EP0395776B1 - Ballast électrique - Google Patents

Ballast électrique Download PDF

Info

Publication number
EP0395776B1
EP0395776B1 EP89107955A EP89107955A EP0395776B1 EP 0395776 B1 EP0395776 B1 EP 0395776B1 EP 89107955 A EP89107955 A EP 89107955A EP 89107955 A EP89107955 A EP 89107955A EP 0395776 B1 EP0395776 B1 EP 0395776B1
Authority
EP
European Patent Office
Prior art keywords
invertor
capacitor
voltage
bridge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89107955A
Other languages
German (de)
English (en)
Other versions
EP0395776A1 (fr
Inventor
Peter Krummel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT89107955T priority Critical patent/ATE102428T1/de
Priority to ES89107955T priority patent/ES2049772T3/es
Priority to DE89107955T priority patent/DE58907116D1/de
Priority to EP89107955A priority patent/EP0395776B1/fr
Priority to JP2111898A priority patent/JP2690382B2/ja
Publication of EP0395776A1 publication Critical patent/EP0395776A1/fr
Application granted granted Critical
Publication of EP0395776B1 publication Critical patent/EP0395776B1/fr
Priority to HK123195A priority patent/HK123195A/xx
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters

Definitions

  • the invention relates to an electronic ballast for fluorescent lamps according to the preamble of claim 1.
  • An electronic ballast of this type is known for example from DE-A1-33 19 739.
  • the sine correction capacitor serves the prescribed sine shape of the current drawn by the ballast from the network during operation. As long as the switching frequency of the inverter does not change, the ballast draws constant energy from the grid. This means that the effective operating voltages strongly depend on changes in the mains voltage and / or the load fed by the inverter. This dependency within the device not only requires the electrolytic capacitor supporting the DC supply voltage for the inverter to be designed for a higher voltage value, but also requires special measures for monitoring this DC voltage. If the monitoring detects an excessive internal DC voltage, it either switches off the entire ballast or paralyzes the sine correction function caused by the sine correction capacitor. Both measures have serious operational disadvantages. In the one case, the fluorescent lamp goes out, in the second case the correct current consumption from the network is no longer given, which leads to impermissible harmonics and a deterioration in the power factor.
  • the invention is based on the object of specifying a further solution for an electronic ballast of the type mentioned at the outset which, with the aid of simple circuitry measures, prevents the operating disadvantages described in the event of changes in the mains AC voltage and / or the load of the load circuit.
  • the circuit for the electronic ballast according to FIG. 1 known from DE-A1-33 19 739 consists of an inverter WR, to which the AC line voltage is supplied on the input side via a rectifier circuit GS.
  • the inverter WR consists of a switch bridge arrangement, each having a switch SH and SL in two branches and a capacitor CH and CH 'in two branches.
  • the output of the inverter WR is given by the common connection points on the one hand of the two switches SH, SL and on the other hand the capacitors CH, CH 'and connected to the load circuit LA.
  • the load circuit LA in turn consists of the series connection of the choke L with the parallel connection of the ignition capacitor CZ and the fluorescent tube LL.
  • the switches SH and SL are turned on and off in alternation with a high-frequency oscillation that controls them and is not specified. In this way, the load circuit is subjected to a rectangular alternating voltage in the rhythm of the high-frequency oscillation, the amplitude of which is determined by the charging capacitor voltage UE applied to the inverter input.
  • the rectifier circuit GS has on the input side a rectifier GL for a full-wave rectification, the output connections of which are each connected via a diode DK or DK 'polarized in the direction of the rectified alternating current to the charging capacitor CEL, which supports the rectified mains alternating voltage and at the same time the output of the rectifier circuit GS represents.
  • the inverter WR draws a current from the network during operation, which has the required sinusoidal shape, on the one hand, between the common connection points of one of the output-side connections of the rectifier GL and a diode DK or DK 'and the common connection point of the capacitors CH, CH ', ie the common connection point of the capacitive switch branches of the switch bridge arrangement of the inverter WR, on the other hand, a sine correction capacitor CS or CS' is provided. Furthermore, the inverter WR has free-wheeling diodes DFL and DFH, which are still required for proper switch operation and are connected in parallel to the switches SL and SH realized by power transistors.
  • this known circuit has the property that the inverter WR draws a constant energy from the grid as long as the switching frequency of its switches SH and SL does not change. This results in a strong dependence of the circuit on changes in mains voltage and / or changes in the load of the load circuit LA. If the AC voltage decreases or the load of the load circuit decreases, the charging capacitor voltage UE increases very quickly beyond an allowable limit value, which necessitates protective measures which have the serious operating disadvantages already described.
  • the known circuit according to FIG. 1, which shows a symmetrical structure, can be simplified, without its function undergoing a change, in that on the one hand the diode DK 'and the sine correction capacitor CS' are dispensed with.
  • capacitor CH' since the two capacitors CH and CH 'are electrically parallel to one another, capacitor CH' can be used to double the capacitance value of capacitor CH in the following electrically effective bridge capacitor CH called, are waived.
  • Such a simplified inverter circuit shows the preferred embodiment of an electronic ballast according to the invention in FIG. 2.
  • the circuit of the inverter In contrast to the inverter WR according to FIG. 1, WR is further supplemented by the series connection of two clamp diodes DBL and DBH, which are connected in parallel when the polarity is opposite to the charging capacitor voltage at the charging capacitor CEL. Their common connection point is at the same time that of the load circuit LA and the electrically effective bridge capacitor CH common output connection of the inverter WR.
  • the electrically effective bridge capacitor CH represents the half-bridge capacitor of the switch bridge arrangement.
  • the clamp diodes DBH and DBL ensure that, in the event of fluctuations in the mains voltage and / or changes in the load of the load circuit LA, on the one hand the reference potential GND and on the other hand the intermediate circuit potential UZW and thus the charging capacitor voltage US are kept largely stable. Switching off the entire device or paralyzing the sine correction function to protect against impermissible overvoltages is therefore no longer necessary.
  • the preferred circuit of the electronic ballast circuit according to FIG. 2 also differs from the known circuit according to FIG. 1 in that a charging choke LK is provided in the connection path between the one output-side connection of the rectifier GL and the common connection point of diode DK and sine correction capacitor CS and that, in addition, the AC line voltage un is supplied to the rectifier circuit GS via a harmonic filter FE.
  • the inductance of the charging inductor LK is expediently dimensioned for a value at which the charging inductor LK - in the rhythm of the high-frequency oscillation for the control of the switches SH and SL - is only fully charged when the instantaneous AC alternating current is small, that is to say in the region of its zero crossings.
  • a corresponding time diagram of the charging inductor current ilk is shown in FIG. 3.
  • the inductance of the charging inductor LK must be chosen to be relatively large. If the inductance is small, the harmonic component of the mains current can be reduced, but it will then a greater effort in the area of the harmonic filter FE is required to meet the requirements for adequate radio interference suppression.
  • the high-frequency current modulation still remains within small limits, so that the expenditure for the harmonic filter FE, as indicated in FIG. 2, can be limited to a choke having two windings and a capacitor.
  • the inductance of the charging inductor LK can in principle be varied within wide limits without the limiting action of the clamp diodes DBH and DBL being adversely affected thereby.
  • the electrically effective bridge capacitor CH has a value at which its charging voltage largely follows the high-frequency load circuit current. Furthermore, it is expedient for the capacitance of the sine correction capacitor CS to be substantially larger than the capacitance of the electrically effective bridge capacitor CH to choose.
  • the capacitance ratio of sine correction capacitor CS to the electrically effective bridge capacitor CH expediently has a value between 1.5 and 4, preferably the value 2.
  • FIGS. 4 to 7 For a better understanding of the mode of operation of the circuit according to FIG. 2, this circuit is shown again in FIGS. 4 to 7, together with the most important currents occurring during a mains voltage half-wave, which are dependent on different switch positions of the switches SL and SH within one Period of high-frequency oscillator oscillation that controls the switch occurs.
  • a switching period has four different switching phases.
  • the first switching phase in which the switch SL is closed and the switch SH is open, is shown in FIG. 4.
  • the following, second switching phase is shown in FIG. 5, in which both switches SH and SL are open.
  • the intermediate circuit potential UZW is equal to the bridge capacitor voltage UH, that the sine correction capacitor CS is uncharged and the electrically effective bridge capacitor CH , in the following briefly half-bridge capacitor CH called, is charged.
  • the charging choke LK should have a charge and the choke L of the load circuit should have no charge.
  • the half-bridge capacitor now becomes CH discharged by the current ih via the load circuit and the switch SL.
  • the sine correction capacitor CS charged by the current ik, which also flows through the charging choke LK and discharges it.
  • the charging choke LK discharges into the sine correction capacitor CS until the corrected rectified AC mains voltage UK becomes smaller than the rectified AC mains voltage UN.
  • the charging choke LK is charged until the half-bridge capacitor CH is fully discharged.
  • the current ib1 starts through the clamp diode DBL, the circuit of which also closes via the switch SL. This current ensures that the half-bridge capacitor CH cannot charge in the opposite direction.
  • the sine correction capacitor CS is further charged via the charging inductor LK until the corrected rectified AC mains voltage UK becomes greater than the rectified AC mains voltage UN.
  • the switch SL opens, the inductor L of the load circuit charged in the first switching phase is discharged on the one hand via the clamp diode current ib1 flowing through the clamp diode DBL and on the other hand via the sine correction capacitor CS flowing current ik, which takes its way via the freewheeling diode DFH and also flows through the charging choke LK, which is now discharged.
  • the total current flowing through the load circuit from the clamp diode current ib1 and the sine correction capacitor current ik goes towards the value zero.
  • the half-bridge capacitor CH and the inductor L is charged by the bridge capacitor current ih2 and the sine correction capacitor current ik2.
  • the sine correction capacitor CS is also charged by the sine correction capacitor current ik2.
  • the sine correction capacitor current ik2 stops flowing and thus ends the charging of the sine correction capacitor CS.
  • the diode DK which becomes transparent as soon as UK + UH> UE causes the sine correction capacitor current ik1 to flow.
  • the sine correction capacitor current ik1 and the bridge capacitor current ih2 close across the load circuit and cause a further charging of the inductor L.
  • the sine correction capacitor C3 is discharged by the now flowing sine correction capacitor current ik1.
  • the charging choke LK is also partially discharged.
  • the bridge capacitor current ih2 charges the bridge capacitor CH further on. As soon as the bridge capacitor voltage UH becomes larger than the charging capacitor voltage UE, the clamp diode current ibh begins to flow. In this way, a recharge of the sine correction capacitor CS in the opposite direction is prevented, ie its charge assumes the value zero.
  • the inductor L of the load circuit discharges via the clamp diode current ibh which continues to flow.
  • the charging inductor LK partially discharges through the charging inductor current ilk, the circuit of which closes via the charging capacitor CEL.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Rectifiers (AREA)
  • Organic Insulating Materials (AREA)
  • Discharge Heating (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Inverter Devices (AREA)
  • Interface Circuits In Exchanges (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Glass Compositions (AREA)
  • Furan Compounds (AREA)

Claims (6)

  1. Ballast électronique pour lampes fluorescentes, comportant
    un circuit redresseur (GS) alimenté par une tension alternative (un) du secteur et qui possède un pont redresseur (GL), une bobine de charge (LK) raccordée au pôle positif du pont, et une diode de couplage (DK) branchée en série avec la bobine de charge et polarisée dans le sens passant pour le courant alternatif redressé du secteur, ainsi qu'un condensateur de charge (CEL) branché en parallèle avec les deux sorties du circuit redresseur,
    un onduleur à haute fréquence (WR) réalisé selon un montage en demi-pont, dans lequel sont prévus deux interrupteurs (SH, SL), qui peuvent être commandés alternativement et sont disposés respectivement entre l'une des sorties du circuit redresseur (GS) et une première sortie de l'onduleur, et
    au moins un circuit de charge (L1) constitué par une lampe fluorescente (LL) en parallèle avec laquelle est branché un condensateur d'amorçage (CZ), et une self de lampe (L) branchée en série avec la lampe fluorescente, la self de la lampe étant raccordée à la première borne de l'onduleur et de la borne libre de la lampe étant raccordée à la seconde sortie de l'onduleur,
    caractérisé par le fait que
    dans l'onduleur (WR), deux diodes de blocage (DBH, DBL) branchées en série sont en outre connectées entre les sorties du circuit redresseur (GS), avec une polarisation en sens opposé de la tension alternative redressée du secteur, le point de jonction commun de ces diodes formant une seconde sortie de l'onduleur, et que dans l'onduleur (WR), un condensateur (CH) du demi-pont est en outre branché entre la sortie, qui est raccordée au potentiel de masse, du circuit redresseur (GS) et la seconde sortie de l'onduleur, et qu'enfin, dans l'onduleur (WR), il est prévu un condensateur (CS) de correction d'onde sinusoïdale, qui est connecté d'une part au point de jonction de la bobine de charge et de la diode de couplage du circuit redresseur et d'autre part à la seconde sortie de l'onduleur.
  2. Ballast électronique suivant la revendication 1, caractérisé par le fait que la bobine de charge (LK) est chosie suffisamment grande pour se charger complètement au rythme de la haute fréquence de coupure de l'onduleur (WR), uniquement au voisinage des points d'annulation du courant alternatif du secteur.
  3. Ballast électronique suivant l'une des revendications précédentes, caractérisé par le fait qu'un filtre d'harmoniques (FE) est branché en amont du circuit redresseur (GS).
  4. Ballast électronique suivant l'une des revendications précédentes, caractérisé par le fait que la taille du condensateur en pont (CH) de l'onduleur (WR) possède une valeur, pour laquelle sa tension de charge suit dans une large mesure le courant à haute fréquence du circuit de charge.
  5. Ballast électronique suivant la revendication 4, caractérisé par le fait que la capacité du condensateur en pont (CH) de l'onduleur (WR) est nettement inférieure à la capacité du condensateur (CS) de correction de l'onde sinusoïdale.
  6. Ballast électronique suivant la revendication 5, caractérisé par le fait que le rapport de la capacité du condensateur (CS) de correction de l'onde sinusoïdale à la capacité du condensateur en pont (CH) possède une valeur comprise entre 1,5 et 4, de préférence la valeur 2.
EP89107955A 1989-05-02 1989-05-02 Ballast électrique Expired - Lifetime EP0395776B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT89107955T ATE102428T1 (de) 1989-05-02 1989-05-02 Elektronisches vorschaltgeraet.
ES89107955T ES2049772T3 (es) 1989-05-02 1989-05-02 Adaptador electronico.
DE89107955T DE58907116D1 (de) 1989-05-02 1989-05-02 Elektronisches Vorschaltgerät.
EP89107955A EP0395776B1 (fr) 1989-05-02 1989-05-02 Ballast électrique
JP2111898A JP2690382B2 (ja) 1989-05-02 1990-05-01 蛍光ランプ用の電子式補助装置
HK123195A HK123195A (en) 1989-05-02 1995-07-27 Electronic ballast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89107955A EP0395776B1 (fr) 1989-05-02 1989-05-02 Ballast électrique

Publications (2)

Publication Number Publication Date
EP0395776A1 EP0395776A1 (fr) 1990-11-07
EP0395776B1 true EP0395776B1 (fr) 1994-03-02

Family

ID=8201316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107955A Expired - Lifetime EP0395776B1 (fr) 1989-05-02 1989-05-02 Ballast électrique

Country Status (6)

Country Link
EP (1) EP0395776B1 (fr)
JP (1) JP2690382B2 (fr)
AT (1) ATE102428T1 (fr)
DE (1) DE58907116D1 (fr)
ES (1) ES2049772T3 (fr)
HK (1) HK123195A (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488478A2 (fr) * 1990-11-27 1992-06-03 Matsushita Electric Works, Ltd. Dispositif d'onduleur
EP0585077A1 (fr) * 1992-08-25 1994-03-02 General Electric Company Alimentation d'énergie avec correction du facteur de puissance
EP0606664A1 (fr) * 1993-01-12 1994-07-20 Koninklijke Philips Electronics N.V. Circuit ballast
EP0606665A1 (fr) * 1993-01-12 1994-07-20 Koninklijke Philips Electronics N.V. Circuit
GB2256099B (en) * 1990-08-31 1994-10-19 Siew Ean Wong Improvements in electronic ballasts
EP0757420A1 (fr) 1995-08-04 1997-02-05 Siemens Aktiengesellschaft Ballast électronique avec limitation du courant d'appel et protection contre les surtensions
US5610479A (en) * 1992-11-13 1997-03-11 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Circuit arrangement for operating low-pressure discharge lamps
EP0831677A2 (fr) * 1996-09-24 1998-03-25 Mass Technology (H.K.) Ltd. Ballast électronique pour lampe à décharge
US5798617A (en) 1996-12-18 1998-08-25 Pacific Scientific Company Magnetic feedback ballast circuit for fluorescent lamp
US5866993A (en) 1996-11-14 1999-02-02 Pacific Scientific Company Three-way dimming ballast circuit with passive power factor correction
US5925986A (en) 1996-05-09 1999-07-20 Pacific Scientific Company Method and apparatus for controlling power delivered to a fluorescent lamp
US5955841A (en) 1994-09-30 1999-09-21 Pacific Scientific Company Ballast circuit for fluorescent lamp
US5982111A (en) 1994-09-30 1999-11-09 Pacific Scientific Company Fluorescent lamp ballast having a resonant output stage using a split resonating inductor
US6037722A (en) 1994-09-30 2000-03-14 Pacific Scientific Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237262A1 (de) * 1992-11-04 1994-05-05 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum hochfrequenten Betrieb eines Verbrauchers
CN1050493C (zh) * 1993-01-16 2000-03-15 浙江照明电器总公司 带有异常状态保护器高功率因数电子灯
CN1049553C (zh) * 1993-01-30 2000-02-16 皇家菲利浦电子有限公司 镇流电路
CN1054726C (zh) * 1993-01-30 2000-07-19 皇家菲利浦电子有限公司 镇流电路
EP0885550A1 (fr) * 1996-03-06 1998-12-23 Tecninter Ireland Limited Ballast electronique destine a une lampe fluorescente compacte
US6107753A (en) * 1998-12-18 2000-08-22 Philips Electronics North America Corporation Radio frequency electronic ballast with integrated power factor correction stage
CN2515919Y (zh) * 2001-12-05 2002-10-09 马士科技有限公司 可与可控硅调相调光器配合使用的可调光荧光灯装置
US7122972B2 (en) * 2003-11-10 2006-10-17 University Of Hong Kong Dimmable ballast with resistive input and low electromagnetic interference
EP2104402A1 (fr) * 2008-03-17 2009-09-23 Chuan Shih Industrial Co., Ldt. Ballast électronique pour lampes à décharge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511823A (en) * 1982-06-01 1985-04-16 Eaton William L Reduction of harmonics in gas discharge lamp ballasts
JPS59128128A (ja) * 1983-01-13 1984-07-24 Matsushita Electric Works Ltd 積載方法
GB2147159B (en) * 1983-09-19 1987-06-10 Minitronics Pty Ltd Power converter
DE3667367D1 (de) * 1985-06-04 1990-01-11 Thorn Emi Lighting Nz Ltd Verbessertes schaltnetzteil.
EP0307065A3 (fr) * 1987-09-09 1989-08-30 Plaser Light Corp. Commande de lampe à décharge

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2256099B (en) * 1990-08-31 1994-10-19 Siew Ean Wong Improvements in electronic ballasts
EP0488478A3 (en) * 1990-11-27 1992-10-14 Matsushita Electric Works, Ltd. Inverter device
EP0488478A2 (fr) * 1990-11-27 1992-06-03 Matsushita Electric Works, Ltd. Dispositif d'onduleur
EP0585077A1 (fr) * 1992-08-25 1994-03-02 General Electric Company Alimentation d'énergie avec correction du facteur de puissance
US5610479A (en) * 1992-11-13 1997-03-11 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Circuit arrangement for operating low-pressure discharge lamps
EP0606664A1 (fr) * 1993-01-12 1994-07-20 Koninklijke Philips Electronics N.V. Circuit ballast
EP0606665A1 (fr) * 1993-01-12 1994-07-20 Koninklijke Philips Electronics N.V. Circuit
US5955841A (en) 1994-09-30 1999-09-21 Pacific Scientific Company Ballast circuit for fluorescent lamp
US5982111A (en) 1994-09-30 1999-11-09 Pacific Scientific Company Fluorescent lamp ballast having a resonant output stage using a split resonating inductor
US6037722A (en) 1994-09-30 2000-03-14 Pacific Scientific Dimmable ballast apparatus and method for controlling power delivered to a fluorescent lamp
EP0757420A1 (fr) 1995-08-04 1997-02-05 Siemens Aktiengesellschaft Ballast électronique avec limitation du courant d'appel et protection contre les surtensions
US5925986A (en) 1996-05-09 1999-07-20 Pacific Scientific Company Method and apparatus for controlling power delivered to a fluorescent lamp
EP0831677A2 (fr) * 1996-09-24 1998-03-25 Mass Technology (H.K.) Ltd. Ballast électronique pour lampe à décharge
AU737784B2 (en) * 1996-09-24 2001-08-30 Mass Technology (H.K.) Ltd. An electronic ballast for a fluorescent lamp
US5866993A (en) 1996-11-14 1999-02-02 Pacific Scientific Company Three-way dimming ballast circuit with passive power factor correction
US5798617A (en) 1996-12-18 1998-08-25 Pacific Scientific Company Magnetic feedback ballast circuit for fluorescent lamp

Also Published As

Publication number Publication date
ATE102428T1 (de) 1994-03-15
DE58907116D1 (de) 1994-04-07
HK123195A (en) 1995-08-04
JPH02304896A (ja) 1990-12-18
JP2690382B2 (ja) 1997-12-10
EP0395776A1 (fr) 1990-11-07
ES2049772T3 (es) 1994-05-01

Similar Documents

Publication Publication Date Title
EP0395776B1 (fr) Ballast électrique
EP0352703B1 (fr) Ballast électronique
DE3243316A1 (de) Ballast-schaltung fuer gasentladungslampen
DE69413105T2 (de) Schaltung zur Leistungsfaktorverbesserung
DE3623749A1 (de) Schaltungsanordnung zum betrieb von niederdruckentladungslampen
DE69517984T2 (de) Schaltungsanordnung
EP0763276A1 (fr) Alimentation electrique a decoupage destinee au fonctionnement de lampes electriques
DE69308746T2 (de) Konfigurierbarer wechselrichter für 120 v oder240 v ausgangsspannung
DE69111547T2 (de) Dimbares Vorschaltgerät für Entladungslampen.
DE19813187A1 (de) Stromversorgungseinrichtung
DE69410775T2 (de) Elektronisches Vorschaltgerät für Entladungslampen mit einem Resonanzkreis zur Begrenzung des Formfaktors und zur Verbesserung des Leistungsfaktors
DE3711814C2 (de) Elektronisches Vorschaltgerät zum Betrieb von Leuchtstofflampen
DE69709652T2 (de) Universeller elektronischer starter für starkstromentladungslampen
DE69706397T2 (de) Versorgungsschaltung für Entladungslampen mit symmetrischer Resonanzschaltung
DE19914505A1 (de) Schaltung zur Korrektur des Leistungsfaktors
DE69109333T2 (de) Schaltanordnung.
DE3400580C2 (fr)
DE69114982T2 (de) Stromversorgungskreis.
EP0634087B2 (fr) Ballast electronique pour une lampe luminescente a gaz
EP0642295B1 (fr) Ballast électronique pour alimenter une charge, par exemple une lampe à décharge
EP1056188A2 (fr) Circuit de correction du facteur de puissance
DE3312572A1 (de) Elektronisches vorschaltgeraet fuer eine leuchtstofflampe
DE69313256T2 (de) Ballastschaltung
EP0707435B1 (fr) Alimentation à découpage pour lampes à incandescence
DE69517506T2 (de) Schaltung für eine lampe bestehend aus 2 armen die mit der lampe verbunden sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19901205

17Q First examination report despatched

Effective date: 19930226

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 102428

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58907116

Country of ref document: DE

Date of ref document: 19940407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049772

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940510

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050413

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050503

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050505

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050511

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050520

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050721

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050809

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060502

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070502