EP0083611A1 - Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages. - Google Patents

Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages.

Info

Publication number
EP0083611A1
EP0083611A1 EP82902070A EP82902070A EP0083611A1 EP 0083611 A1 EP0083611 A1 EP 0083611A1 EP 82902070 A EP82902070 A EP 82902070A EP 82902070 A EP82902070 A EP 82902070A EP 0083611 A1 EP0083611 A1 EP 0083611A1
Authority
EP
European Patent Office
Prior art keywords
cooling device
inductor
extension
riser
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82902070A
Other languages
German (de)
English (en)
Other versions
EP0083611B1 (fr
Inventor
Yves Cans
Richard Gonda
Marc Tavernier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP0083611A1 publication Critical patent/EP0083611A1/fr
Application granted granted Critical
Publication of EP0083611B1 publication Critical patent/EP0083611B1/fr
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • B22D11/015Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces using magnetic field for conformation, i.e. the metal is not in contact with a mould

Definitions

  • the present invention relates to a process for the continuous vertical casting at high speed of aluminum and its alloys, in particular in the form of billets and plates, of which the smallest dimension does not exceed 150 mm.
  • Another way of reducing the appearance of defects on the surface of the cast products is to carry out the molding without any contact with an ingot mold. This is achieved by passing the liquid metal through the center of an inductor which creates an electromagnetic field and thus generates forces which help to give the liquid a defined shape. This shape is then maintained by solidifying the metal by direct watering by means of a heat transfer fluid.
  • the plaintiff aiming to get to pour billets or plates whose smallest dimension does not exceed 150 mm at a speed greater than 500 mm / minute, has sought and developed a process which makes it possible to overcome the difficulties that have just been reported.
  • This continuous vertical casting process combines the use of a riser for feeding liquid metal, an electromagnetic inductor and a direct cooling device for shaping the product to be manufactured. It is characterized in that the position of the riser is adjusted by a vertical movement relative to the inductor which creates the field so as to maintain a constant distance between the base plane of the riser and during casting. the plane passing through the solidification front at the periphery of the cast product.
  • the applicant uses a conventional riser with a cross-section similar to that of the cast product, open at its two ends and in which the liquid metal is brought to a certain height by means of an appropriate feeding system.
  • an annular cooling device which sprinkles the cast product over its entire periphery at a distance from the base plane of the riser such that solidification begins. below this plane, and that there remains over the entire section of the poured product an area of unconfined liquid.
  • solidification begins at the periphery do. product along a line contained in a plane generally perpendicular to the axis of the flow if the cooling device is suitably placed and it propagates in an approximately symmetrical and progressive way towards the inside and the bottom of the product until that the contact between the liquid and solid phases is reduced, at a greater or lesser distance from the extension, to a point or to a straight portion depending on the section of the cast product.
  • the boundary between the phases is called the solidification front.
  • the Applicant has solved this problem by regulating the position of the riser by a vertical movement relative to the inductor so as to maintain a constant distance between the base plane of the riser and the plane passing through the solidification front at the periphery. of the poured product.
  • Such an adjustment makes it possible, in fact, when the front tends to move away from the riser, to maintain the zone of unconfined liquid at a height compatible with a regular geometry of the product. This height is kept below 15 mm and preferably 10 mm without ever being zero, in which case solidification would then take place inside the riser and would lead to the appearance of a poor surface condition.
  • the position of the riser being thus linked to that of the forehead, it is first necessary to locate the latter. This can be done with any means known to those skilled in the art such as, for example, probes, or by using mathematical relationships which give the position of the front relative to the point of impact of the water in depending on the casting speed. Then, we adjust the position of the extension by dicing placing vertically using any system which can be controlled by means of locating the position of the forehead.
  • the Applicant has also found that the displacement of the extension can be combined with a movement of the cooling device.
  • the solidification front is established at a constant distance above the impact zone; we can therefore adjust the position of the forehead by adjusting the displacement of the cooling device.
  • the front is going down; if the acceleration is low, it remains close to the equilibrium conditions and the solidification front can be maintained by leaving the cooling device stationary; on the other hand, if the acceleration is large, the system is unbalanced and it is forced to move the cooling device down to avoid watering the liquid area.
  • the upper limit of the area sprayed by the fluid of the device is located at a distance from the front of between 1 and 6 mm.
  • the device can be gradually raised to bring the forehead up to a position close to the middle of the inductor which is the most favorable for casting.
  • the riser having been lowered, as we saw above, to maintain the area of unconfined liquid at a constant height, we can now raise it a year following the movement of the front upwards. We thus gradually find the initial positions of the riser and the cooling device and we can again proceed to a new acceleration.
  • the combination of the two movements allows a greater increase in speed.
  • the movement of the device can also be obtained here by any suitable means.
  • the distance settings indicated above are fairly precise and therefore require well-defined impact zones. This is achieved by means of a device delivering peripheral water blades, of thickness less than a millimeter, making a small angle with the vertical and between 10 and 30 °. It is also necessary to propel the fluid at a high speed so as to avoid the phenomena of caulking; in general, sufficient pressure is applied to have at least 1 m / sec.
  • This stage can include any device for distributing slides and droplets.
  • the requirements on impact accuracy are lower. It is possible, for example, to use blades 2 mm thick directed downwards at an angle greater than 45 ° and propagating at a speed greater than 3 m / sec.
  • the level of liquid in the riser can vary so as to have a height of between 20 and 80 mm above the solidification front, at the periphery of the product.
  • the mobile extension (1) having an upper part enlarged so as to facilitate the mounting of the float-float supply system (2) and a lower part with a section close to that of the cast product
  • the inductor (3) generator of the electromagnetic field which acts on the zone of the liquid metal (4) located below the extension
  • the nozzle-float system maintains the level of liquid metal (10) at a suitable height while the movement of the riser and of the cooling device is controlled, so as to sprinkle the product poured immediately below the front, and to raise the latter regardless of the casting speed at the level of the middle of the inductor and to maintain a constant distance between the base plane of the riser and said front.
  • EXAMPLE 1 By means of an installation comprising an extension with an internal diameter of 120 mm, with a height of 80 mm, a cooling device delivering 3 m3 / hour of water in the form of a blade of thickness 0.8 mm inclined at 30 degrees from the vertical, traveling at a speed of 2.5 m / sec.
  • a cooling system delivering 4 m3 / hour of water in the form of a 0.7 mm thick blade inclined at 15 degrees from the vertical, circulating at a speed of 2.5 m / sec, an inductor supplied at a voltage of 18 V with an intensity of 6,300 A having a frequency of 2,000 Hz, an additional cooling device delivering 15 m3 / hour of water in the form of two blades of thickness 1 mm inclined at 45 degrees with respect to the vertical, circulating at a speed of 3.2 m / sec, a plate of 100 x 200 mm was poured an aluminum alloy 1050 at the speed of 960 mm / minute maintaining, between the base plane of the extension and the plane passing through the solidification front, a distance of 8 mm and between the upper limit of the watered area and the solidification front, a distance of 2 to 3 mm.
  • the present invention makes it possible to continuously cast aluminum and its alloys at speeds greater than 500 mm / minute, in the form of billets or plates of which the smallest dimension does not exceed 150 mm and which have a surface requiring no scalping treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Procédé de coulée verticale en continu à des vitesses voisines du mètre par minute. Ce procédé est caractérisé en ce que l'on combine l'utilisation d'une rehausse (1) et d'un champ électromagnétique et que, par réglage en hauteur de la position de la rehausse et du système de refroidissement (5) par rapport au dispositif (3) générateur du champ, on maintient constantes, au cours de la coulée, les distances entre certains paramètres comme le front de solidification et le plan de base de la rehausse.

Description

PROCEDE DE COULEE CONTINUE VERTICALE A GRANDE VITESSE DE L'ALUMINIUM ET DE SES ALLIAGES La présente invention est relative à un procédé de coulée continue ver ticale à grande vitesse de l'aluminium et de ses alliages, notamment sous forme de billettes et de plaques dont la plus petite dimension n'excède pas 150 mm.
L'homme de l'art connaît depuis longtemps le procédé de coulée verti cale dans lequel un métal à l'état liquide est moulé en continu par passage de haut en bas dans une lingotiêre sans fond, refroidie, pour former des billettes ou des plaques de longueur plus ou moins grande.
Au cours des décennies, cette technique a été perfectionnée en vue d'en améliorer les performances â la fois sous l'angle capacité de production et qualité.
Dans la recherche d'obtention de vitesses de coulée plus grandes, on s'est heurté à des problèmes de défauts de surface physiques: peau irrégulière, et chimiques : ségrégations inverses qu'on a résolu d'abord de façon peu satisfaisante en soumettant les produits coulés à des opérations intermédiaires de scalpage. Puis, différents aménagements concernant les matériaux des lingotières et leur lubrification, les dispositifs de refroidissement, le programme de coulée, ont permis de réduire et même de supprimer, dans certains cas, le scalpage.
Plus récemment, et en vue, notamment d'obtenir des produits directement utilisables à la transformation, on a eu recours à des dispositifs particuliers de mise en forme tels que, par exemple, le HOTTOP dans lequel la lingotiêre est surmontée d'une rehausse, sorte de réservoir de métal liquide de section voisine de celle du produit coulé et de hauteur variable constituée par un matériau réfractaira et isolant.
Un tel dispositif conduit à l'obtention de produits ayant un état de surface amélioré; toutefois, suivant le type d'alliage coulé, on cons tate qu'il y a une vitesse optimum à ne pas dépasser, sinon il se produit un arrachement de la peau. Certes, en associant ces rehausses à des lingotières de faible hauteur, on parvient à limiter ce défaut, mais un tel couplage n'est pas applicable à des plaques d'épaisseur voisine de 150 mm, car, en raison de leur déformation au no ment du démarrage, elles peuvent endommager la rehausse notamment lorsque celle-ci a un diamètre inférieur à celui de la lingotiêre.
Dans ces conditions, il apparaît que, si on veut couler des billettes de 0 100 mm, de bonne qualité, même avec une lingotiêre de 1,5 cm de hauteur, on peut au mieux atteindre avec l'alliage le plus convenable une vitesse de 300 mm/mn, ce que confirme d'ailleurs le brevet français nº 2 249 728.
Une autre façon de réduire l'apparition de défauts à la surface des produits coulés consiste à effectuer le moulage en dehors de tout contact avec une lingotiêre. On y parvient en faisant passer le métal liquide au centre d'un inducteur qui crée un champ électromagnétique et engendre ainsi des forces qui contribuent à donner au liquide une forme définie. Cette forme est alors maintenue en solidifiant le métal par arrosage direct au moyen d'un fluide caloporteur.
Un tel procédé a, sans conteste, permis d'améliorer notablement l'état de surface des produits coulés et de réduire fortement l'apparition des ségrégations inverses, toutefois, il présente certains inconvenients. C'est ainsi que son application nécessite le maintien d'une hauteur constante de métal liquide au-dessus de l'interface avec le métal solidifié. Pour y parvenir, on met en oeuvre un ensemble busette-flotteur plus ou moins encombrant et dont la mise en place devient particulièrement gênante lorsqu'on a pour objectif de couler des pièces dont l'une des dimensions ne dépasse pas 150 mm. De plus, si l'on veut augmenter la vitesse de coulée au-delà de certaines valeurs, on provoque des turbulences au niveau de cet ensemble qui se traduisent par des déformations du ménisque du métal et l'apparition d'ondulations à la surface du produit coulé. En outre, ces déformations peuvent amener le niveau du métal en fusion sur la trajectoire du fluide caloporteur ou conduire à la formation d'une peau qui sera encore mince au moment où elle échappera à l'action du champ et, de ce fait, se déchirera sous l'effet de la pression mé tallostatique, ou encore provoquer la refusion de cette peau, autant de conséquences qui auront pour effet d'accroître les défauts de surface sans parler des dangers encourus par le personnel à cause des risques d'explosion.
Ces difficultés font que, dans le cas de billettes de diamètre 150 mm, on parvient difficilement à des vitesses de coulée supérieures à 300 mm/minute.
La demanderesse, ayant pour but d'arriver à couler des billettes ou des plaques dont la plus petite dimension n'excède pas 150 mm à une vitesse supérieure à 500 mm/minute, a cherché et mis au point un procédé qui permet de surmonter les difficultés qui viennent d'être signalées.
Ce procédé de coulée verticale en continu combine l'utilisation d'une rehausse pour l'alimentation en métal liquide, d'un inducteur é lectromagnétique et d'un dispositif de refroidissement direct pour la mise en forme du produit à fabriquer. Il est caractérisé en ce que l'on règle la position de la rehausse par un mouvement vertical par rapport à l'inducteur qui crée le champ de manière à maintenir au cours de la coulée une distance constante entre le plan de base de la rehausse et le plan passant par le front de solidification à la périphérie du produit coulée.
Ainsi, la demanderesse utilise une rehausse classique de section voisine de celle du produit coulé, ouverte a ses deux extrémités et dans laquelle le métal liquide est amené jusqu'à une certaine hauteur au moyen d'un système d'alimentation approprié. A l'extérieur de cette rehausse, et disposé à peu près à son niveau, se trouve un dispositif annulaire de refroidissement qui arrose le produit coulé sur toute sa périphérie à une distance du plan de base de la rehausse telle que la solidification s'amorce en-dessous de ce plan, et qu'il subsiste sur toute la section du produit coulé une zone de liquide non confinée.
C'est sur cette zone que s'exerce l'action du champ créé par l'inducteur et qui a pour effet de contrebalancer la pression métallostatique du liquide contenu dans la rehausse et d'imposer au liquide non confiné un profil déterminé.
En fonctionnement, la solidification s'amorce à la périphérie do. pro duit suivant une ligne contenue dans un plan généralement perpendiculaire à l'axe de la coulée si le dispositif de refroidissement est convenablement placé et elle se propage de manière à peu près symétrique et progressive vers l'intérieur et le bas du produit jusqu'à ce que le contact entre les phases liquide et solide se réduisent, à une distance plus ou moins grande de la rehausse, à un point ou à une portion de droite suivant la section du produit coulé. La limite entre les phases est appelée front de solidification.
Un tel système ne permet pas d'atteindre les vitesses de coulée souhaitées car le front de solidification n'est pas stable et se déplace d'autant plus vers le bas que la vitesse est grande. Il en résulte un allongement de la zone de liquide non confiné tel que l'action du champ s'avère insuffisante, ce qui conduit à la formation avant solidification d'un profil anormal ou même à des coulures de métal.
La demanderesse a résolu ce problème en réglant la position de la rehausse par un mouvement vertical par rapport à l'inducteur de manière à maintenir une distance constante entre le plan de base de la rehausse et le plan passant par le front de solidification à la périphérie du produit coulé. Un tel réglage permet, en effet, lorsque le front a tendance à s'éloigner de la rehausse, de maintenir la zone de liquide non confiné à une hauteur compatible avec une géométrie régulière du produit. Cette hauteur est maintenue inférieure à 15 mm et, de préférence, à 10 mm sans être jamais nulle, auquel cas la solidification s'effectuerait alors à l'intérieur de la rehausse et conduirait à l'apparition d'un mauvais état de surface.
La position de la rehausse étant ainsi liée à celle du front, il faut d'abord repérer cette dernière. On peut faire ce repérage avec tout moyen connu de l'homme de l'art comme, par exemple, des sondes, ou en se servant de relations mathématiques qui donnent la position du front par rapport au point d'impact de l'eau en fonction de la vitesse de coulée. Puis, on règle la position de la rehausse en la dé plaçant verticalement à l'aide d'un système quelconque qui peut être asservi au moyen de repérage de la position du front.
La demanderesse a également trouvé que le déplacement de la rehausse pouvait être combiné avec un mouvement du dispositif de refroidissement.
Il faut d'abord savoir que la zone d'impact du fluide caloporteur, particulièrement quand ce dernier est de l'eau, doit être située en dehors de la zone de liquide non confiné, sinon il y a réaction chimique avec l'aluminium et risque d'explosion. Aussi le jet de fluide est-il dirigé vers la partie solide du produit.
En régime équilibré, le front de solidification s'établit à une dis tance constante au-dessus de la zone d'impact; on peut donc régler la position du front en jouant sur le déplacement du dispositif de refroidissement.
Lorsqu'on augmente la vitesse de coulée, on a vu que le front descendait; si l'accélération est faible, on reste proche des conditions d'équilibre et le front de solidification peut être maintenu en laissant le dispositif de refroidissement immobile; par contre, si l'accé lération est grande, on déséquilibre le système et on est obligé de déplacer vers le bas le dispositif de refroidissement pour éviter d'arroser la zone liquide. De préférence, la limite supérieure de la zone arrosée par le fluide du dispositif est située à une distance du front comprise entre 1 et 6 mm.
Le régime de croisière étant atteint, on peut remonter progressivement le dispositif pour faire remonter le front à une position voisine du milieu de l'inducteur qui est la plus favorable à la coulée. La rehausse ayant été descendue, comme on l'a vu plus haut, pour maintenir la zone de liquide non confiné à une hauteur constante, on peut maintenant la remonter an suivant le déplacement du front vers le haut. On retrouve ainsi progressivement les positions initiales de la rehausse et du dispositif de refroidissement et on peut à nouveau procéder à une nouvelle accélération. Ainsi, la combinaison des deux mouvements permet une augmentation plus grande de la vitesse.
Le mouvement du dispositif peut ici aussi être obtenu par tout moyen convenable.
Les réglages de distance indiqués plus haut sont assez précis et nécessitent donc d'avoir des zones d'impact bien délimitées. Ceci est réalisé au moyen de dispositif délivrant des lames d'eau périphériques, d'épaisseur inférieur au millimètre, faisant un angle faible avec la verticale et compris entre 10 et 30°. Il faut aussi propulser le flui de à une grande vitesse de manière à éviter les phénomènes de calëfac tion; on applique, en général, une pression suffisante pour avoir au moins 1 m/sec.
Néanmoins, on ne peut débiter en cet endroit une quantité de fluide suffisante pour atteindre une solidification complète. C'est pourquoi, on complète le refroidissement au moyen d'un étage supplémentaire.
Cet étage peut comprendre tout dispositif distributeur de lames et de gouttelettes. Toutefois, les exigences sur la précision de l'impact sont moins grandes. On peut, par exemple, utiliser des lames de 2 mm d'épaisseur dirigées vers le bas suivant un angle supérieur à 45° et se propageant à une vitesse supérieure à 3 m/sec.
Au cours de la coulée, le niveau de liquide dans la rehausse peut varier de façon à avoir au-dessus du front de solidification, à la périphérie du produit, une hauteur comprise entre 20 et 80 mm.
L'invention sera mieux comprise à l'aide du dessin accompagnant la présente demande et qui représente un ensemble de coulée pour mise en oeuvre du procédé selon l'invention.
On y voit : - la rehausse (1) mobile, présentant une partie supérieure élargie de manière à faciliter le montage du système d'alimentation bu- sette-flotteur (2) et une partie inférieure de section voisine de celle du produit coulé, - l'inducteur (3), générateur du champ électromagnétique qui agit sur la zone du métal liquide (4) située en-dessous de la rehausse
- le dispositif de refroidissement (5) mobile placé autour de la re hausse qui envoie une lame d'eau (6) périphérique au-dessous du front de solidification (7)
- un étage complémentaire de refroidissement (8) placé en-dessous de l'inducteur et qui délivre un jet de fluide (9)
En fonctionnement, le système busette-flotteur maintient le niveau de métal liquide (10) à une hauteur convenable tandis que l'on commande le déplacement de la rehausse et du dispositif de refroidissement, de manière à arroser le produit coulé immédiatement en-dessous du front, et à faire remonter ce dernier quelle que soit la vitesse de coulée au niveau du milieu de l'inducteur et à maintenir une dis tance constante entre le plan de base de la rehausse et ledit front.
L'invention est illustrée à l'aide des exemples suivants :
EXEMPLE 1 Au moyen d'une installation comprenant une rehausse de diamètre intérieur de 120 mm, de hauteur 80 mm, un dispositif de refroidissement débitant 3 m3/heure d'eau sous forme d'une lame d'épaisseur de 0,8 mm inclinée à 30 degrés par rapport à la verticale, circulant à une vitesse de 2,5 m/sec. un inducteur alimenté sour une tension de 10 V avec une intensité de 4200 A ayant une fréquence de 2000 Hz, un dis positif de refroidissement complémentaire débitant 6 m3/heure d'eau sous forme d'une lame d'épaisseur de 1 mm inclinée à 45 degrés par rapport à la verticale, circulant à une vitesse de 3,5 m/sec, on a coulé une billette de 120 mm diamètre d'un alliage d'aluminium 5754 à la vitesse de 900 mm/minute en maintenant, entre le plan de base de la rehausse et le plan passant par le front de solidification, une distance de 13 mm et entre la limita supérieure de la zone arrosée et le front de solidification, une distance de 1 mm.
La hauteur du métal liquide au-dessus du front de solidification repéré à la périphérie du produit a varié entre 30 et 50 mm. EXEMPLE 2
Au moyen d'une installation comprenant une rehausse de section intérieure de 100 à 200 mm, de hauteur 80 mm, un système de refroidissement débitant 4 m3/heure d'eau sous forme d'une lame d'épaisseur 0,7 mm inclinée à 15 degrés par rapport à la verticale, circulant à une vitesse de 2,5 m/sec, un inducteur alimenté sous une tension de 18 V avec une intensité de 6 300 A ayant une fréquence de 2000 Hz, un dispositif de refroidissement complémentaire débitant 15 m3/heure d'eau sous forme de deux lames d'épaisseur 1 mm inclinées à 45 degrés par rapport à la verticale, circulant à une vitesse de 3,2 m/sec, on a coulé une plaque de 100 x 200 mm d'un alliage d'aluminium 1050 à la vitesse de 960 mm/minute en maintenant, entre le plan de base de la rehausse et le plan passant par le front de solidification, une distance de 8 mm et entre la limite supérieure de la zone arrosée et le front de solidification, une distance de 2 à 3 mm.
EXEMPLE 3
Au moyen d'une installation comprenant une rehausse de section intérieure de 100 x 1 300 mm, de hauteur 80 mm, un dispositif de refroidissement débitant 17 m3/heure d'eau sous forme d'une lame d'ëpaisseur 0,7 mm inclinée à 15 degrés par rapport à la verticale, circulant à une vitesse de 2,4 m/sec, un inducteur alimenté sous une tension de 19 V avec une intensité de 5900 A ayant une fréquence de 2000 Hz, un dispositif de refroidissement complémentaire débitant 80 m3/heure sous forme de quatre lames d'épaisseur 1 mm inclinées à 45 degrés par rapport à la verticale, circulant à une vitesse de
2,0 m/sec, on a coulé une plaque de 100 x 1 300 mm d'un alliage d'aluminium 1050 à la vitesse de 780 mm par minute en maintenant, entre le plan de base de la rehausse et le plan passant par le front de solidification, une distance de 14 mm et entre la limite supérieure de la zone arrosée et le front de solidification, une distance de 4 mm.
La présente invention permet de couler en continu l'aluminium et ses alliages à des vitesses supérieures à 500 mm/minute, sous forme de billettes ou de plaques dont la plus petite dimension n'excède pas 150 mm et qui présentent une surface ne nécessitant aucun traitement de scalpage.

Claims

REVENDICATIONS
1/ Procédé de coulée verticale en continu de l'aluminium et de ses alliages sous forme de billettes et de plaques dont la plus petite dimension n'excède pas 150 mm, à une vitesse supérieure à 500 mm/ minute, en combinant l'utilisation d'une rehausse pour l'alimentation en métal liquide, d'un inducteur électromagnétique et d'un dispositif de refroidissement direct pour la mise en forme du produit à fabriquer, caractérisé en ce que l'on règle la position de la rehausse par un mouvement vertical par rapport à la position de l'inducteur qui crée le champ de manière à maintenir au cours de la coulée une dis tance constante entre le plan de base de la rehausse et le plan passant par le front de solidification à la périphérie du produit coulé.
2/ Procédé selon la revendication 1, caractérisé en ce que l'on maintient une distance constante inférieure à 15 mm.
3/ Procédé selon la revendication 1, caractérisé en ce que l'on règle la position du dispositif de refroidissement par un mouvement vertical par rapport à la position de l'inducteur.
4/ Procédé selon la revendication 3, caractérisé en ce que la limite supérieure de la zone arrosée par le fluide du dispositif de refroidissement est située à une distance du front comprise entre 1 et 6 mm.
5/ Procédé selon la revendication 3, caractérisé en ce que le dispositif de refroidissement émet une lame d'eau périphérique, d'épaisseur inférieure à 1 millimère, faisant un angle inférieur à 30 degrés par rapport à la verticale et se propageant à une vitesse supérieure à 1 m/sec.
6/ Procédé selon la revendication 1, caractérisé en ce qu'on place un étage complémentaire de refroidissement en-dessous de l'inducteur.
EP82902070A 1981-07-09 1982-07-07 Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages Expired EP0083611B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8114037 1981-07-09
FR8114037A FR2509207A1 (fr) 1981-07-09 1981-07-09 Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages

Publications (2)

Publication Number Publication Date
EP0083611A1 true EP0083611A1 (fr) 1983-07-20
EP0083611B1 EP0083611B1 (fr) 1985-03-20

Family

ID=9260641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82902070A Expired EP0083611B1 (fr) 1981-07-09 1982-07-07 Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages

Country Status (18)

Country Link
US (1) US4523627A (fr)
EP (1) EP0083611B1 (fr)
JP (1) JPS58500939A (fr)
AU (1) AU547447B2 (fr)
BR (1) BR8207785A (fr)
CA (1) CA1178780A (fr)
DE (1) DE3262654D1 (fr)
ES (1) ES8305608A1 (fr)
FR (1) FR2509207A1 (fr)
GB (1) GB2103972B (fr)
GR (1) GR69780B (fr)
IN (1) IN156297B (fr)
IT (1) IT1151818B (fr)
NO (1) NO830653L (fr)
RO (1) RO87316B (fr)
SU (1) SU1178315A3 (fr)
WO (1) WO1983000107A1 (fr)
YU (1) YU145382A (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570304B1 (fr) * 1984-09-19 1986-11-14 Cegedur Procede de reglage du niveau de la ligne de contact de la surface libre du metal avec la lingotiere dans une coulee verticale
US5085265A (en) * 1990-03-23 1992-02-04 Nkk Corporation Method for continuous casting of molten steel and apparatus therefor
US5469911A (en) * 1994-04-12 1995-11-28 Reynolds Metals Company Method for improving surface quality of electromagnetically cast aluminum alloys and products therefrom
JP3696844B2 (ja) * 2002-07-08 2005-09-21 九州三井アルミニウム工業株式会社 半溶融成型性に優れたアルミニウム合金
EP1486347A1 (fr) * 2003-06-12 2004-12-15 Fuji Photo Film B.V. Substrat en alliage d'aluminium pour une plaque d'impression lithographique et procédé de fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491864A (en) * 1973-11-06 1977-11-16 Alcan Res & Dev Continuous casting
GB2014068A (en) * 1978-02-13 1979-08-22 Olin Corp Casting molten metals
CA1123897A (fr) * 1978-07-03 1982-05-18 John C. Yarwood Methode et dispositif de coulee par voie electromagnetique
US4161978A (en) * 1978-07-19 1979-07-24 Reynolds Metals Company Ingot casting
US4236570A (en) * 1979-01-08 1980-12-02 Olin Corporation Ingot shape control by dynamic head in electromagnetic casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8300107A1 *

Also Published As

Publication number Publication date
AU547447B2 (en) 1985-10-17
JPS58500939A (ja) 1983-06-09
RO87316A (fr) 1985-08-31
SU1178315A3 (ru) 1985-09-07
CA1178780A (fr) 1984-12-04
ES513801A0 (es) 1983-04-16
IN156297B (fr) 1985-06-15
YU145382A (en) 1986-04-30
GR69780B (fr) 1982-07-07
RO87316B (ro) 1985-08-31
ES8305608A1 (es) 1983-04-16
GB2103972B (en) 1985-01-09
GB2103972A (en) 1983-03-02
EP0083611B1 (fr) 1985-03-20
IT8222215A0 (it) 1982-07-02
IT1151818B (it) 1986-12-24
DE3262654D1 (en) 1985-04-25
IT8222215A1 (it) 1984-01-02
WO1983000107A1 (fr) 1983-01-20
FR2509207A1 (fr) 1983-01-14
FR2509207B1 (fr) 1983-11-10
AU8681282A (en) 1983-02-02
NO830653L (no) 1983-02-24
BR8207785A (pt) 1983-06-21
US4523627A (en) 1985-06-18

Similar Documents

Publication Publication Date Title
US2301027A (en) Method of casting
FR2566688A1 (fr) Procede et dispositif pour la coulee en continu de bain de fusion de metal, notamment de bain de fusion d'acier
EP0083611B1 (fr) Procede de coulee continue verticale a grande vitesse de l'aluminium et de ses alliages
FR2530510A1 (fr) Procede de coulee electromagnetique de metaux dans lequel on fait agir au moins un champ magnetique different du champ de confinement
FR2480154A1 (fr) Procede et appareil de coulee electromagnetique de bandes minces
JP2010082638A (ja) 連続鋳造鋳片の製造方法
CH341133A (fr) Procédé de fabrication d'un filament métallique
FR2521463A1 (fr) Procede de coulee continue ou semi-continue de produits metalliques legers
CA1256669A (fr) Procede de reglage du niveau de la ligne de contact de la surface libre du metal avec la lingotiere dans une coulee verticale
LU82874A1 (fr) Procede et installation pour la fabrication continue d'ebauches creuses en metal
EP0241540A1 (fr) Procede et appareil de coulee en continu d'une feuille de metal
JP3846676B2 (ja) 鋼の連続鋳造方法
FR2664513A1 (fr) Procede et dispositif de controle de l'epaisseur en coulee continue de bande mince de materiau electroconducteur.
EP0452294B1 (fr) Procédé et installation pour la coulée continue d'un métal
CH314391A (fr) Procédé de coulée continue ou semi-continue de métaux et alliages
FR2595596A1 (fr) Lingotiere permettant de regler le niveau suivant lequel elle est en contact avec la surface libre du metal dans une coulee verticale
FR2607738A3 (fr) Dispositif pour l'alimentation en metal en fusion des lingotieres de coulee continue
FR2480155A1 (fr) Dispositif pour realiser l'alimentation en metal liquide d'une installation de coulee continue
EP0967033A1 (fr) Procédé et dispositif destinés à réduire ou éliminer les oscillations des boucles de recirculation de l'acier liquide en lingotière d'une coulée continue
EP0008968A1 (fr) Procédé de coulée continue des métaux en fusion et installation de mise en oeuvre
EP0290423B1 (fr) Dispositif de fabrication en continu d'une bande métallique mince
RU2086347C1 (ru) Установка для непрерывного литья заготовок
BE1000221A6 (fr) Dispositif pour la coulee d'un metal en phase pateuse.
BE895357A (fr) Coulee continue des metaux
FR2512364A1 (fr) Procede et dispositif pour couler l'acier aux dimensions des brames

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830209

AK Designated contracting states

Designated state(s): CH DE LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALUMINIUM PECHINEY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE LI NL

REF Corresponds to:

Ref document number: 3262654

Country of ref document: DE

Date of ref document: 19850425

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SCHWEIZERISCHE ALUMINIUM AG

Effective date: 19851212

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCHWEIZERISCHE ALUMINIUM AG

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 6

27O Opposition rejected

Effective date: 19870403

NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401