EP0080463A1 - Circuit a electrode fendue de haute performance pour fours a arc - Google Patents

Circuit a electrode fendue de haute performance pour fours a arc

Info

Publication number
EP0080463A1
EP0080463A1 EP19820901400 EP82901400A EP0080463A1 EP 0080463 A1 EP0080463 A1 EP 0080463A1 EP 19820901400 EP19820901400 EP 19820901400 EP 82901400 A EP82901400 A EP 82901400A EP 0080463 A1 EP0080463 A1 EP 0080463A1
Authority
EP
European Patent Office
Prior art keywords
electrode
metal core
aluminum
protective layer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19820901400
Other languages
German (de)
English (en)
Inventor
Max Schafferer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0080463A1 publication Critical patent/EP0080463A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • H05B7/101Mountings, supports or terminals at head of electrode, i.e. at the end remote from the arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/12Arrangements for cooling, sealing or protecting electrodes

Definitions

  • the invention relates to the electrical devices of the electrode circuit of the arc furnaces in the production of electrical steel.
  • the electrode circuit includes the current guideway, the contact jaws and the graphite electrodes. All these facilities are not easily able to meet the requirements of high and high performance furnaces.
  • the contact jaws wear out quickly as a result of uncontrollable, caused by unavoidable impurities, overheating on the contact surfaces, which leads to the jumping of sparks and arcs, to the formation of caverns and ultimately to the melting of the copper.
  • the aluminum layer is applied with an aqueous suspension of titanium, drilling acid, silicon carbide and silicon, the electrodes are then dried in special ovens and then heated with an arc.
  • a layer of elemental silicon and then one of aluminum is first applied to the graphite surface, with silicon carbide and silicon-aluminum alloys then becoming so.
  • an intermediate layer of tantalum, hafnium and titanium carbides is applied to the graphite surface and the entire electrode is then heated to 300 ° C. in an oven filled with inert gas. An aluminum layer is then applied. A gas-impermeable intermediate layer should then be formed in the furnace from a transition compound C-TaC-AI and Ta-Al.
  • the axial power connection device - Fig. 2, 3 and 4 consists of a support nipple (1) which is connected to the melted metal core (2) via the conical contact ring made of copper (4) and the copper bars (3).
  • the metal core consists of an alloy of aluminum and an additional metal.
  • the bell (5) sits above the support nipple and is provided with a conical water-cooled copper contact ring (6) which fits on the corresponding contact ring of the support nipple (4).
  • the bell has a segment-shaped slot (7) in which the cable (10), which carries the support nipple with the screwed-on electrode column (8), can move in and out sideways.
  • the bell, to which the current-carrying cables or pipes (9) are connected, can be fixed in its uppermost position by means of remote-controlled clamps, which are fastened to the upper frame, or if they are fixed with a light telescopic column - Fig. 1 - on the support arm connected, can be arrested by the latter.
  • the current is fed to the metal core of the support nipple via the contact rings and the contact rails and reaches the electrode via this and the threaded connection.
  • the metal core electrode is a graphite electrode in which a metal core is melted parallel to its axis.
  • the metal core consists of an alloy of aluminum and one or more metals, such as 90.5% Al and 9.5% Cu.
  • the determination of the specific ohmic resistance of a metal core electrode (25x220mm) gave 3.7269 Ohm mm 2 / m to 2.1608 ohm mm 2 / m versus 7.922 Ohm mm 2 / m at the same electrode without MetaIlkern, ie 52, 6% to 72.8% lower specific ohmic resistance - test report No. 121'525 / 2 of December 16, 1981 by the Swiss Electrotechnical Association.
  • the protective agglomer layer consists of an agglomerate of aluminum and at least one additive that melts at a temperature below 350 ° C. Glasses and glassy oxides with a low melting point are used as additives.
  • Aluminum oxide is preferably produced at 600 ° C and the additives form a molten emulsion with the molten aluminum, provided they have not evaporated. As the temperature increases further, glass molds that melt more and more are formed, which in turn improve the protective effect.
  • the process for producing the protective agglomeration layer consists in that the electrode rotating on a lathe is guided past the stationary tools.
  • the aluminum is applied to the roughened graphite surface using a flame or arc spray device.
  • the additives are applied in a solid, dry, powdery state via an atomizer. After solidification, the sprayed-on mixture forms a coherent, solid agglomerate layer on the graphite surface from the grains of the additives and the aluminum, which acts as a binder.
  • a protective layer is applied in one operation.
  • this process only takes 36 minutes and is therefore approx. 50% shorter compared to the previously known methods.
  • the footprint required for production is only 90 m 2 , the installed capacity 50 kVA and the cost of the protective layer below 30 SFR / m 2 - price- and wage level in Switzerland 1981.
  • the figures represent variants of moving the current guideway to a higher level via the support arm and an exemplary embodiment of the axial power connection device.
  • the current is supplied to the axial current connection device via flexible cables, while in Fig. 1b the current is supplied via copper pipes, which are mounted on the vertical telescopic column, which is mounted on the support arm and is rigidly connected to the bell of the axial current connection device.
  • FIG. 2 illustrates the individual parts of the axial power connection device in a separate position: bell with contact ring (a), support nipple with metal core and contact nipple (b) and electrode column (c).
  • Fig. 3a shows a vertical section through the screwed together and nippled current connection device.
  • the individual parts of the axial power connection device are unscrewed and nippled on FIG. 3b.
  • the corresponding cross sections can be seen from FIG. 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Furnace Details (AREA)
  • Discharge Heating (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

On pallie aux insuffisances dans les dispositifs electriques du circuit a electrode fendue d'un four a arc - en eliminant la fonction conductrice de courant des machoires de retenue par un dispositif de raccordement axial tout en deplacant le trajet des conducteurs de courant vers un niveau superieur a celui du bras porteur, - en introduisant une electrode a noyau metallique et - en prevoyant une couche protectrice en agglomerat. Le dispositif de raccordement axial est constitue par un ecrou de support a noyau metallique relie par un organe de contact, forme par des anneaux en cuivre de forme tronconique, a une cloche appropriee a cet organe. Le courant est amene au noyau metallique de l'ecrou de support par les anneaux de contact et parvient par celui-ci a l'electrode. L'electrode a noyau metallique est du type a electrode en graphite dans laquelle est scelle un noyau metallique en un alliage d'aluminium. Cet alliage garantit un contact irreprochable avec le graphite tout en evitant toute formation de fissures dans ce dernier due au chauffage de l'alliage au-dela de son point de fusion et a sa solidification subsequente. L'emploi d'une couche protectrice en agglomerat n'est possible qu'a partir du moment ou l'on fait appel a un dispositif de raccordement axial conjointement a une electrode a noyau metallique; cette couche permet une protection sure contre l'oxydation du graphite meme dans la plage des temperatures de 350 C-600 C. Elle a comme constituants un agglomerat d'aluminium et au moins un verre fusible en-dessous de 350 C, et/ou un oxyde vitreux. On les applique en une etape unique au moyen d'une machine de projection pour l'aluminium et d'un pulverisateur; le verre et/ou les oxydes vitreux sont adjoints sous forme solide, comme poudre seche au jet de gouttes d'aluminium fondu.
EP19820901400 1981-05-15 1982-05-14 Circuit a electrode fendue de haute performance pour fours a arc Withdrawn EP0080463A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CH3161/81 1981-05-15
CH316181 1981-05-15
CH3733/81 1981-06-07
CH373381 1981-06-07
CH680481 1981-10-26
CH6804/81 1981-10-26
CH742581 1981-11-19
CH7425/81 1981-11-19

Publications (1)

Publication Number Publication Date
EP0080463A1 true EP0080463A1 (fr) 1983-06-08

Family

ID=27428577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820901400 Withdrawn EP0080463A1 (fr) 1981-05-15 1982-05-14 Circuit a electrode fendue de haute performance pour fours a arc

Country Status (2)

Country Link
EP (1) EP0080463A1 (fr)
WO (1) WO1982004371A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012311A1 (fr) * 2020-12-10 2022-06-15 Linde GmbH Électrode pour un four à arc électrique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE316450C (fr) *
DE248082C (fr) *
FR421357A (fr) * 1910-10-12 1911-02-21 Planiawerke Actiengesellschaft Électrode en charbon pour fours électriques
DE261554C (de) * 1912-06-18 1913-06-23 Gesellschaft Fuer Teerverwertung Mbh Verfahren zur Herstellung von Schutzhüllen auf Kohlenelektroden, insbesondere für elektrische öfen
DE426584C (de) * 1925-04-22 1926-03-17 Ruetgerswerke A G Abteilung Pl Metallische Fassung fuer die Elektroden elektrischer OEfen
DE506305C (de) * 1928-06-29 1930-09-02 Ver Aluminium Werke Akt Ges Stromzuleitung fuer Elektroden durch Nippel
DE738938C (de) * 1939-01-04 1943-09-06 Johannes Wotschke Dr Ing Stromzufuehrung an elektrischen Lichtbogenoefen mit beweglichem Ofengestell
US2805270A (en) * 1955-10-19 1957-09-03 Mallory Sharon Titanium Corp Electrode holder construction
DE1060517B (de) * 1957-11-22 1959-07-02 Siemens Planiawerke Ag Elektrisch hochbelastbare Kohle- oder Graphitelektrode
FR1434642A (fr) * 1965-03-29 1966-04-08 Metalurgitchen Zd Lenin Procédé et appareil pour la réalisation d'enduits protecteurs sur des produits en carbone, notamment des électrodes en graphite ainsi que les produits pourvus d'une couche protectrice conforme à celle ainsi obtenue
DE1758169A1 (de) * 1967-04-17 1971-01-14 Mitsubishi Steel Mfg Elektrode mit gegen Oxydation widerstandsfaehiger Schutzschicht und Verfahren zum UEberziehen der Elektrode mit einer solchen Schutzschicht
FR2058082A5 (en) * 1969-08-15 1971-05-21 British Iron Steel Research Graphite electrode for electric arc - furnaces
PL76725B1 (fr) * 1970-10-10 1975-02-28
US4226207A (en) * 1978-07-06 1980-10-07 Dso "Cherna Metalurgia" Apparatus for applying protective coatings to graphite bodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8204371A2 *

Also Published As

Publication number Publication date
WO1982004371A2 (en) 1982-12-09
WO1982004371A3 (en) 1982-12-23

Similar Documents

Publication Publication Date Title
DE2755560A1 (de) Elektrodeneinheit fuer plasmatrone
EP1339885B1 (fr) Procede de production de blocs et de barres de metal grace a la fusion d'electrodes, et dispositif permettant la mise en oeuvre de ce procede
DE2151617A1 (de) Verfahren und vorrichtung zum verbinden von elektroden fuer das elektroschlacke-umschmelzen
EP0080463A1 (fr) Circuit a electrode fendue de haute performance pour fours a arc
EP0786531A1 (fr) Procédé et dispositif pour la refusion de métaux sous forme de barres
DE2655602C2 (de) Verfahren und Vorrichtung zur Herstellung von Blöcken
DE10221613A1 (de) Verfahren und Vorrichtung zum martensitfreien Löten
DE1483646A1 (de) Verfahren und Vorrichtung zum Herstellen von Gussbloecken,vorzugsweise Stahlbloecken
DE2804487C2 (de) Vorrichtung zum Auffüllen von Blockköpfen abgegossener Metallblöcke nach dem Elektroschlackenumschmelzverfahren
DE3436957A1 (de) Metallveredelungsverfahren
EP3860794B1 (fr) Methode de traitement thermique d'un element de contact pour le soudage avec un fil-electrode
DE3050471C2 (de) Verfahren zum Elektroschlacke-Schweißen
EP1334214A1 (fr) Procede et dispositif de fabrication de lingots ou de barres metalliques par separation par fusion d'electrodes dans un bain de scories a fusion electrique
DE2430817A1 (de) Elektrode fuer lichtbogenoefen
DE541333C (de) Verfahren und elektrischer Ofen zum Schmelzen von Metallen und Metallegierungen
CH653201A5 (en) Hollow electrode for feeding arc furnaces
EP0080994B1 (fr) Installation pour la refonte sous laitier électroconducteur des alliages, notamment des aciers
DE2422322C3 (de) Elektrode für einen Plasmabrenner
DE1583889C3 (de) Gekühlter Boden eines Schlackenbehälters für das Elektroschlacke-Umschmelzverfahren
DE3436958A1 (de) Metallveredelungsverfahren
KR20230169199A (ko) 마르텐사이트-프리 브레이징 프로세스용의 개선된 방법 및 장치
DE2417648B2 (de) Elektroschlacke-umschmelzverfahren und anlage zur durchfuehrung dieses verfahrens
AT345488B (de) Vorrichtung zum gleichzeitigen herstellen von mehreren bloecken mittels elektrischer schmelzung
DE1097692B (de) Verfahren zum Stumpfnahtschweissen mit Verguetung der Schweissnaht von Aluminium oder Aluminiumlegierungen
DE2649141B2 (de) Plasmalichtbogenofen zum Umschmelzen von Metallen und Legierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19830527

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19841201