EP0077852A2 - Gaskühler zu Synthesegasgenerator - Google Patents

Gaskühler zu Synthesegasgenerator Download PDF

Info

Publication number
EP0077852A2
EP0077852A2 EP81109674A EP81109674A EP0077852A2 EP 0077852 A2 EP0077852 A2 EP 0077852A2 EP 81109674 A EP81109674 A EP 81109674A EP 81109674 A EP81109674 A EP 81109674A EP 0077852 A2 EP0077852 A2 EP 0077852A2
Authority
EP
European Patent Office
Prior art keywords
water
water bath
bath
gas cooler
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81109674A
Other languages
English (en)
French (fr)
Other versions
EP0077852B1 (de
EP0077852A3 (en
Inventor
Georg Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0077852A2 publication Critical patent/EP0077852A2/de
Publication of EP0077852A3 publication Critical patent/EP0077852A3/de
Application granted granted Critical
Publication of EP0077852B1 publication Critical patent/EP0077852B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • F22B1/1846Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations the hot gas being loaded with particles, e.g. waste heat boilers after a coal gasification plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/02Slagging producer

Definitions

  • the invention relates to a gas cooler according to the preamble of claim 1.
  • a gas cooler has already been described in the Swiss patent application 7 051 / 80-2 by the same applicant. He has the disadvantage that water evaporates or evaporates from the water bath, whereby heat at a relatively high temperature drops to a lower level, which is not only associated with thermodynamic losses, but also reduces the calorific value of the synthesis gas.
  • the object of the invention is to largely avoid these disadvantages.
  • the dimension ratio of the water bath in connection with the water circulation ensures that the water temperature at the bath surface is approximately the same as the inlet temperature of the water supplied via the heat exchanger and then on the way to the point of withdrawal of the water rises to a maximum value. Not only is the evaporation of the water largely reduced and the evaporation greatly reduced, but the circulating water is also brought to a relatively high temperature so that its heat content can be used - all without condensation occurring on the parts of the gas cooler covered with synthesis gas .
  • the features of claim 2 ensure that the slag particles release most of their thermal energy in the water bath and then largely settle, so that the water used for thermal use can be drawn off from the bath in a fairly clean manner.
  • the design according to claim 3 prevents slag particles from being deposited in the heat exchanger, which would result in an increase in the temperature difference on the heat transfer surfaces and thus in thermodynamic losses.
  • Claim 4 shows a way to use the heat obtained from the water bath as useful as possible.
  • the water level in the water bath is always kept at an optimal level.
  • the water drainage device according to claim 7 prevents a stable layer of slag particles from forming on the water surface, which would prevent the immersion of heavier particles.
  • the gas cooler 1 has a pressure vessel 2, in which a coaxial chute 6 is arranged, which is formed from tubes 5, which start from a ring distributor 3 and are connected gastight to a cylindrical tube wall 4.
  • the tube wall 4 is drawn in at its upper end to form a neck 7 which is surrounded by a ring collector 8 into which the tubes 5 open.
  • a tightly connected connector 10 which has thermal insulation and which penetrates an upper flange 11 of the pressure vessel 2 and is part of a coal gasification reactor (not shown).
  • a part of the tubes 5 is bent outwards in a lower zone 14 of the tube wall 4 to form passage openings.
  • a tube wall 15 also formed from vertical tubes, the tubes of which are welded tightly to one another via connecting webs and form dense conical surfaces 16 and 17 at the top and bottom.
  • the tubes of the tube wall 15, like the tubes 5, are connected to the ring distributor 3 and the ring collector 8.
  • the tube wall 15 is then provided in its upper region with a radial gas outlet connection 20 which penetrates the wall of the pressure vessel 2.
  • the tubes of the tube wall 15 originating from the cone 17 form with their connecting webs in the center plane of the ring distributor 3 a flange 9 (FIG. 2).
  • a horizontal flange of a bellows 21 is screwed tightly to this flange via a seal which cannot be recognized.
  • the lower end of the bellows 21 is welded to the outer wall 22 of a cylindrical hollow wall vessel 24.
  • the lower end of the inner wall 25 of the hollow vessel wall 24 connects to a 'cone 26, the outer plate 27 via a ring to the lower end of the outer wall is tightly welded to the 22nd
  • the annular space of the cavity wall vessel 24 is supplied with water near its lower end via a line 28 having a closure member 29, which - ascending through the annular space - passes into the central space of the cavity wall vessel via several water outlet openings 30 arranged in the region of the upper edge of the inner wall 25 .
  • the line 28 is connected to the water supply line 35 outside the pressure vessel 2.
  • a discharge funnel 40 is arranged eccentrically, from which a discharge line 41 to the outside is guided, which penetrates the inner wall 25, the outer wall 22 and the wall of the pressure vessel 2 and has a closing element, not shown.
  • the hollow wall vessel 24 stands with its ring plate 27 on a frame 44 made of I-beams, which is fastened to the wall of the pressure vessel 2 by means of tabs 45.
  • the cone 26 opens with its tapered end into a vertical, rectangular cross-section channel 50, at the lower end of which a similar cross-section channel 51 is fastened with screws 52.
  • a channel end piece 53 is connected via a flange connection 54, the four walls of which two opposing walls are inclined to one another.
  • Two racket rollers 55 of a slag crusher 56 are arranged near the narrowest point at the lower end of the channel end piece 53.
  • Each of the two racket rollers is driven by a motor, which is also not shown, via a shaft (not shown) having universal joints which extends through the wall of a pot 70 surrounding the channel 51 and the channel end piece 53.
  • the pressure vessel 2 is provided with a bottom 57, which has a central connecting piece 58 with flange 59 and two connecting pieces 60 with bellows 61. At the lower end of the bellows 61, a water supply pipe 62 is welded tight, which extends through the nozzle 60 and leads to the ring distributor 3.
  • a sleeve 63 with a lower flange 64.
  • the upper end of the sleeve 63 is detachably fastened via a bellows 65 with a flange 66 tightly connected to the cone 26.
  • the already mentioned pot 70 is clamped together with an upper flange 71 with the flanges 59 and 64 and has a conical bottom 72 at its lower end.
  • the bottom 72 of the pot 70 has a central outlet nozzle 73 which, as in FIG F ig. 1 can be seen - is connected to a leg 76 'of a Y-shaped branch piece 76 via a terminating element 75.
  • a leg 76 ′′ of the branch piece 76 On the other leg 76 ′′ of the branch piece 76 is a lock chamber 77 with a vent valve 78.
  • the lower connection piece 80 of the branch piece 76 is provided with a closing element 82 and ends above a sludge collecting trough 83.
  • a suction basket 68 is arranged, from which a water pipe 69 extends, which penetrates the pot 70 and leads via a separating element 100 and a circulation pump 101 to a heat exchanger 102, which is on the outlet side is connected to the water supply line 35.
  • the separating element 100 in which impurities contained in the water are to be separated out, can be a filter or a separator.
  • the heat exchanger 102 is connected on the secondary side as feed water preheater of a steam generator.
  • a bypass line 103 which opens via an actuator 104 in the water supply line 35th
  • a temperature measuring element 105 is connected to the water supply line 35 below this outlet, which gives signals corresponding to the respective water temperature in the line 35 to a controller 106.
  • the controller 106 compares the temperature signal with a setpoint signal.
  • the controller 106 is connected to the actuator 104 in operative connection, that is, depending on the difference between the measured temperature and the target temperature determined in the controller 106, adjusts the amount of water to be conducted past the heat exchanger 102 via the bypass line 103.
  • the depth of the water bath extends from the water level in the cavity wall vessel 24 to the entry of the water into the slag crusher 56.
  • This depth is a multiple of the horizontal extent of the W asserbades corresponding to the inner diameter of the inner wall 25 of the hollow vessel wall 24th
  • the ejected slag particles sink in a water bath, solidifying to the core. Larger slag particles are crushed in the slag crusher 56 before they settle on the conical bottom 72 and sediment there.
  • the sediments are periodically drawn off from the bottom 72 by opening the closure member 75 so that - when the closure member 82 is closed - water and sediments are driven under high pressure into the lock chamber 77, which is initially filled with air at atmospheric pressure.
  • the air in the lock chamber 77 is temporarily compressed in the upper chamber section.
  • the closing member 75 is closed and the vent valve 78 is opened so that the air escapes and the lock chamber 77 is relieved of pressure.
  • the closing member 82 is opened so that water and sediments pour out of the lock chamber 77 into the sludge collecting trough 83. If necessary, the lock chamber 77 is rinsed with water, for example. The closure member 82 and the vent valve 78 are closed, whereby the discharge device is ready for the next discharge operation.
  • the branch piece 76 can be filled with water, for which purpose the leg 76 ′ leading to the closing element 75 can be designed to be ventable.
  • water is continuously circulated through the water bath by means of the pump 101.
  • This water is introduced via line 35 with the aid of the control means 103 to 106 into the water bath at a temperature which is kept between the dew point of the synthesis gas as the lower limit and the water evaporation point when the synthesis gas is pressed as the upper limit, preferably in the lower third of this temperature interval .
  • the water to be introduced into the water bath enters the annular space of the cavity wall vessel 24 via the line 28, rises therein and runs along through the water outlet openings 30 and the inner wall 25 to the surface of the water bath.
  • water from the supply line 35 reaches the surface of the water bath via the ring distributor 34 and the water injection lances 32, agitating the bath and larger, not yet fully solidified particles that dance on the bath surface due to the Leidenfrost phenomenon from all sides cools down.
  • the water in the bath then circulates downward, being further heated by the entrained particles.
  • the pressure drop caused by the circulation pump 101 and the drag force of the sinking particles achieve that the water within channels 50 and 51 - although it is warmer in the lower area of the bath than in the upper area - moves down over the entire cross section without inversion currents occurring.
  • porous slag particles that are lighter than water accumulate on the surface of the bath or that they float as a result of suitable surface tensions. Such particles can be drawn off via the discharge funnel 40.
  • a device which - as long as the water level in the bath falls below a certain setpoint - feeds fresh water into the supply line 35.
  • This device is expediently influenced by a water level sensor, which can be designed as a pressure difference measuring device, which is below and connected above the water surface.
  • the tubes of the two tube walls 4 and 15 can - as is known from steam generator construction - be switched in natural circulation, in forced circulation or in forced passage; it is also possible to change the switching types as required or to overlap one another.
  • the above-mentioned limitation of the temperature of the water supplied to the water bath ensures that no surface parts inside the gas cooler have a lower temperature than the dew point of the synthesis gas. This prevents the synthesis gas from depositing on such surfaces or condensing gas fractions. This is particularly important if the space between the tube wall 15 and the wall of the pressure vessel 2 is filled with stagnant synthesis gas for reasons of pressure compensation.
  • the temperature of the water supplied to the gas cooler via the supply line 35 is selected as close as possible to the dew point temperature, but with sufficient certainty above it, so that as little water as possible evaporates or evaporates in the area of the surface of the water bath.
  • baffles 87 On the two longer rectangular sides of the channel 51, an outwardly curved groove 85 is provided, in which a shaft 86 is arranged parallel to the adjacent wall. On each of these shafts 86, secured against rotation, a stowage flap 87 is inserted.
  • the two shafts 86 penetrate the shorter rectangular sides of the channel 51, and levers 90 are attached in a rotationally fixed manner to the protruding shaft ends, at the free ends of which a spring 91 engages, which is anchored to the channel wall via a tab 92. Stops 93 determine the closed position of the baffle flaps 87. If a lump of slag falls onto the baffle flaps 87, the force of the springs 91 and the inertia of the baffle flaps 87 must first be overcome until the flaps open and let the slag lump fall further. The energy of the fall of the boulder is largely consumed by the flaps 87. Since the flaps 87 have to displace a lot of water when opened, they can only move relatively slowly. Additional dampers can also be provided to limit the opening speed of the flaps.
  • the gas cooler has the advantage that - when it is out of operation and emptied - it can be inspected, cleaned and repaired relatively easily.
  • the pot 70 is removed after the water has been drained, with the line 69 and the suction basket 68 also being removed. Then the annular space 67 can be climbed to release the connection on the flange 66, whereupon the sleeve 63 can be removed downwards.
  • the interior of the cavity wall vessel 24 is accessible via the upper channel 50.
  • the annular space between the outer wall 22 of the cavity wall vessel 24 and the wall of the pressure vessel 2 is also easily accessible after the sleeve 63 has been removed.
  • the ring distributor 3 is easily accessible when the connection of the annular bellows 21 to the flange 9 is released from the last-mentioned annular space and the connections of the tube 28 and the water injection lances 32 are separated, so that after moving the I-beam of the frame 44 the whole Cavity wall vessel 24 can be lowered.
  • the invention is in no way limited to the exemplary embodiment shown;
  • the sleeve 63 can be extended cylindrically to the cone 26 and welded tightly to it in an annular seam.
  • the cone 26 is expediently divided close below this ring seam and the two parts are connected by a detachable screw connection.
  • Such an embodiment has the advantage that after removal of the pot 70 and the lower channel 51 when removing the lower part of the cone 26, a larger access opening to the chute 6 is available.
  • the scaffold 44 could also be dispensed with and the pressure vessel 2 shortened below.
  • the annular space between the cavity wall vessel 24 and the wall of the pressure vessel 2 would be expediently made accessible by at least one manhole connection in the wall of the pressure vessel 2.
  • the slag crusher 56 which is subject to wear, laterally removable.
  • the beater rollers are in this case firmly connected to the shafts of the drive motors, which are screwed tightly to the wall of the pot 70 via a flange on the outside. If you want to avoid two separate motors for driving the two racket rollers 55, the rollers can also be driven by a single motor with the interposition of gear wheels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Der Gaskühler weist einen von Strahlungskühlwänden (4) begrenzten Fallschacht (6), ein am Ende des Fallschachtes angeordnetes Wasserbad, mehrere oberhalb des Wasserbades in den Fallschachtwänden vorgesehene Austrittsöffnungen für das gekühlte Synthesegas und eine mit am tiefsten Punkt des Wasserbades angeordnete verschliessbare Abschlämmöffnung auf. Die Tiefe des Wasserbades beträgt ein Mehrfaches seiner horizontalen Ausdehnung und das Wasserbad ist von oben nach unten von Wasser durchströmt. Zu diesem Zweck ist das Bad über eine Leitung (69), eine Pumpe (101), einen Wärmeübertrager (102) und eine Leitung (35) zu einem Wasserkreislauf geschaltet. Für die Regelung der Temperatur des Wassers am Eintritt in das Wasserbad sind Regelmittel (103 bis 106) vorgesehen, die so bemessen sind, dass sich die Eintrittstemperatur auf einem zwischen dem Taupunkt des Synthesegases und der Verdampfungstemperatur von Wasser beim Arbeitsdruck des Synthesegases liegenden Wert gehalten wird. Hierdurch werden ein Verdampfen oder Verdunsten von Wasser aus dem Wasserbad und die damit verbundenen Wärmeverluste weitgehend vermieden.

Description

  • Die Erfindung betrifft einen Gaskühler nach dem Oberbegriff des Anspruchs 1. Ein solcher Gaskühler ist bereits in der schweizerischen Patentanmeldung 7 051/80-2 der gleichen Anmelderin beschrieben. Bei ihm tritt der Nachteil auf, dass Wasser aus dem Wasserbad verdampft oder verdunstet, wobei Wärme verhältnismässig hoher Temperatur auf ein tieferes Niveau sinkt, was nicht nur mit thermodynamischen Verlusten verbunden ist, sondern auch den Heizwert des Synthesegases herabsetzt.
  • Es ist Aufgabe der Erfindung, diese Nachteile weitgehend zu vermeiden.
  • Diese Aufgabe wird durch die Merkmale des Kennzeichens des Anspruchs 1 gelöst. Durch das Abmessungsverhältnis des Wasserbades wird im Zusammenhang mit der Wasserumwälzung erreicht, dass die Wassertemperatur an der Badoberfläche der Eintrittstemperatur des über den Wärmeübertrager zugeführten Wassers annähernd gleich ist und dann auf dem Wege zur Entnahmestelle des Wassers auf einen Maximalwert ansteigt. Damit werden nicht nur die Verdampfung des Wassers weitgehend herabgesetzt und die Verdunstung stark reduziert, sondern es wird auch das Kreislaufwasser auf verhältnismässig hohe Temperatur gebracht, sodass sein Wärmeinhalt genutzt werden kann - dies alles, ohne dass an den von Synthesegas bestrichenen Teilen des Gaskühlers Kondensation auftritt.
  • Bei Dampferzeugern mit flüssiger Schlackenabfuhr ist es bekannt, ein Wasserbad vorzusehen. Dieses Bad wird aber auf so tiefer Temperatur gehalten, dass sich beim Abschrecken der Schlacke nur ein Minimum von Dampf bildet. Die Temperatur des Wassers bleibt dabei so niedrig, dass sich eine Nutzung der darin befindlichen Wärmeenergie nicht lohnt. Eine Kondensation von Rauchgasen wird nicht vermieden.
  • Durch die Merkmale nach Anspruch 2 wird erreicht, dass die Schlacketeilchen den grössten Teil ihrer Wärmeenergie im Wasserbad abgeben und sich dann weitgehend absetzen, sodass das der thermischen Nutzung zugeführte Wasser ziemlich sauber aus dem Bad abgezogen werden kann.
  • Durch die Gestaltung nach Anspruch 3 wird vermieden, dass sich im Wärmeübertrager Schlacketeilchen ablagern, was eine Erhöhung der Temperaturdifferenz an den Wärmeübertragungsflächen und damit thermodynamische Verluste zur 'Folge hätte.
  • Anspruch 4 zeigt einen Weg, um die aus dem Wasserbad gewonnene Wärme möglichst nutzbringend zu verwenden.
  • Mit der Wasserzufuhr nach Anspruch 5 wird der Wasserstand im Wasserbad stets auf optimaler Höhe gehalten.
  • Mit der Stauklappe nach Anspruch 6 kann verhindert werden, dass schwere Schlackenteilchen zu schnell und nur oberflächlich abgeschreckt in den Schlackenbrecher gelangen. Der Schlackenbrecher kann somit nicht mit klebriger Schlacke verschmiert und damit funktionsunfähig werden.
  • Durch die Wasserabzugeinrichtung nach Anspruch 7 wird verhindert, dass sich auf der Wasseroberfläche eine tragfähige Schicht aus Schlackenteilchen bildet, die das Eintauchen schwererer Teilchen verhindern würde.
  • Ein Ausführungsbeispiel der Erfindung wird nun anhand der Zeichnung näher erläutert. Es zeigen:
    • Fig. 1 einen Vertikalschnitt, stark schematisiert, durch einen Gaskühler nach der Erfindung,
    • Fig. 2 den unteren, das Wasserbad enthaltenden Teil des Gaskühlers, in grösserem Massstab als in Fig. 1 und
    • Fig. 3 einen Vertikalschnitt durch ein abgewandeltes Detail des Gaskühlers.
  • Gemäss Fig. 1 weist der Gaskühler 1 ein Druckgefäss 2 auf, in dem ein koaxialer Fallschacht 6 angeordnet ist, der aus von einem Ringverteiler 3 ausgehenden, zu einer zylindrischen Rohrwand 4 gasdicht verbundenen Rohren 5 gebildet ist. Die Rohrwand 4 ist an ihrem oberen Ende zu einem Hals 7 eingezogen, der von einem Ringsammler 8 umgeben ist, in den die Rohre 5 münden. An die Stirnfläche des Halses 7 schliesst sich dicht ein eine thermische Isolierung aufweisender Stutzen 10 an, der einen oberen Flansch 11 des Druckgefässes 2 durchdringt und Bestandteil eines nicht gezeichneten Kohlevergasungsreaktors ist. Ein Teil der Rohre 5 ist in einer unteren Zone 14 der Rohrwand 4 zur Bildung von Durchtrittsöffnungen nach aussen ausgebogen. Im Ringraum zwischen der Rohrwand 4 und der Wand des Druckgefässes 2 befindet sich eine ebenfalls aus vertikalen Rohren gebildete Rohrwand 15, deren Rohre über Verbindungsstege dicht miteinander verschweisst sind und oben und unten dichte Konusflächen 16 bzw. 17 bilden. Die Rohre der Rohrwand 15 sind wie die Rohre 5 mit dem Ringverteiler 3 und dem Ringsammler 8 verbunden. Die Rohrwand 15 ist sodann in ihrem oberen Bereich mit einem radialen Gasaustrittsstutzen 20 versehen, der die Wand des Druckgefässes 2 durchdringt.
  • Die aus dem Konus 17 stammenden Rohre der Rohrwand 15 bilden mit ihren Verbindungsstegen in der Mittelebene des Ringverteilers 3 einen Flansch 9 (Fig. 2). An diesen Flansch ist über eine nicht erkennbare Dichtung ein horizontaler Flansch eines Ringbalges 21 dicht festgeschraubt. Das untere Ende des Ringbalges 21 ist an der Aussenwand 22 eines zylindrischen Hohlwandgefässes 24 angeschweisst. Das untere Ende der Innenwand 25 des Hohlwandgefässes 24 schliesst an einen'Konus 26 an, der aussen über ein Ringblech 27 mit dem unteren Ende der Aussenwand 22 dicht verschweisst ist. Der Ringraum des Hohlwandgefässes 24 wird nahe seinem unteren Ende über eine ein Abschlussorgan 29 aufweisende Leitung 28 mit Wasser versorgt, das - durch den Ringraum aufsteigend - über mehrere, im Bereich des oberen Randes der Innenwand 25 angeordnete Wasseraustrittsöffnungen 30 in den zentralen Raum des Hohlwandgefässes übertritt. Etwa im oberen Drittel des Hohlwandgefässes 24 werden dessen Aussenwand 22 und Innenwand 25 durch Wassereinspritzlanzen 32 durchdrungen. Diese Lanzen sind vorn düsenartig verengt und hinten an einem Ringverteiler 34 angeschlossen, der über eine Wasserzufuhrleitung 35 mit erwärmtem Wasser versorgt wird. Die Leitung 28 ist, ausserhalb des Druckgefässes 2 mit der Wasserzufuhrleitung 35 verbunden.
  • Im Hohlwandgefäss 24 ist ein Abzugtrichter 40 exzentrisch angeordnet, von dem aus eine Abzugleitung 41 nach aussen geführt ist, die die Innenwand 25, die Aussenwand 22 und die Wand des Druckgefässes 2 durchdringt und ein nicht gezeichnetes Abschlussorgan aufweist. Das Hohlwandgefäss 24 steht mit seinem Ringblech 27 auf einem Gerüst 44 aus I-Balken, das mittels Laschen 45 an der Wand des Druckgefässes 2 befestigt ist.
  • Der Konus 26 mündet mit seinem verjüngten Ende in einen vertikalen, rechteckigen Querschnitt aufweisenden Kanal 50, an dessen unterem Ende ein gleichartigen Querschnitt aufweisender Kanal 51 mit Schrauben 52 befestigt ist. Am unteren Ende dieses Kanals 51 ist über eine Flanschverbindung 54 ein Kanalendstück 53 angeschlossen, von dessen vier Wänden zwei einander gegenüberliegende Wände zueinander geneigt verlaufen. Nahe der engsten Stelle am unteren Ende des Kanalendstückes 53 sind zwei Schlägerwalzen 55 eines Schlackenbrechers 56 angeordnet. Jede der beiden Schlägerwalzen ist über eine nicht gezeichnete Kardangelenke aufweisende Welle, die sich durch die Wand eines den Kanal 51 und das Kanalendstück 53 umgebenden Topfes 70 erstreckt, von einem Motor angetrieben, der ebenfalls nicht gezeichnet ist.
  • Das Druckgefäss 2 ist mit einem Boden 57 versehen, der einen zentralen Anschlussstutzen 58 mit Flansch 59 sowie zwei Stutzen 60 mit Balg 61 aufweist. Am unteren Ende der Bälge 61 ist je ein Wasserzufuhrrohr 62 dicht eingeschweisst, das sich durch den Stutzen 60 erstreckt und zum Ringverteiler 3 führt. Im Anschlussstutzen 58 steckt eine Hülse 63 mit einem unteren Flansch 64. Das obere Ende der Hülse 63 ist über einen Balg 65 mit einem am Konus 26 dicht angeschlossenen Flansch 66 lösbar befestigt. Der schon erwähnte Topf 70 ist mit einem oberen Flansch 71 mit den Flanschen 59 und 64 zusammengespannt und weist an seinem unteren Ende einen konischen Boden 72 auf. Der Boden 72 des Topfes 70 weist einen zentralen Austrittsstutzen 73 auf, der - wie in Fig. 1 zu erkennen ist - über ein Abschlussorgan 75 mit dem einen Schenkel 76' eines Y-förmigen Abzweigstückes 76 verbunden ist. Auf dem anderen Schenkel 76" des Abzweigstückes 76 sitzt eine Schleusenkammer 77 mit einem Entlüftungsventil 78. Der untere Stutzen 80 des Abzweigstückes 76 ist mit einem Abschlussorgan 82 versehen und endet oberhalb eines Schlammsammeltroges 83.
  • Im mit Wasser gefüllten Ringraum 67 zwischen dem oberen Kanal 50 und der Hülse 63 ist ein Saugkorb 68 angeordnet, von dem eine Wasserleitung 69 ausgeht, die den Topf 70 durchdringt und über ein Trennorgan 100 und eine Umwälzpumpe 101 zu einem Wärmeübertrager 102 führt, der austrittsseitig an die Wasserzufuhrleitung 35 angeschlossen ist. Das Trennorgan 100, in dem im Wasser enthaltene Verunreinigungen ausgeschieden werden sollen, kann ein Filter oder ein Abscheider sein. Der Wärmeübertrager 102 ist sekundärseitig als Speisewasservorwärmer eines Dampferzeugers geschaltet. Zwischen der Umwälzpumpe 101 und dem Wärmeübertrager 102 zweigtfeine Bypassleitung 103 ab, die über ein Stellorgan 104 in die Wasserzufuhrleitung 35 mündet. Stromunterhalb" dieser Mündungsstelle ist ein Temperaturmessorgan 105 an die Wasserzufuhrleitung 35 angeschlossen, das der jeweiligen Wassertemperatur in der Leitung 35 entsprechende Signale auf einen Regler 106 gibt. Im Regler 106 findet ein Vergleich des Temperatursignals mit einem Sollwertsignal statt. Der Regler 106 steht mit dem Stellorgan 104 in Wirkungsverbindung, das also in Abhängigkeit der im Regler 106 ermittelten Abweichung zwischen der gemessenen Temperatur und der Solltemperatur die über die Bypssleitung 103 am Wärmeübertrager 102 vorbei-zu-führende Wassermenge einstellt.
  • Wie aus Fig. 2 ersichtlich, reicht die Tiefe des Wasserbades vom Wasserniveau im Hohlwandgefäss 24 bis zum Eintritt des Wassers in den Schlackenbrecher 56. Diese Tiefe beträgt ein Mehrfaches der horizontalen Ausdehnung des Wasserbades, die dem Innendurchmesser der Innenwand 25 des Hohlwandgefässes 24 entspricht.
  • Der beschriebene Gaskühler l funktioniert wie folgt:
    • Aus dem nicht gezeichneten Kohlevergasungsreaktor strömen über den Stutzen 10 die mehr als 9000C heissen Reaktionsprodukte (Synthesegas mit flüssigen Schlackenteilchen) in den Fallschacht 6, der beispielsweise.30m lang sein kann. In diesem Schacht geben die Reaktionsprodukte, vorzugsweise durch Strahlung, Wärme an die Rohrwand 4 ab, wobei die meisten Schlackenteilchen - mindestens oberflächlich - erstarren. Bei der Umlenkung des Gases in der Zone 14 des Fallschachtes 6 werden die Schlackenteilchen durch die Gaskräfte mehr oder weniger aus ihrer Fallinie abgelenkt und in das Wasserbad oder auf den Konus 17 geschleudert. Die Konusfläche ist so steil, dass die darauf fallenden Schlackenteilchen in das Wasserbad gleiten oder kollern. Das auf diese Weise grob gereinigte Synthesegas strömt nun durch den Ringraum zwischen den Rohrwänden 4 und 15 nach oben und über den Stutzen 20 unmittelbar - oder über einen Abscheider - in einen Konvektionskühler, in dem dem Synthesegas weiter Wärme entzogen wird.
  • Die ausgeschleuderten Schlackenteilchen sinken im Wasserbad, wobei sie bis in ihren Kern erstarren. Grössere Schlackenteilchen werden im Schlackenbrecher 56 zermalmt, bevor sie sich am konischen Boden 72 absetzen und dort sedimentieren. Die Sedimente werden periodisch vom Boden 72 abgezogen, indem das Abschlussorgan 75 geöffnet wird, so dass - bei geschlossenem Abschlussorgan 82 - Wasser und Sedimente unter hohem Druck in die anfänglich mit Luft von atmosphärischem Druck gefüllte Schleusenkammer 77 getrieben werden. Dabei wird die in der Schleusenkammer 77 befindliche Luft im oberen Kammerabschnitt vorübergehend komprimiert. Nach erfolgtem Druckausgleich wird das Abschlussorgan 75 geschlossen und das Entlüftungsventil 78 geöffnet, so dass die Luft entweicht und die Schleusenkammer 77 vom Druck entlastet wird. Nun wird das Abschlussorgan 82 geöffnet, sodass sich Wasser und Sedimente aus der Schleusenkammer 77 in den Schlammsammeltrog 83 ergiessen. Wenn nötig, wird die Schleusenkammer 77 beispielsweise mit Wasser gespült. Das Abschlussorgan 82 und das Entlüftungsventil 78 werden geschlossen, wodurch die Ausschleuseneinrichtung für die nächste Ausschleusoperation bereit ist.
  • Um zu verhindern, dass beim Ausschleusen Luft in das Wasserbad steigt, kann das Abzweigstück 76 mit Wasser gefüllt werden, wozu der zum Abschlussorgan 75 führende Schenkel 76' entlüftbar ausgeführt werden kann.
  • Während des Betriebes des Gaskühlers wird mittels der Pumpe 101 laufend Wasser durch das Wasserbad umgewälzt. Dieses Wasser wird über die Leitung 35 mit Hilfe der Regelmittel 103 bis 106 mit einer Temperatur ins Wasserbad eingeführt, die zwischen dem Taupunkt des Synthesegases als unterer Grenze und dem Wasserverdampfungspunkt beimpruck des Synthesegases als oberer Grenze gehalten wird, und zwar vorzugsweise im unteren Drittel dieses Temperaturintervalls. Das ins Wasserbad einzuführende Wasser tritt einerseits über die Leitung 28 in den Ringraum des Hohlwandgefässes 24, steigt darin hoch und rinnt durch die Wasseraustritts- öffnungen 30 und der Innenwand 25 entlang zur Oberfläche des Wasserbades. Andererseits gelangt Wasser aus der Zufuhrleitung 35 über den Ringverteiler 34 und die Wassereinspritzlanzen 32 auf die Oberfläche des Wasserbades, wobei es das Bad agitiert und grössere, noch nicht voll erstarrte Teilchen, die infolge des Leidenfrost'schen Phänomens auf der Badoberfläche tanzen, von allen Seiten abkühlt. Das Wasser des Bades zirkuliert sodann nach unten, wobei es von den mitgeführten Teilchen weiter erwärmt wird. Durch den von der Umwälzpumpe 101 hervorgerufenen Druckabfall und durch die Schleppkraft der absinkenden Teilchen wird erreicht, dass das Wasser innerhalb der Kanäle 50 und 51 - obschon es im unteren Bereich des Bades wärmer ist als im oberen - sich über den ganzen Querschnitt abwärts bewegt, ohne dass Inversionsströmungen auftreten.
  • Grössere Schlackenteilchen und gelegentlich in Zapfenform abstürzende Schlackenstücke werden im Schlackenbrecher 56 zerkleinert. Die Tiefe des Wasserbades ist derart bemessen, dass auch grössere Schlackengebilde bis in ihren Kern erstarren, bevor sie in den Schlackenbrecher 56 eintreten, sodass keine Gefahr besteht, dass der Schlackenbrecher von noch klebriger Schlacke verschmiert und damit funktionsunfähig wird. Vom Austritt des Schlackenbrechers 56 aus steigt das Wasser im Ringraum 67 auf, während eine wesentliche Fraktion der Schlackenteilchen sich auf dem konischen Boden 72 absetzt. Es wird sodann mittels der Pumpe 101 über den Saugkorb 68, die Leitung 69, das Trennorgan 100, und den Wärmeübertrager 102 zur Zuführleitung 35 zurückgeführt.
  • Es kann vorkommen, dass sich auf der Badoberfläche poröse Schlackenteilchen ansammeln, die leichter sind als Wasser, oder infolge passender Oberflächenspannungen darauf flotieren. Solche Teilchen können über den Abzugtrichter 40 abgezogen werden.
  • Die Wasserverluste im Bad, die durch das Abziehen von auf der Oberfläche schwimmenden Teilchen,durch das Ausschleusen von Sedimenten mit Wasser zusammen und durch die unvermeidliche Verdampfung oder Verdunstung im Bereich der Wasseroberfläche bedingt sind, werden durch Zugabe frischen Wassers ersetzt. Zu diesem Zweck ist eine nicht gezeichnete Einrichtung vorgesehen, die - solange der Wasserstand im Bad einen bestimmten Sollwert unterschreitet - Frischwasser in die Zufuhrleitung 35 einspeist. Diese Einrichtung wird zweckmässig von einem Wasserstandgeber beeinflusst, der als Druckdifferenzmessgerät ausgebildet sein kann, das unterhalb und oberhalb der Wasseroberfläche angeschlossen ist.
  • Während des Betriebes wird Wasser über die Wasserzufuhrrohre 62 und den Ringverteiler 3 in die Rohre der Rohrwände 4 und 15 eingespeist. Das Wasser wird in diesen Wänden zum Teil verdampft. Das Wasserdampfgemisch wird über den Ringsammler 8 und nicht gezeichnete Rohre abgeführt, beispielsweise in eine Dampftrommei eines Dampferzeugers. Die Rohre der beiden Rohrwände 4 und 15 können - wie dies vom Dampferzeugerbau her bekannt ist - im Naturumlauf, im Zwangumlauf oder im Zwangdurchlauf geschaltet sein; es ist auch möglich, die Schaltarten nach Bedarf zu wechseln oder einander zu überlagern.
  • Durch die erwähnte Begrenzung der Temperatur des dem Wasserbad zugeführten Wassers nach unten wird erreicht, dass innerhalb des Gaskühlers keine Oberflächenteile eine tiefere Temperatur aufweisen, als der Taupunkt des Synthesegases beträgt. Dadurch wird vermieden, dass sich aus dem Synthesegas an solchen Oberflächen Tau niederschlägt oder Gasfraktionen kondensieren. Das ist besonders wichtig, wenn der Raum zwischen der Rohrwand 15 und der Wand des Druckbehälters 2 aus Gründen des Druckausgleichs mit stagnierendem Synthesegas gefüllt ist.
  • Die Temperatur des über die Zufuhrleitung 35 dem Gaskühler zugeführten Wassers wird möglichst nahe an der Taupunkttemperatur, aber mit genügender Sicherheit über dieser gewählt, sodass möglichst wenig Wasser im Bereich der Oberfläche des Wasserbades verdampft oder verdunstet.
  • Um zu verhindern, dass grosse, nicht vollständig erstarrte Schlackenbrocken oder -zapfen in den Schlackenbrecher 56 gelangen, können Mittel vorgesehen sein, um das Absinken der Schlackenteile zu verzögern. Ein solches Mittel besteht gemäss Fig. 3 in Form von Stauklappen 87. An den beiden längeren Rechteckseiten des Kanals 51 ist je eine nach aussen gewölbte Rille 85 vorgesehen, in der eine Welle 86 parallel zur benachbarten Wand angeordnet ist. Auf diese Wellen 86 ist, gegen Verdrehung gesichert, je eine Stauklappe 87 gesteckt. Die beiden Wellen 86 durchdringen die kürzeren Rechteckseiten des Kanals 51, und auf den herausstehenden Wellenenden sind Hebel 90 drehfest angebracht, an deren freien Enden je eine Feder 91 angreift, die über eine Lasche 92 an der Kanalwand verankert ist. Anschläge 93 bestimmen die Schliessstellung der Stauklappen 87. Stürzt ein Schlackenbrocken auf die Stauklappen 87, so muss zuerst die Kraft der Federn 91 und die Trägheit der Stauklappen 87 überwunden werden, bis die Klappen sich öffnen und den Schlackenbrocken weiterfallen lassen. Die Energie des Sturzes des Brockens wird von den Klappen 87 weitgehend aufgezehrt. Da die Klappen 87 beim Oeffnen viel Wasser verdrängen müssen, können sie sich nur verhältnismässig langsam bewegen. Es können auch zusätzliche Dämpfer zur Begrenzung der Oeffnungsgeschwindigkeit der Klappen vorgesehen sein.
  • Der Gaskühler hat den Vorteil, dass er - wenn er ausser Betrieb und entleert ist - verhältnismässig einfach inspiziert, gereinigt und repariert werden kann. Zu diesem Zweck wird nach dem Ablassen des Wassers der Topf 70 abgebaut, wobei die Leitung 69 und der Saugkorb 68 mitentfernt werden. Dann kann der Ringraum 67 bestiegen werden, um die Verbindung am Flansch 66 zu lösen, worauf die Hülse 63 nach unten ausgebaut werden kann.
  • Das Innere des Hohlwandgefässes 24 ist über den oberen Kanal 50 zugänglich. Der Ringraum zwischen der Aussenwand 22 des Hohlwandgefässes 24 und der Wand des Druckgefässes 2 ist nach dem Ausbauen der Hülse 63 ebenfalls leicht erreichbar.
  • Der Ringverteiler 3 wird gut zugänglich, wenn von dem zuletzt erwähnten Ringraum aus die Verbindung des Ringbalges 21 mit dem Flansch 9 gelöst und die Verbindungen des Rohres 28 sowie der Wassereinspritzlanzen 32 getrennt werden, sodass nach einem Verschieben der I-Balken des Gerüstes 44 das ganze Hohlwandgefäss 24 abgesenkt werden kann.
  • Die Erfindung ist keineswegs auf das dargestellte Ausführungsbeispiel beschränkt; so kann beispielsweise die Hülse 63 bis zum Konus 26 zylindrisch verlängert und mit diesem in einer Ringnaht dicht verschweisst sein. Der Konus 26 wird dabei zweckmässig nahe unter dieser Ringnaht geteilt und die beiden Teile durch eine lösbare Verschraubung verbunden. Eine solche Ausführungsform hat den Vorteil, dass nach einem Entfernen des Topfes 70 und des unteren Kanals 51 beim Ausbauen des unteren Teils des Konus 26 eine grössere Zugangsöffnung zum Fallschacht 6 zur Verfügung steht. Auch könnte auf das Gerüst 44 verzichtet und das Druckgefäss 2 unten verkürzt werden. Der Ringraum zwischen Hohlwandgefäss 24 und der Wand des Druckgefässes 2 würde -dabei zweckmässig durch mindestens einen Mannlochstutzen in der Wand des Druckgefässes 2 zugänglich gemacht.
  • Es kann auch wünschbar sein, den Schlackenbrecher 56, der dem Verschleiss unterworfen ist, seitlich ausbaubar zu gestalten. Das kann erreicht werden, indem das Kanalendstück 53 über zwei parallele, koaxial zu den Schlägerwalzen 55 verlaufende Rohrstücke mit dem Topf 70 fest verbunden wird. Die Schlägerwalzen sind in diesem Fall fest mit den Wellen der Antriebsmotoren verbunden, die über je einen Flansch aussen an der Wand des Topfes 70 dicht angeschraubt sind. Wenn man für den Antrieb der beiden Schlägerwalzen 55 zwei getrennte Motoren vermeiden will, so können die Walzen auch unter Zwischenschaltung von Zahnrädern von einem einzigen Motor angetrieben sein.

Claims (7)

1. An einen Synthesegasgenerator angeschlossener Gaskühler mit einem von Strahlungskühlwänden begrenzten Fallschacht, einem am Ende des Fallschachtes angeordneten Wasserbad, mehreren nahe oberhalb des Wasserbades in den Wänden des Fallschachtes vorgesehenen Austrittsöffnungen für das gekühlte Synthesegas, und einer mit am tiefsten Punkt des Wasserbades angeordneten verschliessbaren Abschlämm- öffnung, dadurch gekennzeichnet, dass die Tiefe des Wasserbades ein Mehrfaches seiner horizontalen Ausdehnung beträgt, dass das Wasserbad von oben nach unten von Wasser durchströmt ist, indem es über eine Pumpe und einen Wärmeübertrager zu einem Wasserkreislauf mit Regelmitteln für die Temperatur des Wassers am Eintritt in das Wasserbad geschaltet ist, und dass die Regelmittel so bemessen sind, dass sich die Eintrittstemperatur auf einem zwischen dem Taupunkt des Synthesegases und der Verdampfungstemperatur von Wasser beim Arbeitsdruck des Synthesegases liegenden Wert gehalten wird.
2. Gaskühler nach Anspruch 1, dadurch gekennzeichnet, dass das Wasserbad eine trichterartige Verengung aufweist, in deren Bereich ein nach unten sich erstreckender Einsatz dichtend sich anschliesst, dass im Bereich des unteren Endes des Einsatzes ein Schlackenbrecher angeordnet ist und dass eine Wasserentnahmestelle in einem Ringraum zwischen dem Einsatz und einer etwa kreiszylindrisch verlaufenden, das Wasserbad begrenzenden Wand angeordnet ist.
3. Gaskühler nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass im Wasserkreislauf zwischen dem Wasserbad und der Pumpe ein Trennorgan für von Wasser sich in der Dichte und/oder im Aggregatzustand unterscheidende Teilchen vorgesehen ist.
4. Gaskühler nach einem der Ansprüche 1 bis 3, wobei die Strahlungskühlwände des Fallschachtes durch das Arbeitsmittel eines Dampferzeugers gekühlt werden, dadurch gekennzeichnet, dass der Wärmeübertrager im Wasserkreislauf sekundärseitig in den Speisewasserstrom des Dampferzeugers geschaltet ist.
5. Gaskühler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wasserkreislauf mit einer Wasserzufuhr verbunden ist, die von einem auf den Wasserstand im Wasserbad ansprechenden Fühler beeinflusst ist.
6. Gaskühler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im Wasserbad, vorzugsweise oberhalb des Schlackenbrechers, mindestens eine Stauklappe vorgesehen ist.
7. Gaskühler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Wasserbad wenig unterhalb der Wasseroberfläche eine mit einem Abschlussorgan verbundene Wasserabzugeinrichtung angeordnet ist, durch die eine oberflächliche Wasserschicht mit Schwimmteilchen nach Bedarf, periodisch oder kontinuierlich abgezogen werden kann.
EP81109674A 1981-10-23 1981-11-13 Gaskühler zu Synthesegasgenerator Expired EP0077852B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6785/81A CH661054A5 (de) 1981-10-23 1981-10-23 Gaskuehler an synthesegasgenerator.
CH6785/81 1981-10-23

Publications (3)

Publication Number Publication Date
EP0077852A2 true EP0077852A2 (de) 1983-05-04
EP0077852A3 EP0077852A3 (en) 1984-01-18
EP0077852B1 EP0077852B1 (de) 1986-06-25

Family

ID=4314983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109674A Expired EP0077852B1 (de) 1981-10-23 1981-11-13 Gaskühler zu Synthesegasgenerator

Country Status (6)

Country Link
US (1) US4487611A (de)
EP (1) EP0077852B1 (de)
JP (1) JPS5880383A (de)
CH (1) CH661054A5 (de)
DE (1) DE3174882D1 (de)
ZA (1) ZA826077B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781500A (en) * 1986-04-14 1988-11-01 Emhart Enterprises, Corp. Metal blind rivet
EP0318071A1 (de) * 1987-10-23 1989-05-31 Shell Internationale Researchmaatschappij B.V. Wasserbadbenetzungsvorrichtung
EP0452653A1 (de) * 1990-04-14 1991-10-23 Krupp Koppers GmbH Verfahren zur Vergassung von feinkörnigen bis staubförmigen Brennstoffen mit nachgeschaltetem kombinierten Gas-/und Dampfturbinenkraftwerk
KR100728517B1 (ko) * 2006-12-28 2007-06-15 메크로비젼 코오포레이션 동적으로 연결 가능한 실행 가능 이미지들의 진정성을증명하는 시스템 및 방법
ITMI20102158A1 (it) * 2010-11-23 2012-05-24 T S R L Ag Macroapparato per la produzione e il trattamento di gas da carbone minerale
CN114395422A (zh) * 2022-01-25 2022-04-26 哈尔滨工业大学 分开采用自然循环和强制循环的水冷壁气化炉及冷却方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD227980A1 (de) * 1984-10-29 1985-10-02 Freiberg Brennstoffinst Apparat fuer die vergasung von kohlenstaub
DE3711314A1 (de) * 1987-04-03 1988-10-13 Babcock Werke Ag Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
UA89671C2 (uk) * 2005-05-02 2010-02-25 Шелл Інтернаціонале Рісерч Маатшаппідж Б.В. Спосіб виробництва синтез-газу
US7587995B2 (en) * 2005-11-03 2009-09-15 Babcock & Wilcox Power Generation Group, Inc. Radiant syngas cooler
DE202006020602U1 (de) * 2006-08-28 2009-04-23 Siemens Aktiengesellschaft Vorrichtung zum Austrag von Schlacke aus Vergasungsreaktoren
JP2008056808A (ja) * 2006-08-31 2008-03-13 Babcock & Wilcox Co:The 合成ガスを収容及び冷却するための蒸気発生装置
US20080115479A1 (en) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Pressurized coal gasifier and coal gasification combined cycle power plant
US8236071B2 (en) * 2007-08-15 2012-08-07 General Electric Company Methods and apparatus for cooling syngas within a gasifier system
US7846226B2 (en) * 2008-02-13 2010-12-07 General Electric Company Apparatus for cooling and scrubbing a flow of syngas and method of assembling
DE102008033095A1 (de) * 2008-07-15 2010-01-28 Uhde Gmbh Vorrichtung zur Schlackeabführung aus einem Kohlevergasungsreaktor
DE102008035386A1 (de) * 2008-07-29 2010-02-11 Uhde Gmbh Schlackeaustrag aus Reaktor zur Synthesegasgewinnung
AU2009357333B2 (en) * 2009-12-25 2013-11-14 Changzheng Engineering Co., Ltd. Highly efficient and clean gasification apparatus for carbonaceous dry powder and method thereof
KR101134618B1 (ko) 2010-08-30 2012-04-09 한국전력공사 슬래그 처리장치 및 그 동작 방법
DE102012215898B4 (de) * 2012-09-07 2019-03-21 Siemens Aktiengesellschaft Vorrichtung zur zuverlässigen Füllstandsregelung in einer der Flugstromvergasung nachgeschalteten Quenchkammer mit Inertgasspülung der Druck aufnehmenden Messstelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769829A (en) * 1954-06-02 1957-03-13 Foster Wheeler Ltd Improvements in and relating to the production of synthesis gas
US3307572A (en) * 1963-09-05 1967-03-07 Koppers Co Inc Apparatus for sealing the sluice spaces for gasification residues
DE2455127A1 (de) * 1974-11-21 1976-06-10 Shell Int Research Verfahren zum ausschleusen von rueckstaenden aus einem unter erhoehtem druck stehenden vergasungsraum
DE2611949A1 (de) * 1976-03-20 1977-09-29 Lentjes Dampfkessel Ferd Kohlevergasungsanlage
DE2933514B1 (de) * 1979-08-18 1980-03-27 Gutehoffnungshuette Sterkrade Vorrichtung zum Behandeln von durch Kohlevergasung erzeugtem Synthesegas
EP0012461A1 (de) * 1978-11-29 1980-06-25 Ruhrkohle Aktiengesellschaft Kohlevergasungsanlage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441393A (en) * 1966-01-19 1969-04-29 Pullman Inc Process for the production of hydrogen-rich gas
BE784237A (fr) * 1972-05-31 1972-11-30 Texaco Development Corp Procede de traitement des eaux d'egout et immondices.
DK136675B (da) * 1974-07-29 1977-11-07 Voelund As Slaggesluse til udslusning af slagge og aske fra et ildsted.
US4073629A (en) * 1974-07-30 1978-02-14 Kamyr Inc. Coal gasification process with improved procedure for continuously discharging ash particles and apparatus therefor
DD150313A3 (de) * 1978-09-28 1981-08-26 Friedrich Berger Vorrichtung zur vergasung asnhehaltiger brennstoffe in der flugwolke
US4213402A (en) * 1978-12-08 1980-07-22 Combustion Engineering, Inc. Cooling means for a water-filled ash hopper
US4295866A (en) * 1979-06-07 1981-10-20 Kearny Thomas J Paint spray booth with water wash
DE3000791A1 (de) * 1980-01-11 1981-07-16 Deutsche Babcock Ag, 4200 Oberhausen Nassentascher
CH653360A5 (de) * 1980-09-19 1985-12-31 Sulzer Ag Heissgaskuehler an einer kohlevergasungsanlage.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB769829A (en) * 1954-06-02 1957-03-13 Foster Wheeler Ltd Improvements in and relating to the production of synthesis gas
US3307572A (en) * 1963-09-05 1967-03-07 Koppers Co Inc Apparatus for sealing the sluice spaces for gasification residues
DE2455127A1 (de) * 1974-11-21 1976-06-10 Shell Int Research Verfahren zum ausschleusen von rueckstaenden aus einem unter erhoehtem druck stehenden vergasungsraum
DE2611949A1 (de) * 1976-03-20 1977-09-29 Lentjes Dampfkessel Ferd Kohlevergasungsanlage
EP0012461A1 (de) * 1978-11-29 1980-06-25 Ruhrkohle Aktiengesellschaft Kohlevergasungsanlage
DE2933514B1 (de) * 1979-08-18 1980-03-27 Gutehoffnungshuette Sterkrade Vorrichtung zum Behandeln von durch Kohlevergasung erzeugtem Synthesegas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781500A (en) * 1986-04-14 1988-11-01 Emhart Enterprises, Corp. Metal blind rivet
EP0318071A1 (de) * 1987-10-23 1989-05-31 Shell Internationale Researchmaatschappij B.V. Wasserbadbenetzungsvorrichtung
EP0452653A1 (de) * 1990-04-14 1991-10-23 Krupp Koppers GmbH Verfahren zur Vergassung von feinkörnigen bis staubförmigen Brennstoffen mit nachgeschaltetem kombinierten Gas-/und Dampfturbinenkraftwerk
KR100728517B1 (ko) * 2006-12-28 2007-06-15 메크로비젼 코오포레이션 동적으로 연결 가능한 실행 가능 이미지들의 진정성을증명하는 시스템 및 방법
ITMI20102158A1 (it) * 2010-11-23 2012-05-24 T S R L Ag Macroapparato per la produzione e il trattamento di gas da carbone minerale
CN114395422A (zh) * 2022-01-25 2022-04-26 哈尔滨工业大学 分开采用自然循环和强制循环的水冷壁气化炉及冷却方法

Also Published As

Publication number Publication date
ZA826077B (en) 1983-06-29
EP0077852B1 (de) 1986-06-25
DE3174882D1 (en) 1986-07-31
EP0077852A3 (en) 1984-01-18
JPS5880383A (ja) 1983-05-14
US4487611A (en) 1984-12-11
CH661054A5 (de) 1987-06-30

Similar Documents

Publication Publication Date Title
EP0077852B1 (de) Gaskühler zu Synthesegasgenerator
DE112005002983T5 (de) Festbettkohlevergaser
EP0131099B1 (de) Wärmeübertrager für Gase, vorzugsweise Synthesegaskühler
DE2456321B2 (de) Wärmetauscher
DE2952065A1 (de) Verfahren zur trockenkuehlung von koks und kokskuehleinrichtung zur durchfuehrung des verfahrens
DE3507303A1 (de) Anlage zur aufbereitung und reinigung verunreinigter gase
DE1657280B2 (de) Separator
EP0077851A2 (de) Gaskühler-Anordnung zu Kohlevergasungsanlage
DE3013722C2 (de) Vorrichtung zur Trockenkühlung von glühendem Koks
EP0241688B1 (de) Kokstrockenkühleinrichtung
DE1551006B2 (de) Dampferzeuger
DE102005037111A1 (de) Zirkulierender Wirbelschichtreaktor
DE2704116C2 (de)
EP0923971B1 (de) Verfahren und Vorrichtung zur Beschickung von Absetzbecken
EP0344094B1 (de) Entspannungsvorrichtung für unter Druck stehende heisse Flussigkeiten
DE967861C (de) Entaschungsvorrichtung fuer eine mit UEberdruck im Brennraum betriebene Feuerung und Verfahren zum Entaschen mit einer solchen Vorrichtung
CH281743A (de) Verfahren zum Konzentrieren von Flüssigkeiten durch Verdampfen und Einrichtung zur Durchführung des Verfahrens.
DE3626120C2 (de)
DE3624293C2 (de)
AT239266B (de) Einrichtung zum Trocknen und Reinigen von Dampf
DE3332596C2 (de) Vorrichtung zum Trocknen von Braunkohlen
DE961524C (de) Verfahren und Vorrichtung zum Kuehlen waermeleitender Wandflaechen, insbesondere vonReaktionsraeumen, mittels aufgewirbelter feinverteilter fester Waermetraeger
AT222665B (de) Siederohrkessel
AT242110B (de) Vorrichtung zum kontinuierlichen Vermischen von Flüssigkeiten mit Gasen
DE1614360B2 (de) Kernreaktor mit einem druckbehaelter, in dem die spaltbaren elemente in langgestreckten kuehlrohren untergebracht sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811113

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

16A New documents despatched to applicant after publication of the search report
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3174882

Country of ref document: DE

Date of ref document: 19860731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901105

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901114

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19911130

BERE Be: lapsed

Owner name: GEBRUDER SULZER A.G.

Effective date: 19911130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST