EP0091623A1 - Ionisationsfeuermelder - Google Patents

Ionisationsfeuermelder Download PDF

Info

Publication number
EP0091623A1
EP0091623A1 EP83103225A EP83103225A EP0091623A1 EP 0091623 A1 EP0091623 A1 EP 0091623A1 EP 83103225 A EP83103225 A EP 83103225A EP 83103225 A EP83103225 A EP 83103225A EP 0091623 A1 EP0091623 A1 EP 0091623A1
Authority
EP
European Patent Office
Prior art keywords
ionization
insulating
electrodes
electrode
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83103225A
Other languages
English (en)
French (fr)
Other versions
EP0091623B1 (de
Inventor
Andreas Dr. Scheidweiler
Bernhard Durrer
Jürg Muggli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT83103225T priority Critical patent/ATE17409T1/de
Publication of EP0091623A1 publication Critical patent/EP0091623A1/de
Application granted granted Critical
Publication of EP0091623B1 publication Critical patent/EP0091623B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • Ionization fire detector with an ionization chamber containing a radioactive preparation and two electrodes separated by an insulating part, accessible to the outside atmosphere, and an electrical circuit for signaling and alarming.
  • Ionization fire detectors of the type specified above are known, for example from DE-AS 2'130'889. With these ionization fire detectors, the air in the ionization chamber (measuring chamber), which is accessible to the outside atmosphere, is ionized by a radioactive preparation and, due to the direct voltage applied to the two electrodes of the ionization chamber, an ion current flows between the electrodes. If smoke, fire aerosols or other particles enter the ionization chamber through the chamber openings, the electrical current changes. The electrical circuit evaluates this change in current in such a way that an alarm signal is sent to a control center via lines when the conductivity in the ionization chamber is reduced.
  • the ionization chamber is in series with a resistance element, e.g. an almost closed or fire-aerosol-insensitive second reference ionization chamber, and the potential difference between the two chambers is determined using a high-resistance amplifier element, e.g. of a field effect transistor.
  • a resistance element e.g. an almost closed or fire-aerosol-insensitive second reference ionization chamber
  • a high-resistance amplifier element e.g. of a field effect transistor.
  • Another possibility is to periodically scan the charge on the electrodes of the ionization chamber.
  • ionization fire detectors are very sensitive to impurities, which reduce the electrical resistance of the insulating part (insulation gap) between the electrodes of the measuring chamber.
  • insulating part insulation gap
  • plastics are subject to natural aging, which can be accelerated by the influence of atmospheric oxygen (partly also ozone) or aggressive ingredients in the surrounding air and in the cleaning agents used in the detector revision.
  • atmospheric oxygen partly also ozone
  • Such corrosive substances are present in extremely low concentrations in normal ambient air, but can take on considerable values in a special environment.
  • the duration of exposure should not be neglected, nor the fact that the air is ionized by the radioactive source in the detector, which causes ozone and others, the detector material attacking substances are formed inside the detector. Since the atmosphere can penetrate between the labyrinth and the insulation section, the problem of aging of the insulation section remains.
  • the object of the present invention is to provide an ionization fire detector of the type mentioned at the outset which does not have the disadvantages mentioned above and in which in particular the insulation value of the insulating part between the electrodes is retained over a longer period of time.
  • the insulating part has at least two regions consisting of different insulating materials, which are arranged between the electrodes in such a way that the creepage distance between these electrodes leads over all of these regions.
  • the insulating part consisting of three different insulating materials ranges auf.Besonders preferably, the first region for example, is a polycarbonate, the second area, for example, from an epoxy resin and the third area, for example, from a polyester.
  • one electrode is designed as a central electrode, and the other electrode consists of an opening for the entry of the surrounding air, which forms the boundary of the ionization chamber that is accessible to the outside atmosphere from the outside atmosphere.
  • the areas consisting of different materials are arranged around the center electrode, preferably practically concentrically.
  • the detector shown in Figure 1 consists of a metallic hood 1, which has openings 2 and 3 for the entry of the surrounding air.
  • a labyrinth 4 made of highly insulating plastic is arranged in the interior of the hood 1 and has a number of webs 5 arranged in the form of a ring to extend the creepage distances.
  • the stamp-shaped central electrode 6 is located in the middle of the labyrinth 4.
  • the outer electrode is formed by the metallic hood 1.
  • the two electrodes are partially detachable by means of an isolating means, which are not shown Part 7 connected.
  • the insulating part 7 and the labyrinth 4 are made of the same plastic, preferably polycarbonate, for example Makrolon.
  • FIG. 2 shows an embodiment of an ionization fire detector according to the invention in section.
  • the ionization fire detector also consists of a metallic hood 1, which has openings 3 for the entry of the surrounding air.
  • Thermoplastic polyesters ie polycondensation products of carbonic acid with diols, are suitable as the material for the first region 8. These polycarbonates are resistant to water, neutral salt solutions, mineral acids, for example also to hydrofluoric acid, aqueous solutions of oxidizing agents, hydrocarbons, oils, fats etc.
  • this area of the insulation section is made from Makrolon O.
  • the second area 9 is preferably made of a thermoset made of epoxies with polyols.
  • the electronic components of the ionization fire detector can be embedded in this potting compound made of epoxy resin will.
  • the epoxy resins are resistant to atmospheric influences, water, acids, alkalis, oil, petrol, benzene, etc.
  • the third region 10 is preferably produced from a polycondensation product of polyhydric alcohols (diols, polyols) with polybasic carboxylic acids. These polyesters are resistant to all organic solvents, but are less resistant to water and alkalis, as well as to acids above 70 ° C.
  • one or more of the different regions 8, 9, 10 can be equipped with ring-shaped elevations for extending the creepage distance, without the process for producing the insulating part becoming significantly more complicated.
  • An essential advantage of the ionization fire detector according to the invention is that the insulating ability of the insulating part 7 is maintained over substantially longer periods of time than in the known ionization fire detectors. If the surface resistance of one of the plastics forming the insulating part 7 is reduced due to the action of aggressive ingredients from the atmosphere or due to the slightest damage caused by the cleaning or drying agents, the insulating ability remains due to the different chemical composition of the individual areas received at least one of the other areas. When developing the technological procedural rules for cleaning plastic parts, the chemical nature of the plastic parts is largely taken into account. However, since the composition of the dust deposited on the insulation section is not known, it is often necessary to work with very active cleaning agents, for example solutions from RBS.
  • the detector parts In order to enable efficient detector revision, the detector parts must be dried after cleaning, using water displacement agents, such as isopropyl alcohol or freon. The maintenance of the surface quality of the plastic parts can therefore not be guaranteed in the long run. However, if the individual areas of the insulating part 7 are made of plastics of different chemical resistance, the risk that the insulating ability of the entire insulating part 7 will drop below an acceptable limit is considerably lower than in the known ionization fire detectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Fire Alarms (AREA)

Abstract

Wegen der Alterung der isolierendem Materialien zwischen den Elektroden von Ionisationsfeuermeldern lässt die Isolationswirkung dieser sogenannten Isolationsstrecken im Laufe der Zeit trotz (vielleicht auch "wegen") der durchgeführten Reinigungsprozesse nach. Damit der Isolationswert nicht unter eine kritische Grenze sinkt, wird die Isolationsstrecke aus mindestens zwei verschiedenen isolierenden Materialien gebildet, die so angeordnet sind, dass die Kriechstrecke zwischen den Elektroden über sämtliche der unterschiedlichen isolierenden Materialien führt. Das Prinzip kann auch bei anderen Messgeräten, bei denen es auf einen hohen Eingangswiderstand einer Verstärkerstufe ankommt, angewendet werden.

Description

  • Ionisationsfeuermelder mit einer ein radioaktives Präparat enthaltenden und zwei durch ein isolierendes Teil getrennte Elektroden aufweisenden, der Aussenatmosphäre zugänglichen Ionisationskammer und einer elektrischen Schaltung zur Signal- und Alarmgabe.
  • Ionisationsfeuermelder der oben angegebenen Art sind bekannt, beispielsweise aus der DE-AS 2'130'889. Bei diesen Ionisationsfeuermeldern wird die in der der Aussenatmosphäre zugänglichen Ionisationskammer (Messkammer) befindliche Luft durch ein radioaktives Präparat ionisiert und auf Grund der an die beiden Elektroden der Ionisationskammer angelegte Gleichspannung fliesst ein Ionenstrom zwischen den Elektroden. Treten Rauch, Brandaerosole oder andere Partikeln durch die Kammeröffnungen in die Ionisationskammer ein, so ändert sich der elektrische Strom. Die elektrische Schaltung wertet diese Stromänderung derart aus, dass bei einer bestimmten Herabsetzung der Leitfähigkeit in der Ionisationskammer über Leitungen ein Alarmsignal an eine Zentrale abgegeben wird. Bei bekannten derartigen Schaltungen liegt die Ionisationskammer in Serie mit einem Widerstandselement, z.B. einer nahezu abgeschlossenen oder gegen Brandaerosole unempfindlichen zweiten Referenzionisationskammer, und die Potentialdifferenz zwischen beiden Kammern wird mit Hilfe eines hochohmigen Verstärkerelementes, z.B. eines Feldeffekttransistors, bestimmt. Eine weitere Möglichkeit besteht in der periodischen Abtastung der Aufladung der Elektroden der Ionisationskammer.
  • Da die verwendeten Ionisationskammern im allgemeinen einen Widerstand von mehr als 1010 2 besitzen und die elektrische Schaltung einen wesentlich höheren Eingangswiderstand haben muss, sind Ionisationsfeuermelder sehr empfindlich auf Verunreinigungen, welche den elektrischen Widerstand des isolierenden Teils (Isolationsstrecke) zwischen den Elektroden der Messkammer herabsetzen. In gleicher Weise wie Brandaerosole werden Partikeln aus der Umgebung des Melders, z.B. Staub, in die Messkammer hineintransportiert und dort abgelagert, wodurch der elektrische Widerstand der Isolationsstrecke abnimmt. Dies macht eine häufige Wartung von Feuermeldeanlagen und eine Reinigung der Ionisationsfeuermelder notwendig.
  • Das Problem der Aufrechterhaltung des elektrischen Widerstands wurde gemäss DE-AS 2'130'889 dadurch gelöst, dass die Isolationsstrecke im Inneren der als Aussenelektrode dienenden, Oeffnungen zum Eintritt der umgebenden Luft aufweisenden Haube durch ein aus dem gleichen hochisolierendem Kunststoff bestehendes Labyrinth abgedeckt wurde. Dadurch wurde die Kriechstrecke zwischen der Mittelelektrode und der Entgegenelektrode vor der Verschmutzung geschützt und der der Verschmutzung ausgesetzte Kriechweg wurde durch die ringförmigen Stege des Labyrinths um mehr als das vierfache verlängert. Es war so möglich den Zeitraum bis zum Unwirksamwerden des Melders erheblich zu verlängern, d.h. die Serviceintervalle konnten vergrössert werden. Kunststoffe unterliegen jedoch der natürlichen Alterung, die durch Einwirkung des Luftsauerstoffs (z.T. auch Ozon) oder agressiver Ingredienzien in der umgebenden Luft und in den bei der Melderrevision verwendeten Reinigungsmitteln beschleunigt werden kann. Solche korrosiven Stoffe sind in der normalen Umgebungsluft zwar in äusserst geringer Konzentration vorhanden, können in spezieller Umgebung jedoch beträchtliche Werte annehmen. Schliesslich ist die Dauer der Einwirkung nicht zu vernachlässigen, sowie die Tatsache, dass durch die im Melder vorhandene radioaktive Quelle die Luft ionisiert wird, wodurch Ozon und andere, das Meldermaterial angreifende Stoffe gerade im Melderinneren gebildet werden. Da die Atmosphäre zwischen das Labyrinth und die Isolierstrecke eindringen kann, bleibt das Problem der Alterung der Isolationsstrecke bestehen.
  • Die Reinigung der Melder bei der Revision stellte auch bisher kein Problem dar, aber die wiederholte Reinigung unter Aufrechterhaltung der hohen Oberflächenisolationswerte von ca. ρQ 10 Q über längere Zeit war immer noch problematisch. Die Suche nach Materialien mit genügend hoher Widerstandsfähigkeit gegen Umwelteinflüsse (Lösungsmitteldämpfe, Insektizide) führte zu keinem befriedigenden Ergebnis, da es nicht möglich war, einen Kunststoff zu finden, der optimale Eigenschaften im Hinblick auf sämtliche Umwelteinflüsse besitzt.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, einen Ionisationsfeuermelder der eingangs genannten Art zu schaffen, der die vorstehend erwähnten Nachteile nicht aufweist und bei dem insbesondere der Isolationswert des isolierenden Teils zwischen den Elektroden über einen längeren Zeitraum erhalten bleibt.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass das isolierende Teil mindestens zwei aus unterschiedlichen isolierenden Materialien bestehende Bereiche aufweist, die so zwischen den Elektroden angeordnet sind, dass der Kriechweg zwischen diesen Elektroden über sämtliche dieser Bereiche führt.
  • Gemäss einer bevorzugten Ausführungsform des erfindungsgemässen Ionisationsmelders weist das isolierende Teil drei aus unterschiedlichen isolierenden Materialien bestehende Bereiche auf.Besonders bevorzugt ist es, den ersten Bereich beispielsweise aus einem Polycarbonat, den zweiten Bereich beispielsweise aus einem Epoxidharz und den dritten Bereich beispielsweise aus einem Polyester herzustellen.
  • Bei einer Ausgestaltung des erfindungsgemässen Ionisationsfeuermelders ist die eine Elektrode als Mittelelektrode ausgebildet, und die andere Elektrode besteht aus einer Oeffnungen zum Eintritt der umgebenden Luft aufweisenden Haube, welche die Begrenzung der der Aussenatmosphäre zugänglichen Ionisationskammer gegen die Aussenatmosphäre bildet. Die aus unterschiedlichen Materialien bestehenden Bereiche sind dabei um die Mittelektrode herum angeordnet und zwar vorzugsweise praktisch konzentrisch.
  • Im folgenden werden anhand der Figur 1 ein Ionisationsfeuermelder des Standes der Technik und anhand der Figur 2 eine beispielsweise gewählte Ausführungsform eines erfindungsgemässen Ionisationsfeuermelders beschrieben. Es zeigen
    • Fig. 1 einen Ionisationsfeuermelder nach dem Stand der Technik im Schnitt
    • Fig. 2 einen IonisationsfeuermeldPr nach der Erfindung im Schnitt.
  • Der in Figur 1 dargestellte Melder besteht aus einer metallischen Haube 1, welche Oeffnungen 2 und 3 zum Eintritt der umgebenden Luft aufweist. Im Inneren der Haube 1 ist ein Labyrinth 4 aus hochisolierendem Kunststoff angeordnet, welches im Inneren eine Anzahl kreisringförmig angeordneter Stege 5 zur Verlängerung der Kriechwege aufweist. In der Mitte des Labyrinths 4 befindet sich die stempelförmige Mittelelektrode 6. Die Aussenelektrode wird von der metallischen Haube 1 gebildet. Die beiden Elektroden sind durch nichtdargestellte Verbindungsmittel - zum Teil lösbar - mit einem isolierenden Teil 7 verbunden. Das isolierende Teil 7 und das Labyrinth 4 sind aus dem gleichen Kunststoff, vorzugsweise Polycarbonat, z.B. Makrolon, hergestellt.
  • In Figur 2 ist eine Ausführungsform eines erfindungsgemässen Ionisationsfeuermelders im Schnitt dargestellt. Der Ionisationsfeuermelder besteht ebenfalls aus einer metallischen Haube 1, welche Oeffnungen 3 zum Eintritt der umgebenden Luft aufweist. Die Gegenelektrode 6, die in der Mitte der der Aussenatmosphäre zugänglichen Ionisationskammer 11 angeordnet ist, befindet sich auf einer zentralen Erhöhung 8 des isolierenden Teils 7. Zwischen der Mittelelektrode 6 und der die andere Elektrode bildenden metallischen Haube 1 ist das isolierende Teil in einen ersten Bereich 8 aus einem Polycarbonat, einen zweiten Bereich 9, welcher aus einem Epoxidharz besteht und einen dritten Bereich 10, welcher aus einem Polyester besteht, unterteilt.
  • Durch diese Anordnung wird erreicht, dass ein Kriechstrom, der sich zwischen der Mittelelektrode 6 und der die Aussenelektrode bildenden metallischen Haube 1 ausbildet, über drei Isolierstrecken aus unterschiedlichem Kunststoffmaterial führt. Als Material für den ersten Bereich 8 kommen thermoplastische Polyester, d.h. Polykondensationsprodukte der Kohlensäure mit Diolen, in Frage. Diese Polycarbonate sind beständig gegen Wasser, Neutralsalzlösungen, Mineralsäuren, beispielsweise auch gegen Flussäure, wässrige Lösungen von Oxidationsmitteln, Kohlenwasserstoffe, Oele, Fette usw. Insbesondere wird dieser Bereich der Isolationsstrecke aus Makrolon O hergestellt. Der zweite Bereich 9 wird vorzugsweise aus einem Duroplast aus Epoxiden mit Polyolen hergestellt. In diese aus Epoxidharz gebildete Vergussmasse können die elektronischen Bauteile des Ionisationsfeuermelders eingebettet werden. Die Epoxidharze sind widerstandsfähig gegen atmosphärische Einflüsse, gegen Wasser, Säuren, Laugen, Oel, Benzin, Benzol usw. Der dritte Bereich 10 wird vorzugsweise aus einem Polykondensationsprodukt von mehrwertigen Alkoholen (Diolen, Polyolen) mit mehrbasischen Carbonsäuren hergestellt. Diese Polyester sind gegen alle organischen Lösungsmittel beständig, sind jedoch gegen Wasser und Alkalien, sowie gegen Säuren oberhalb von 70°C, weniger beständig. Zur Verbesserung der Isolationsfähigkeit des isolierenden Teils 7 können ein oder mehrere der verschiedenen Bereich 8, 9, 10 mit ringförmigen Erhebungen zur Verlängerung des Kriechwegs ausgestattet werden, ohne dass dadurch das Verfahren zur Herstellung des isolierenden Teils wesentlich komplizierter wird.
  • Ein wesentlicher Vorteil des erfindungsgemässen Ionisationsfeuermelders besteht darin, dass die Isolationsfähigkeit des isolierenden Teils 7 über wesentlich längere Zeiträume erhalten bleibt als bei den bekannten Ionisationsfeuermeldern. Wird nämlich der Oberflächenwiderstand eines der das isolierende Teil 7 bildenden Kunststoffe durch die Einwirkung agressiver Ingredienzien aus der Atmosphäre oder durch wenn auch noch so geringe Schädigung durch die Reinigungs- oder Trocknungsmittel veringert, so bleibt aufgrund der unterschiedlichen chemischen Zusammensetzung der einzelnen Bereiche immer noch die Isolationsfähigkeit mindestens eines der anderen Bereiche erhalten. Es wird zwar bei der Ausarbeitung der technologischen Verfahrensvorschriften für das Reinigen von Kunststoffteilen weitgehend auf die chemische Beschaffenheit der Kunststoffteile Rücksicht genommen. Da jedoch die Zusammensetzung des auf der Isolationsstrecke abgeschiedenen Staubs nicht bekannt ist, muss häufig mit sehr aktiven Reinigungsmitteln, z.B. Lösungen von RBS, gearbeitet werden. Um eine rationelle Melderrevision zu ermöglichen, müssen die Melderteile im Anschluss an die Reinigung getrocknet werden, wobei Wasserverdrängungsmittel, wie Isopropylalkohol oder Freon, angewendet werden. Die Aufrechterhaltung der Oberflächenbeschaffenheit der Kunststoffteile kann daher auf die Dauer nicht garantiert werden. Werden jedoch die einzelnen Bereiche des isolierenden Teils 7 aus Kunststoffen unterschiedlicher chemischer Widerstandsfähigkeit hergestellt, so ist die Gefahr, dass die Isolationsfähigkeit des gesamten isolierenden Teils 7 unter eine noch akzeptable Grenze sinkt, erheblich geringer als bei den bekannten Ionisationsfeuermeldern.
  • Selbstverständlich ist es möglich, anstelle der vorstehend genannten Kunststoffe andere Kunststoffe einzusetzen, wenn darauf geachtet wird, dass die Resistenz gegen äussere Einwirkungen bei den verwendeten Kunststoffen möglichst unterschiedlich ist. Der Erfindungsgedanke, nämlich Isolationsstrecken dadurch widerstandsfähiger zu machen, dass sie in Bereiche unterschiedlicher chemischer Zusammensetzung aufgeteilt werden, ist vorstehend für Ionisationsbrandmelder beschrieben. Aber auch die Isolationsstrecken anderer Brandmelder, bei denen es auf einen hohen Eingangswiderstand einer Verstärkungsstufe ankommt, können dadurch erheblich verbessert werden, dass man bei der Herstellung der Isolationsstrecken Bereiche unterschiedlicher Kunststoffe in Serie anordnet.

Claims (4)

1. Ionisationsfeuermelder mit einer ein radioaktives Präparat enthaltenden und zwei durch ein isolierendes Teil (7) getrennte Elektroden (1, 6) aufweisenden, der Aussenatmosphäre zugänglichen Ionisationskammer und einer elektrischen Schaltung zur Signal- und Alarmgabe, dadurch gekennzeichnet, dass das isolierende Teil (7) mindestens zwei aus unterschiedlichen isolierenden Materialien bestehende Bereiche (8, 9, 10) aufweist, die so zwischen den Elektroden (1, 6) angeordnet sind, dass der Kriechweg zwischen diesen Elektroden über sämtliche dieser Bereiche (8, 9, 10) führt.
2. Ionisationsmelder gemäss Patentanspruch 1, dadurch gekennzeichnet, dass das isolierende Teil (7) drei aus unterschiedlichen isolierenden Materialien bestehende Bereiche (8, 9, 10) aufweist.
3. Ionisationsmelder gemäss Patentanspruch 2, dadurch gekennzeichnet, dass der erste Bereich (8) aus einem Polycarbonat, der zweite Bereich (9) aus einem Epoxidharz und der dritte Bereich (10) aus einem Polyester besteht.
4. Ionisationsmelder gemäss einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass die eine Elektrode (6) als Mittelelektrode ausgebildet ist und die andere Elektrode (1) aus einer Oeffnungen (3) zum Eintritt der umgebenden Luft aufweisenden Haube besteht, welche die Begrenzung der der Aussenatmosphäre zugänglichen Ionisationskammer (11) gegen die Aussenatmosphäre bildet und dass die aus unterschiedlichen isolierenden Materialien bestehenden Bereiche (8, 9, 10), vorzugsweise praktisch konzentrisch, um die Mittelektrode (6) herum angeordnet sind.
EP83103225A 1982-04-08 1983-03-31 Ionisationsfeuermelder Expired EP0091623B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83103225T ATE17409T1 (de) 1982-04-08 1983-03-31 Ionisationsfeuermelder.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH218482 1982-04-08
CH2184/82 1982-04-08

Publications (2)

Publication Number Publication Date
EP0091623A1 true EP0091623A1 (de) 1983-10-19
EP0091623B1 EP0091623B1 (de) 1986-01-08

Family

ID=4227850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83103225A Expired EP0091623B1 (de) 1982-04-08 1983-03-31 Ionisationsfeuermelder

Country Status (10)

Country Link
US (1) US4582996A (de)
EP (1) EP0091623B1 (de)
JP (1) JPS58186896A (de)
AT (1) ATE17409T1 (de)
AU (1) AU554415B2 (de)
BR (1) BR8301799A (de)
CA (1) CA1217284A (de)
DE (1) DE3361760D1 (de)
ES (1) ES8404079A1 (de)
NO (1) NO831246L (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298223A (en) * 1990-09-05 1994-03-29 Esser Sicherheitstechnik Gmbh Ionization fire detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044194U (ja) * 1983-09-05 1985-03-28 能美防災工業株式会社 イオン化式煙感知器の耐熱ケ−ス
US5485144A (en) * 1993-05-07 1996-01-16 Pittway Corporation Compensated ionization sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH506148A (fr) * 1969-02-28 1971-04-15 Mefina Sa Dispositif détecteur de fumée
CH508251A (de) * 1970-07-23 1971-05-31 Cerberus Ag Ionisationsfeuermelder
US3676681A (en) * 1969-07-22 1972-07-11 Nittan Co Ltd Ionization smoke detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE731052A (fr) * 1969-04-04 1969-10-06 Acec Procédés de fabrication de produits stratifiés isolants
DE2143365B2 (de) * 1971-08-30 1977-09-08 Siemens AG, 1000 Berlin und 8000 München Anordnung zum isolieren von elektroden
JPS5823705B2 (ja) * 1977-08-24 1983-05-17 株式会社東芝 放射線検出器
JPS57135977A (en) * 1981-02-16 1982-08-21 Canon Kk Photoelectrical indicator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH506148A (fr) * 1969-02-28 1971-04-15 Mefina Sa Dispositif détecteur de fumée
US3676681A (en) * 1969-07-22 1972-07-11 Nittan Co Ltd Ionization smoke detector
CH508251A (de) * 1970-07-23 1971-05-31 Cerberus Ag Ionisationsfeuermelder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298223A (en) * 1990-09-05 1994-03-29 Esser Sicherheitstechnik Gmbh Ionization fire detector

Also Published As

Publication number Publication date
ES521785A0 (es) 1984-04-01
JPS58186896A (ja) 1983-10-31
ES8404079A1 (es) 1984-04-01
CA1217284A (en) 1987-01-27
BR8301799A (pt) 1983-12-20
AU1295883A (en) 1983-10-13
DE3361760D1 (en) 1986-02-20
US4582996A (en) 1986-04-15
NO831246L (no) 1983-10-10
ATE17409T1 (de) 1986-01-15
AU554415B2 (en) 1986-08-21
EP0091623B1 (de) 1986-01-08

Similar Documents

Publication Publication Date Title
DE3530758C2 (de)
DE2652970C3 (de) Ionisations-Brandmelder
DE60201390T2 (de) Kondensatormikrofon und Verfahren zur dessen Herstellung
DE4028062C2 (de) Gassensoranordnung mit FET mit unterbrochenem Gate
DE1548623B2 (de) Einrichtung zum Untersuchen von gasförmigen Medien
DE2415479A1 (de) Ionisationsfeuermelder
DE1046372B (de) Verfahren und Vorrichtung zur elektrischen Feststellung von Aerosolen in Gasen
EP0091623B1 (de) Ionisationsfeuermelder
EP0384209B1 (de) Verfahren zum Betrieb eines Ionisationsrauchmelders und Ionisationsrauchmelder
DE1928874A1 (de) Ionisationsfeuermelder
DE1589987A1 (de) Ionisationskammeranzeigevorrichtung
DE2831791A1 (de) Bauteil aus metallischem werkstoff mit aufladungsgefaehrdeter oberflaeche und verwendung hierfuer
EP0423489A1 (de) Brandmeldeanlage mit Ueberwachung
EP0111012A1 (de) Rauchsensor des ionisationstyps
CH624447A5 (en) Surrounding fence with an alarm device for security-threatened installations
DE2546970C3 (de) Ionisations-Rauchmelder
DE3501356C2 (de)
DE2011329A1 (de) Ionisationsfeuermelder
DE2700906C2 (de) Anordnung zur Brandmeldung
DE1616020B2 (de) Feuermeldevorrichtung
EP0841146B1 (de) Leitfähige Bereiche auf isolierenden Kunststoffen
DE3715715A1 (de) Abgeschirmtes gehaeuse
DE2153409A1 (de) Rauchspürgerät
DE2435053B2 (de) Ionisationsfeuerdetektor
DE3200620A1 (de) Ionisations-rauchdetektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830331

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 17409

Country of ref document: AT

Date of ref document: 19860115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

REF Corresponds to:

Ref document number: 3361760

Country of ref document: DE

Date of ref document: 19860220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900202

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900207

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: GB

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

Ref country code: AT

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910401

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83103225.5

Effective date: 19911108