EP0081884A2 - Dispositif de circuit pour le fonctionnement de lampes de décharge à gaz et à haute pression - Google Patents

Dispositif de circuit pour le fonctionnement de lampes de décharge à gaz et à haute pression Download PDF

Info

Publication number
EP0081884A2
EP0081884A2 EP82201575A EP82201575A EP0081884A2 EP 0081884 A2 EP0081884 A2 EP 0081884A2 EP 82201575 A EP82201575 A EP 82201575A EP 82201575 A EP82201575 A EP 82201575A EP 0081884 A2 EP0081884 A2 EP 0081884A2
Authority
EP
European Patent Office
Prior art keywords
voltage
frequency
current
circuit arrangement
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82201575A
Other languages
German (de)
English (en)
Other versions
EP0081884A3 (en
EP0081884B1 (fr
Inventor
Hans-Günter Ganser
Ralf Dr. Schäfer
Hans-Peter Dr. Stormberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0081884A2 publication Critical patent/EP0081884A2/fr
Publication of EP0081884A3 publication Critical patent/EP0081884A3/de
Application granted granted Critical
Publication of EP0081884B1 publication Critical patent/EP0081884B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement for operating high-pressure gas discharge lamps with higher-frequency current, consisting of a full-wave rectifier connected to a conventional AC network, the direct voltage of which is fed to a bridge circuit with four transistors, in the transverse branch of which a choke coil is arranged upstream of the lamp.
  • High-pressure gas discharge lamps are to be understood in particular as high-pressure mercury, sodium and metal halide gas discharge lamps.
  • the higher frequency current with which the lamps are operated can be either an alternating current or a pulsating direct current.
  • the lamp In the case of AC operation, the lamp is arranged together with the choke coil in the transverse branch of the transistor bridge, while in the DC pulse operation the lamp is connected between the full-wave rectifier and the transistor bridge.
  • the frequency of the higher frequency current can e.g. are between 1 and 100 kHz.
  • VMOS power field-effect transistors
  • bridge circuits are fed from an AC network, network deformation occurs, particularly if high-pressure lamps are used instead of low-pressure lamps. This is due to the fact that the resistance of high-pressure gas discharge lamps changes by a factor of 3 to 10 during each half-cycle of the mains AC voltage with constant ballast impedance. The exact size of this change depends on the lamp data, such as mercury pressure, volume of the discharge vessel or addition of metal halides and the like. This change in the lamp resistance results in a non-sinusoidal current consumption from the network in the case of sinusoidal AC line voltage.
  • the invention has for its object in a Circuit arrangement for operating high-pressure gas discharge lamps to achieve an almost sinusoidal current consumption from the AC network with the simplest possible means, ie without using a control function generator.
  • the choke coil located in the transverse branch of the transistor bridge is changed in its impedance in such a way that the overall resistance of the lamp and ballast impedance is as constant as possible, and thus a sinusoidal current consumption from the AC network.
  • the circuit arrangement is constructed such that a voltage proportional to the mains alternating current is tapped off via a resistor in the current supply to the full-wave rectifier and is fed via a rectifier to the first input of a differential amplifier, while part of the mains alternating voltage is fed to a further rectifier and from there the second input of the differential amplifier is supplied, the output of which is connected to a voltage-controlled pulse oscillator which generates pulses with a frequency dependent on the output signal of the differential amplifier, which are supplied to the control circuit of the transistor bridge.
  • a and B are input terminals for connecting to an AC network, e.g. 220 V, 50 Hz.
  • a bridge rectifier 3 with four diodes is connected to these input terminals via a high-frequency mains filter, consisting of a filter coil 1 and a filter capacitor 2, the output of which is connected to a capacitor 4 in parallel.
  • the rectifier arrangement 3, 4 forms a DC voltage source to which a bridge circuit with four transistors 5 is connected to 8 is connected.
  • a protective diode 9 to 12 is arranged in parallel with each of the transistors 5 to 8.
  • a high-pressure gas discharge lamp 14 which is arranged in series with a choke coil 13 is arranged in the transverse branch of the transistor bridge. The arrangement does not contain a switching power supply.
  • the protective diodes 9 to 12 have the task of short-circuiting the voltage induced in the choke coil 13 when the transistor bridge is switched via the capacitor 4.
  • the bases of the transistors 5 to 8 are acted upon by the outputs C to F of a transistor control circuit 15 with rectangular signals of a clock frequency in the order of magnitude of 1 to 100 kHz which is high compared to the mains frequency of 50 Hz, the outputs C to F being switched such that each of the transistors 5 and 8 are switched to the high (H) signal (FIGS. 2a and d), while the transistors 6 and 7 are in the low (L) state (FIGS. 2b and c) and vice versa.
  • 2a shows the pulse diagram at output C of transistor control circuit 15, FIG. 2b at output D, FIG. 2c at output E and FIG. 2d at output F.
  • the clock frequency of the control circuit 15 is set by the pulse frequency of a pulse sequence present at its input 16, the generation of which will be discussed further below.
  • the transistors 5 and 8 become conductive, while the transistors 6 and 7 are blocked.
  • the point P1 of the bridge cross branch is then connected to the positive side of the capacitor 4 and the point P2 of the bridge cross branch is connected to the negative side of the capacitor 4.
  • the transistors 6 and 7 are turned on and 5 and 8 are blocked, so that P1 is now connected to the minus side and P2 to the plus side of the capacitor sators 4 is connected.
  • the voltage U 1,2 between the points P1 and P2 schematically has the appearance shown in the time diagram in FIG. 3, its level depending on the voltage U C4 present across the capacitor 4.
  • U C4 practically corresponds to the instantaneous value of the rectified AC mains voltage, so that the high-frequency voltage U C4 shown in FIG. 3 has a sinusoidal 100 Hz envelope.
  • the voltage U 1,2 is then supplied to the lamp 14 via the choke coil 13, so that the choke coil 13 acts as a ballast impedance and the lamp 14 has the high-frequency current curve I L , also shown schematically in FIG. 4, which also has a 100 Hz Has envelope.
  • the inductor 13 can be small - compared to a conventional 50 Hz inductor - and still act as ballast impedance.
  • the high-frequency changes in the lamp current lead to the same high-frequency changes in the current I B through the transistor bridge (FIG. 5) and thus in the current consumption from the AC network. To prevent this, these high-frequency components are filtered out with the line filter 1, 2.
  • the clock frequency of the bridge transistors is changed in the following manner during each half-cycle of the mains AC voltage: A voltage proportional to the mains alternating current is tapped from the supply lead to the full-wave rectifier 3 and is fed via a linear rectifier 18 to the first input E1 of a differential amplifier 19. Furthermore, a part of the AC line voltage is applied to a second linear rectifier 21 and then to the second input E2 of the differential amplifier 19 via a voltage divider 20.
  • this second input E2 there is a rectified sinusoidal voltage, the amplitude of which can be set by the voltage divider 20 and which serves as a reference signal for regulating the mains alternating current (FIG. 6).
  • This sinusoidal signal is then compared with the mains alternating current signal present at the first input E1 (FIG. 7).
  • the differential amplifier 19 supplies an output voltage which is proportional to the instantaneous value of the difference between the mains AC signal and the sinusoidal reference signal (FIG. 8).
  • 6 to 8 schematically show the input and output signals of the differential amplifier 19 for a deviation of the mains alternating current from the sinusoidal form which is exaggerated for the sake of clarity compared to the actual case.
  • the gain of the differential amplifier 19 during each half-wave such that the output signal is proportional to the relative deviation between the AC mains current I and the reference signal R, ie proportional to (RI) / R.
  • This output signal is then applied to a voltage-controlled pulse oscillator 22, which generates a pulse-shaped voltage with a frequency f fixed at zero input voltage, which is correspondingly reduced when the input voltage is positive and increased when the input voltage is negative.
  • This pulse voltage of variable frequency f is then applied to the transistor control circuit 15, which in turn switches the transistor bridge at this frequency f.
  • the switching frequency of the transistor bridge is reduced, the impedance of the inductor 13 decreases and thus the current consumption from the network increases. Conversely, the switching frequency is increased at an instantaneous alternating current of the mains which is greater than the reference signal, as a result of which the impedance of the inductor 13 increases and the mains current decreases.
  • Such a change in frequency of the pulse sequence present at input 16 of transistor control circuit 15 is shown in FIG. 9, the frequency and the change in frequency being greater in the real case.
  • the circuit arrangement described represents a proportional control loop which forces the most possible sinusoidal current consumption from the network.
  • the effective value of the current and thus the lamp power can be determined via the size of the reference signal, e.g. the voltage divider ratio. Lamps with lower powers can also be operated advantageously with this.
  • Tables I and II give the associated data for the low-frequency Fourier components of the AC mains current. It can be seen that the frequency change in particular significantly reduces the 3rd harmonic.
  • the integrated standard component TL 494 CN from Texas Instruments was used as the pulse oscillator 22 and transistor control circuit 15.
  • the lamp is operated with alternating current.
  • operation with direct current pulses is also suitable.
  • the lamp 14 in the circuit according to FIG. 1 could be removed from the transverse bridge branch and connected between the rectifier arrangement 3, 4 and the transistor bridge 5 to 8, for example between the points M and N or P and Q.
  • the choke coil 13 remains then alone in the bridge branch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
EP82201575A 1981-12-14 1982-12-10 Dispositif de circuit pour le fonctionnement de lampes de décharge à gaz et à haute pression Expired EP0081884B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813149526 DE3149526A1 (de) 1981-12-14 1981-12-14 Schaltungsanordnung zum betrieb von hochdruck-gasentladungslampen
DE3149526 1981-12-14

Publications (3)

Publication Number Publication Date
EP0081884A2 true EP0081884A2 (fr) 1983-06-22
EP0081884A3 EP0081884A3 (en) 1984-01-04
EP0081884B1 EP0081884B1 (fr) 1986-12-03

Family

ID=6148702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82201575A Expired EP0081884B1 (fr) 1981-12-14 1982-12-10 Dispositif de circuit pour le fonctionnement de lampes de décharge à gaz et à haute pression

Country Status (4)

Country Link
US (1) US4471269A (fr)
EP (1) EP0081884B1 (fr)
JP (1) JPS58106800A (fr)
DE (2) DE3149526A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196543A2 (fr) * 1985-03-28 1986-10-08 Kollmorgen Technologies Corporation Régulation de courant pour une charge inductive
EP0239420A1 (fr) * 1986-03-28 1987-09-30 Thomas Industries Inc. Ballast à haute fréquence pour tubes à décharge en atmosphère gazeuse
EP0320944A1 (fr) * 1987-12-17 1989-06-21 Pintsch Bamag Antriebs- und Verkehrstechnik GmbH Convertisseur pour une lampe à décharge
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
EP0528769A2 (fr) * 1991-07-12 1993-02-24 MAGNETI MARELLI S.p.A. Circuit pulsatoire pour faire marcher une lampe luminescente à gaz en particulier pour l'utilisation dans un véhicule à moteur
EP0610067A1 (fr) * 1993-02-01 1994-08-10 Horacio Sobrinho Rodrigues Ballast électronique à minuterie et photodétecteur incorporés pour economiser de l'énergie en alimentant des lampes à haute pression
WO2007068601A1 (fr) * 2005-12-14 2007-06-21 Osram Gesellschaft mit beschränkter Haftung Ensemble circuit et procédé pour faire fonctionner des lampes à décharge à haute pression

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723098A (en) * 1980-10-07 1988-02-02 Thomas Industries, Inc. Electronic ballast circuit for fluorescent lamps
US4698554A (en) * 1983-01-03 1987-10-06 North American Philips Corporation Variable frequency current control device for discharge lamps
US4585974A (en) * 1983-01-03 1986-04-29 North American Philips Corporation Varible frequency current control device for discharge lamps
US4616159A (en) * 1983-08-22 1986-10-07 The North American Manufacturing Company Driving circuit for pulsating radiation detector
US4777409A (en) * 1984-03-23 1988-10-11 Tracy Stanley J Fluorescent lamp energizing circuit
JPS60177499U (ja) * 1984-05-04 1985-11-25 松下電工株式会社 放電灯点灯装置
US4631449A (en) * 1984-08-06 1986-12-23 General Electric Company Integral crystal-controlled line-voltage ballast for compact RF fluorescent lamps
GB2172451B (en) * 1985-02-07 1989-06-14 El Co Villamos Keszulekek Es S Circuit system for igniting and lighting a high-pressure discharge lamp particulary a sodium vapour lamp
US4684850A (en) * 1985-09-23 1987-08-04 Stevens Carlile R Variable frequency bridge inverter for driving gas discharge lamps
US4651060A (en) * 1985-11-13 1987-03-17 Electro Controls Inc. Method and apparatus for dimming fluorescent lights
DE3540985A1 (de) * 1985-11-19 1987-05-21 Philips Patentverwaltung Schaltungsanordnung zum wechselstrombetrieb von gasentladungslampen
US4709188A (en) * 1985-12-23 1987-11-24 General Electric Company Operation of standby filament associated with an AC arc discharge lamp ballast
US4717863A (en) * 1986-02-18 1988-01-05 Zeiler Kenneth T Frequency modulation ballast circuit
US4873616A (en) * 1987-04-16 1989-10-10 Camera Platforms International, Inc. Power supply for arc lamps
US4873617A (en) * 1987-04-16 1989-10-10 Camera Platforms International, Inc. Power supply for arc lamps
DE3713312A1 (de) * 1987-04-18 1989-02-02 Manfred Prof Dipl Ing Fender Regelbare wechselstromquelle fuer gasentladungsstrecken zur licht- und ozonerzeugung
US6107749A (en) * 1987-08-03 2000-08-22 Nilssen; Ole K. FET-bipolar electronic ballast
NL8800015A (nl) * 1988-01-06 1989-08-01 Philips Nv Elektrische inrichting voor het ontsteken en voeden van een gasontladingslamp.
US4885671A (en) * 1988-03-24 1989-12-05 General Electric Company Pulse-by-pulse current mode controlled power supply
US4963795A (en) * 1989-01-23 1990-10-16 Nilssn Ole K Step-controllable electronic ballast
EP0395159B1 (fr) * 1989-04-28 1995-03-22 Koninklijke Philips Electronics N.V. Convertisseur courant continu-courant alternatif pour l'alimentation de deux lampes à décharge dans la vapeur et / ou le gaz
EP0398432B1 (fr) * 1989-05-17 2001-10-10 Koninklijke Philips Electronics N.V. Dispositif de commutation
US5491388A (en) * 1992-03-25 1996-02-13 Toto Ltd. Power regulator of discharge lamp and variable color illumination apparatus using the regulator
TW344190B (en) * 1992-09-22 1998-11-01 Matsushita Electric Works Ltd Discharge lamp lighting device
US5404082A (en) * 1993-04-23 1995-04-04 North American Philips Corporation High frequency inverter with power-line-controlled frequency modulation
US5410221A (en) * 1993-04-23 1995-04-25 Philips Electronics North America Corporation Lamp ballast with frequency modulated lamp frequency
CA2164511A1 (fr) * 1994-04-06 1995-10-19 Anton Cornelis Blom Configuration de circuit
TW339496B (en) * 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
US5550440A (en) * 1994-11-16 1996-08-27 Electronics Diversified, Inc. Sinusoidal inductorless dimmer applying variable frequency power signal in response to user command
US6181085B1 (en) * 1995-02-22 2001-01-30 Ole K. Nilssen Electronic ballast with output control feature
EP0860098B1 (fr) * 1996-09-11 2006-07-05 Koninklijke Philips Electronics N.V. Montage de circuits
US6781357B2 (en) * 2001-09-27 2004-08-24 Power Integrations, Inc. Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply
JP2010509718A (ja) * 2006-11-09 2010-03-25 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング 放電ランプの点弧回路装置
DE102007057581A1 (de) * 2007-11-28 2009-06-04 Fachhochschule Aachen Hochfrequenzlampe und Verfahren zu deren Betrieb
US8797776B2 (en) * 2012-10-16 2014-08-05 Hong Kong Applied Science & Technology Research Institute Co., Ltd. Diode-less full-wave rectifier for low-power on-chip AC-DC conversion
US8964436B2 (en) * 2012-10-16 2015-02-24 Hong Kong Applied Science & Technology Research Institute Company, Limited Self-starting transistor-only full-wave rectifier for on-chip AC-DC conversion
TWI489749B (zh) * 2012-10-29 2015-06-21 國立虎尾科技大學 全橋諧振式單級主動式高功因電力轉換裝置
TWI469480B (zh) * 2012-10-29 2015-01-11 Univ Nat Formosa 全橋諧振換向式單級主動式高功因電力轉換裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642272A1 (de) * 1975-10-28 1977-05-05 Gen Electric Elektronische vorschaltanordnung fuer gasentladungslampen
DE2942468A1 (de) * 1979-10-20 1981-04-30 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Schaltungsanordnung fuer den hochfrequenten betrieb einer oder mehrerer leuchtstofflampen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642272A1 (de) * 1975-10-28 1977-05-05 Gen Electric Elektronische vorschaltanordnung fuer gasentladungslampen
DE2942468A1 (de) * 1979-10-20 1981-04-30 Trilux-Lenze Gmbh + Co Kg, 5760 Arnsberg Schaltungsanordnung fuer den hochfrequenten betrieb einer oder mehrerer leuchtstofflampen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196543A2 (fr) * 1985-03-28 1986-10-08 Kollmorgen Technologies Corporation Régulation de courant pour une charge inductive
EP0196543A3 (fr) * 1985-03-28 1988-01-13 Kollmorgen Technologies Corporation Régulation de courant pour une charge inductive
EP0239420A1 (fr) * 1986-03-28 1987-09-30 Thomas Industries Inc. Ballast à haute fréquence pour tubes à décharge en atmosphère gazeuse
US4873471A (en) * 1986-03-28 1989-10-10 Thomas Industries Inc. High frequency ballast for gaseous discharge lamps
EP0320944A1 (fr) * 1987-12-17 1989-06-21 Pintsch Bamag Antriebs- und Verkehrstechnik GmbH Convertisseur pour une lampe à décharge
EP0528769A2 (fr) * 1991-07-12 1993-02-24 MAGNETI MARELLI S.p.A. Circuit pulsatoire pour faire marcher une lampe luminescente à gaz en particulier pour l'utilisation dans un véhicule à moteur
EP0528769A3 (en) * 1991-07-12 1995-09-06 Marelli Autronica A self-pulsing circuit for operating a gas-discharge lamp, particularly for use in a motor vehicle
EP0610067A1 (fr) * 1993-02-01 1994-08-10 Horacio Sobrinho Rodrigues Ballast électronique à minuterie et photodétecteur incorporés pour economiser de l'énergie en alimentant des lampes à haute pression
WO2007068601A1 (fr) * 2005-12-14 2007-06-21 Osram Gesellschaft mit beschränkter Haftung Ensemble circuit et procédé pour faire fonctionner des lampes à décharge à haute pression
US8283872B2 (en) 2005-12-14 2012-10-09 Osram Ag Circuit arrangement and method for the operation of high-pressure gas discharge lamps

Also Published As

Publication number Publication date
DE3274612D1 (en) 1987-01-15
EP0081884A3 (en) 1984-01-04
JPS58106800A (ja) 1983-06-25
EP0081884B1 (fr) 1986-12-03
DE3149526A1 (de) 1983-06-23
US4471269A (en) 1984-09-11
JPH0373999B2 (fr) 1991-11-25

Similar Documents

Publication Publication Date Title
EP0081884B1 (fr) Dispositif de circuit pour le fonctionnement de lampes de décharge à gaz et à haute pression
EP0422255B1 (fr) Ballast électronique
EP0395776B1 (fr) Ballast électrique
EP0356818A2 (fr) Circuit alimentant une charge
DE19945467A1 (de) Blinkschaltung und Steuerung für Leuchtstofflampen
EP1227705A2 (fr) Ballast pour lampes comprenant un convertisseur du type SEPIC
EP1465465B1 (fr) Ballast électronique avec un circuit en pont complet
EP1589645A2 (fr) Circuit pour convertir une tension alternative en tension continue
DE3111561C2 (de) Hochfrequenzgenerator zum Betreiben einer Entladungslampe
EP0641148B1 (fr) Ballast électronique pour alimenter une charge, par exemple une lampe
DE2825708B2 (de) Schaltungsanordnung zum Verringern von Oberwellen im Netzwechselstrom bei Gleichstromverbrauchern, die aus dem Wechselstromnetz gespeist werden
EP0634087B1 (fr) Ballast electronique pour une lampe luminescente a gaz
DE60112941T2 (de) Schaltungsanordnung
EP1396937A2 (fr) Circuit pour alimenter un circuit de commande avec approvisionnement de puissance amélioré
CH688066A5 (de) Wechselstrom/Gleichstrom-Wandler nach dem Buck-/Boost-Prinzip.
DE60113842T2 (de) Schaltung
EP1524576A1 (fr) Convertisseur de tension survolteur avec régulation de facteur de puissance
DE19946253B4 (de) Steuergerät für eine Lichtbogenlampe
DE10233605A1 (de) Leistungsfaktor-Korrekturvorrichtung mit elektronischer Ballastfunktion
EP1377135A2 (fr) Circuit muni d'une détection d'approche de fonctionnement en mode capacitif pour alimenter une lampe à décharge
CH683219A5 (de) Elektronisches Vorschaltgerät für eine Niederdruck-Gasentladungslampe.
EP0596397B1 (fr) Circuit d'alimentation à haute fréquence
DE1128041B (de) Schaltungsanordnung zur Speisung von Leuchtstofflampen aus einem Gleichstromnetz ueber einen Transistorwechselrichter und Transistorwechselrichter fuer die Schaltungsanordnung
EP0452431A1 (fr) Procede et dispositif de regulation et commande de tensions alternatives a partir du reseau distributeur public
EP0949851A1 (fr) Ballast pour lampe à décharge à faible pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19840202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

BECN Be: change of holder's name

Effective date: 19861203

REF Corresponds to:

Ref document number: 3274612

Country of ref document: DE

Date of ref document: 19870115

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951130

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960118

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960223

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: PHILIPS ELECTRONICS N.V.

Effective date: 19961231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST