum Verdampfen des in einem geschlossenen Kreislauf geführten Kältemittels, durch einen geräusch- und vibrationsarmen Schraubenexpander (1), der als Antrieb für eine Kompressorwärmepumpe (8, 9, 10, 11) dient, durch einen mittels Heizrücklaufwasser (7) beaufschlagten Kondensator (2) für die Kondensation des aus dem Schraubenexpander (1) kommenden Kältemitteldampfes sowie durch einen Sammelbehälter (3) für das flüssige Kältemittel samt Rücklaufleitung zum Verdampfer (12) und durch eine Kesselspeisepumpe (4).
2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß der Kältemittelverdampfer (12), bevorzugt ein Zwangsdurchlaufkessel, mit einem dahinter geschalteten und mit den Rauchgasen bzw. mit dem Wärmeträgermedium im Falle von radioaktiven Zerfallsprozessen beaufschlagten Nacherhitzer (13) für die Nacherhitzung des Heizwassers kombiniert ist und eine Einheit (14) bildet.
3. Anlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kondensator (2) für den aus dem Schraubenexpander (1) austretenden Kältemitteldampf mit dem Heizwasserkreislauf zur Abgabe eines Teiles des Wärmeinhaltes des Heizrücklaufwassers (7) für die Erwärmung des dem Wärmepumpenkreislauf zugeführten Nutzwärmeträgermediums, wie z.B. Luft (19), verbunden ist.
4. Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Erzielung einer umfassenden Wärmenutzung alle Teile der Anlage, einschließlich der Wärmepumpe ( 8 - 11), auf einem gemeinsamen Träger montiert und wärme- und schallisoliert gekapselt ausgeführt sind.
EP82890070A 1982-05-07 1982-05-07 Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke Withdrawn EP0093826A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP82890070A EP0093826A1 (de) 1982-05-07 1982-05-07 Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP82890070A EP0093826A1 (de) 1982-05-07 1982-05-07 Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke

Publications (1)

Publication Number Publication Date
EP0093826A1 true EP0093826A1 (de) 1983-11-16

Family

ID=8190174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82890070A Withdrawn EP0093826A1 (de) 1982-05-07 1982-05-07 Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke

Country Status (1)

Country Link
EP (1) EP0093826A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103613A1 (de) * 2011-06-03 2012-12-06 MPP GbR in Gesellschaft Herma-Christiane Meuser und Renate Pleikis (vertretungsberechtigter Gesellschafter: Peter Meuser, 17036 Neubrandenburg) Wärmeverstromungsanlage
WO2012059752A3 (en) * 2010-11-02 2013-05-30 Energetix Genlec Limited Modular heating system
US20130305723A1 (en) * 2011-02-10 2013-11-21 Ingersoll-Rand Company Compressor system including gear integrated screw expander
DE102017119198A1 (de) * 2017-08-22 2019-02-28 Bw-Energiesysteme Gmbh Verfahren zur Fern- und Nahwärmeversorgung mit Wärmepumpen
CN109707473A (zh) * 2019-02-12 2019-05-03 郑州欧纳尔冷暖科技有限公司 一种orc循环泵系统
CN110513748A (zh) * 2019-09-10 2019-11-29 苏州必信空调有限公司 供热系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH304499A (de) * 1952-04-10 1955-01-15 Melan Herbert Ing Dr Kombinierte Anlage zur Kraft- und Wärmeerzeugung.
DE2539164A1 (de) * 1974-09-05 1976-05-06 Projectus Ind Produkter Ab Verfahren fuer den thermischen betrieb einer waermepumpenanlage und anlage zur durchfuehrung des verfahrens
DE2613506A1 (de) * 1976-03-30 1977-10-13 Landschulze Ernst August Waermepumpe in verbindung mit einer heizanlage
LU77843A1 (de) * 1976-07-28 1977-10-25
DE2654791A1 (de) * 1976-12-03 1978-06-08 Claus Boettcher Verfahren zur verbesserung der energieausnutzung beim betrieb von waermepumpen zum heizen von fluessigen und/oder gasfoermigen medien, insbesondere beim erwaermen des beckenwassers von frei- und hallenbaedern
DE2710533A1 (de) * 1977-03-10 1978-09-14 Motorheizung Gmbh Elektrische stromerzeugungsanlage
DE2751003A1 (de) * 1977-03-30 1978-10-12 Dunham Bush Inc Waermepumpensystem mit einer luftquelle und einem drehkolbenkompressor/entspanner mit mehreren schieberventilen
EP0000135A1 (de) * 1977-06-15 1979-01-10 BROWN, BOVERI & CIE Aktiengesellschaft Mannheim Anlage zur zentralen Erzeugung von thermischer Nutzenergie
DE2732744A1 (de) * 1977-07-20 1979-02-01 Wilhelm Emmerich Waermemotorpumpe
EP0001272A1 (de) * 1977-09-24 1979-04-04 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Heizungsanlage mit Wärmepumpe
GB2026671A (en) * 1978-07-03 1980-02-06 Schaefer O Heating installations
EP0008680A2 (de) * 1978-09-02 1980-03-19 Chemische Werke Hüls Ag Verfahren zur Erzeugung von Wärmeenergie durch Kombination der Kraft-Wärme-Kopplung mit der Wärmepumpe
EP0026793A1 (de) * 1979-10-08 1981-04-15 Jenbacher Werke AG Wärmepumpe, brennkraftmaschinengetrieben
GB2073862A (en) * 1980-04-15 1981-10-21 Glynwed Group Services Ltd Heat Actuated Heat Pump and Turbine

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH304499A (de) * 1952-04-10 1955-01-15 Melan Herbert Ing Dr Kombinierte Anlage zur Kraft- und Wärmeerzeugung.
DE2539164A1 (de) * 1974-09-05 1976-05-06 Projectus Ind Produkter Ab Verfahren fuer den thermischen betrieb einer waermepumpenanlage und anlage zur durchfuehrung des verfahrens
DE2613506A1 (de) * 1976-03-30 1977-10-13 Landschulze Ernst August Waermepumpe in verbindung mit einer heizanlage
LU77843A1 (de) * 1976-07-28 1977-10-25
DE2654791A1 (de) * 1976-12-03 1978-06-08 Claus Boettcher Verfahren zur verbesserung der energieausnutzung beim betrieb von waermepumpen zum heizen von fluessigen und/oder gasfoermigen medien, insbesondere beim erwaermen des beckenwassers von frei- und hallenbaedern
DE2710533A1 (de) * 1977-03-10 1978-09-14 Motorheizung Gmbh Elektrische stromerzeugungsanlage
DE2751003A1 (de) * 1977-03-30 1978-10-12 Dunham Bush Inc Waermepumpensystem mit einer luftquelle und einem drehkolbenkompressor/entspanner mit mehreren schieberventilen
EP0000135A1 (de) * 1977-06-15 1979-01-10 BROWN, BOVERI & CIE Aktiengesellschaft Mannheim Anlage zur zentralen Erzeugung von thermischer Nutzenergie
DE2732744A1 (de) * 1977-07-20 1979-02-01 Wilhelm Emmerich Waermemotorpumpe
EP0001272A1 (de) * 1977-09-24 1979-04-04 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Heizungsanlage mit Wärmepumpe
GB2026671A (en) * 1978-07-03 1980-02-06 Schaefer O Heating installations
EP0008680A2 (de) * 1978-09-02 1980-03-19 Chemische Werke Hüls Ag Verfahren zur Erzeugung von Wärmeenergie durch Kombination der Kraft-Wärme-Kopplung mit der Wärmepumpe
EP0026793A1 (de) * 1979-10-08 1981-04-15 Jenbacher Werke AG Wärmepumpe, brennkraftmaschinengetrieben
GB2073862A (en) * 1980-04-15 1981-10-21 Glynwed Group Services Ltd Heat Actuated Heat Pump and Turbine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059752A3 (en) * 2010-11-02 2013-05-30 Energetix Genlec Limited Modular heating system
CN103370575A (zh) * 2010-11-02 2013-10-23 埃内尔格蒂克斯根列克有限公司 模块化供热系统
CN103370575B (zh) * 2010-11-02 2016-08-10 埃内尔格蒂克斯根列克有限公司 模块化供热系统
US9797603B2 (en) 2010-11-02 2017-10-24 Energetix Genlec Limited Heating system—modular
US20130305723A1 (en) * 2011-02-10 2013-11-21 Ingersoll-Rand Company Compressor system including gear integrated screw expander
DE102011103613A1 (de) * 2011-06-03 2012-12-06 MPP GbR in Gesellschaft Herma-Christiane Meuser und Renate Pleikis (vertretungsberechtigter Gesellschafter: Peter Meuser, 17036 Neubrandenburg) Wärmeverstromungsanlage
DE102011103613B4 (de) * 2011-06-03 2015-12-31 MPP GbR in Gesellschaft Herma-Christiane Meuser und Renate Pleikis (vertretungsberechtigter Gesellschafter: Peter Meuser, 17036 Neubrandenburg) Wärmeverstromungsanlage
DE102017119198A1 (de) * 2017-08-22 2019-02-28 Bw-Energiesysteme Gmbh Verfahren zur Fern- und Nahwärmeversorgung mit Wärmepumpen
CN109707473A (zh) * 2019-02-12 2019-05-03 郑州欧纳尔冷暖科技有限公司 一种orc循环泵系统
CN110513748A (zh) * 2019-09-10 2019-11-29 苏州必信空调有限公司 供热系统

Similar Documents

Publication Publication Date Title
EP2361346A1 (de) Kraftwerk mit einer turbineneinheit und einem generator
EP2538040B1 (de) Kraft-Wärme-Kopplungs-Anlage und assoziiertes Verfahren
EP0086383A2 (de) Sorptionsapparate und Verfahren für ihren Betrieb
WO2008113482A2 (de) Verfahren und vorrichtung zur befeuerten zwischenüberhitzung bei solarer direktverdampfung in einem solarthermischen kraftwerk
DE19651645A1 (de) Verfahren zur Nutzung von Solarenergie in einem Gas- und Dampf-Kraftwerk und Gas- und Dampf-Kraftwerk
WO1995009300A1 (de) Vorrichtung zur kühlung des kühlmittels der gasturbine einer gas- und dampfturbinenanlage
AT508086B1 (de) Vorrichtung zur energieumwandlung nach dem orc-prinzip, orc-anlage mit einer derartigen vorrichtung und verfahren zur inbetriebnahme und/oder zum betreiben einer derartigen vorrichtung
EP0445510A2 (de) Heizungs- und Stromerzeugungsanlage
DE102011054744A1 (de) Wärmetauscher für ein Kombikraftwerk
DE2847028B1 (de) Brennkraftmaschienanlage
DE19652349C2 (de) Solar- und Niedertemperaturwärme-Kombianlage-Solico
DE2904232A1 (de) Verfahren und anlage zur verbesserung des wirkungsgrades von kraftwerken
CH702602A2 (de) Gasturbinenleistungssteigerungssystem mit Einlassluftkühlung.
DE2625745B1 (de) Dieselbrennkraftmaschinenanlage fuer schiffsantrieb
EP0199902A1 (de) Kombinierte Heissluftturbinen-Dampfkraftanlage
DE102014206474A1 (de) Anlage zum Bereitstellen von Wärmeenergie für Wärmeverbraucher
DE2630456A1 (de) Brennkraftmaschine
EP0093826A1 (de) Anlage zur Durchführung eines Wärmepumpenprozesses für Heizzwecke
EP0305416A1 (de) Vorrichtung zur wärmegewinnung unter verwendung einer wärmepumpenanlage.
EP0981681B1 (de) Gas- und dampfturbinenanlage und verfahren zur kühlung des kühlmittels der gasturbine einer derartigen anlage
WO2003104629A1 (de) Gasturbogruppe
DE3524882C1 (de) Verfahren zum Betreiben einer Heizkraftwerksanlage zur Fernwärme- und Stromerzeugung
DE2752283B1 (de) Brennkraftmaschinen Anlage
AT369888B (de) Anlage zur durchfuehrung eines waermepumpenprozesses fuer heizzwecke
DE3035207C2 (de) Wärmepumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850621

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RECHBERGER, ALOIS, DIPL.-ING.