EP0071123B1 - Dispositif pour réchauffer et/ou sécher, au moyen de micro-ondes, des matériaux plats passant à travers ce dispositif - Google Patents

Dispositif pour réchauffer et/ou sécher, au moyen de micro-ondes, des matériaux plats passant à travers ce dispositif Download PDF

Info

Publication number
EP0071123B1
EP0071123B1 EP82106440A EP82106440A EP0071123B1 EP 0071123 B1 EP0071123 B1 EP 0071123B1 EP 82106440 A EP82106440 A EP 82106440A EP 82106440 A EP82106440 A EP 82106440A EP 0071123 B1 EP0071123 B1 EP 0071123B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
web
microwave
halves
waveguide elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82106440A
Other languages
German (de)
English (en)
Other versions
EP0071123A1 (fr
Inventor
Hans Georg Dr. Fitzky
Franz Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0071123A1 publication Critical patent/EP0071123A1/fr
Application granted granted Critical
Publication of EP0071123B1 publication Critical patent/EP0071123B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/16Drying webs by electrical heating
    • D21F5/167Microwave heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/046Microwave drying of wood, ink, food, ceramic, sintering of ceramic, clothes, hair

Definitions

  • the present invention relates to a device for the uniform heating and / or drying of broad, thin sheets of paper, plastic, textiles or photographic materials using a microwave-powered energy transmitter which, for the passage of the material, consists of pipelines arranged symmetrically in two parts and arranged parallel to one another exists, which are connected to each other and whose length is matched to a whole number of half-waves (AI2), whereby in order to avoid undesired electromagnetic couplings between the pipe elements, the pipe elements are alternately offset by a fourth-pipe wavelength ( ⁇ / 4) and for feeding g of the individual pipe elements, separate microwave generators are used in connection with circulators.
  • a microwave-powered energy transmitter which, for the passage of the material, consists of pipelines arranged symmetrically in two parts and arranged parallel to one another exists, which are connected to each other and whose length is matched to a whole number of half-waves (AI2), whereby in order to avoid undesired electromagnetic couplings between the pipe elements, the pipe elements are alternately offset
  • microwaves offer higher specific heating outputs because the heat generated in the material due to the dielectric loss increases proportionally with the frequency.
  • Usual microwave dryers for sheet-like materials use meandering pipelines which are guided transversely to the web, the material being passed through slots in the pipeline, e.g. B. US 3,672,066, US 3,449,836, US 3,475,827.
  • Disadvantages of these arrangements are, particularly with a larger width and thickness of the material, the local inhomogeneity of the heating, in particular the exponential decrease in the intensity of the progressing in the pipeline due to the absorption in the material Wave, and the heating by standing waves, which are caused by reflection on the web edges and the pipe bends in the course of the meandering guidance of the rectangular tube.
  • Characteristic here are relatively sharply defined temperature maxima in the material at a distance of half the tube wavelength.
  • the quadratic field strength dependence of the dielectric losses contributes to the formation of local overheating.
  • the arrangement according to GB 2 042 703 A attempts to reduce the effect of standing waves in pipelines oriented transversely to the web direction by using two pipelines with different positions of the electrical field maxima in relation to the point of action of the material passing through.
  • the aim is a coincidence of the maximum field strength in the first pipeline with the minimum field strength in the second pipeline.
  • the invention has for its object to provide a device of the type mentioned above, with which it is possible in a simple manner, both uniformly across the width of the material heating and drying of the material, in particular the coatings of carrier materials, as well as when one maintenance of certain maximum temperatures to achieve the fastest possible drying.
  • the claimed method uses an arrangement of several parallel, two-part and short-circuited pipelines which are oriented in the web running direction .
  • the length of the individual pipelines is a multiple half the tube wavelength matched, the number of half-wavelengths is chosen so large that, taking into account the microwave absorption by the web material, there is an approx. 50% absorption when the microwave is first run through the tube system fed at the end.
  • the excitation in the pipeline is thereby. formed by a predominant proportion of continuous waves and a smaller proportion of standing waves. Due to the high damping of the standing wave (resonance), a critical adjustment of the individual pipe conductors to the frequency of the generator is not necessary.
  • Another key characteristic of the device is the parallel feeding of the individual pipelines by separate microwave generators and circulators, the individual control and regulation of the power supplied by iris couplers at the ends and the practically completely uniform heating of the material in the transverse direction by slightly interlacing the pipeline direction with respect to the Direction of the material.
  • Standing waves in the individual pipeline do not cause uneven heating of the material transversely to the running direction, because the piping is arranged in the running direction and differs only a few degrees with it.
  • All pipe halves are integrated in two mirror-symmetrical metal half-shells, one of which is designed to be hinged for the introduction of the material and for cleaning purposes. Maintaining maximum material temperatures is achieved by the constant control of the microwave excitation acting in each pipe and by the method of direct current heating, ie the same direction of travel of the material and the microwave fed in.
  • the parallel pipelines are connected to each other to suppress radiation and coupling with larger gap widths by conductive webs. These webs reduce the undesired electromagnetic coupling between the individual pipelines which are guided in parallel at a short distance.
  • the width of the webs is in the range of 20 to 200% of the gap width and is selected according to the microwave absorption by the material.
  • the individual pipelines represent highly damped microwave resonators that are operated at the frequency of the generator. The resonators are damped by the absorption of the material. Given the microwave absorption of the material, the damping of the resonance increases with the length of the tube. The shaft is almost completely absorbed in the material during one pass. For a given pipe length, the damping increases with the absorption of the material, e.g. B. with increasing water content.
  • the web width can therefore be chosen to be relatively small. Conversely, the web width must be chosen larger with low absorption of the material (low moisture).
  • the microwave will run back and forth with an absorption of more than 75%. This results in a relatively low ripple in the field profile along the pipe and the maximum electric field strength that occurs is severely limited, so that electrical discharges from metallic edges are avoided, which is of great importance when drying photographic material or thermally sensitive layers.
  • the high microwave absorption of the material is mainly in the initial stages of drying (wet area), with advanced drying and in the so-called residual moisture area (e.g. equilibrium moisture compared to the relative humidity of the ambient or entrained air) the microwave absorption can be less than 1 db / m fall off.
  • the undesired electromagnetic, mainly electrical coupling increases with less material absorption.
  • the web width is increased to up to 200% of the gap width between the half-shells.
  • a special possibility of suppressing the coupling between adjacent pipelines was found in a surprisingly simple manner by the alternating arrangement of the pipelines, that is to say by alternating displacement next to one another gender pipe around A14 in the longitudinal direction.
  • the coupling via the electrical component is suppressed to such an extent that the electrical and magnetic maxima of the standing wave component lie opposite one another in adjacent pipelines.
  • This type of arrangement is particularly advantageous when there is a high proportion of standing waves, ie with a short pipe length and / or low material absorption (residual moisture range).
  • the size of the permissible gap width between the half shells containing the pipe halves is ultimately limited by the radiation to the outside. Even with a very large web width (more than 200% of the gap width), the gap width must remain below half the free space wavelength. At 2450 MHz, values of 40 mm can be achieved in extreme cases. However, gap widths of 10 to 25 mm are preferred. With gap widths above about 20% of the free space wavelength, the distortion of the electrical field profile of the Hio wave results in an increasing decoupling of material passed through, so that at 2450 MHz gap widths over 25 mm are of little importance (for thin, dense materials up to approx. 1 mm). By using low frequencies, e.g. B. 915 MHz correspondingly larger gap widths can be realized.
  • the adjustment of the pipe elements to resonance with the feeding microwave takes place by means of short-circuit slides and / or dielectric rods in the pipe elements of both half-shells, which can be introduced more or less into the pipe elements by means of adjusting devices.
  • the coupling elements for microwave energy the so-called iris couplers, which determine the strength of the magnetic coupling between the rectangular pipe feed line coming from the generator and the pipe elements serve primarily to adjust the range of services across the web.
  • a low-reflection setting is preferably carried out with the variable iris coupler, the reflected power being checked at the output of the circulator. If the pipelines are tuned to resonate with the short-circuit slides, any heating profiles can be realized with the iris couplers, for example, the increased heating of the edge parts. Setting to the same heating power per cm of web width is preferred, it being possible to compensate for different output power of the generators.
  • the setting of the iris couplers can be done either manually or automatically, for example by checking the local web temperature
  • the arrangement of the iris couplers is preferably at a distance of a quarter tube wavelength from the end of the tube elements.
  • square-working detectors are arranged opposite the coupling point in the hinged half-shell. These are not only used to monitor the microwave excitation during operation, but they are also used to adjust the resonance tuning of the pipeline with the variably adjustable short-circuit slides.
  • the microwave energy is fed in on the inlet side of the web.
  • Effective use of the dryer or heating device includes rapid heating of the material on the inlet side to the maximum permissible material temperature and maintaining this value as evenly as possible during the passage through the effective range of the dryer.
  • the application of the so-called direct current principle meets this requirement.
  • the direction of travel of material and microwave radiation in the pipelines are rectified.
  • the microwave is fed in on the inlet side of the material.
  • the highest microwave power density on the inlet side causes a rapid rise in temperature in the material, while the microwave intensity, which exponentially decreases in the direction of travel in the pipeline, is used primarily to cover the heat of vaporization.
  • a particularly important feature of the arrangement according to the invention is the slight entanglement of the longitudinal direction of the pipeline with respect to the running direction of the material.
  • the setting of the angle it between the running direction of the material (web edge) and the longitudinal direction of the pipeline serves to achieve uniform heating across the web.
  • These strips of low heating become increasingly smaller as the angle ⁇ increases from zero until, depending on the web width, a value ⁇ ′ results in which there is a slight ripple in the local heating profile transverse to the web.
  • This optimal angle ⁇ ' is reached when there is an approximately 10 to 20% overlap of the strips of material captured by the pipelines.
  • the value ⁇ ' depends on the ratio of the gap width to the pipe dimension (narrow side) and to a small extent on the dielectric properties of the material.
  • the characteristic of the arrangement is therefore a possibility of adjusting the angle n during the operation of the dryer.
  • the microwave generators are set to frequencies of 915 MHz or 2450 MHz.
  • the entirety of the pipe halves of each half-shell is covered by a gas-tight cover with a thin, low-loss film to prevent contamination of the pipe ducts or condensation.
  • This cover lies directly on the surface of the half-shells and is continuously fixed in the area of the webs and on the edge of the half-shells by nozzle heads sunk at periodic intervals.
  • the nozzle heads located in the web area are used to supply trailing air, nitrogen and protective gases when flammable vapors are removed in order to ensure their removal without condensation.
  • the gases are fed from the back of the half-shells and can be tempered.
  • the microwave device 1 shows a microwave heating and / or drying device 1 in an expanded state in a simplified form.
  • the web 2 to be dried is moved through the device 1 from the left (arrow).
  • the microwave device 1 consists of two half-shells 1a, 1b which are hingedly connected to one another, for example with hinges.
  • Pipe conductors 3 are incorporated into the shells parallel to one another and are arranged at an angle IX with respect to the web running direction.
  • the entanglement 5 by the angle ex serves to achieve a uniform heating of the web 2 transversely to its direction of travel.
  • the angle can be adjusted either by changing the web running direction or by rotating the device 1 relative to the web running direction in such a way that the ripple of the local heating profile transverse to web 2 is minimal.
  • the setting 5 causes approximately a 10 to 20% overlap of the strips of material captured by the pipelines 3.
  • the energy is fed to the microwave device 1 from a microwave generator 6 via a circulator 7 and a rectangular pipeline 9 and transmitted to the pipeline 3 via an iris coupler 4.
  • short-circuit slides 8 are arranged in all pipelines 3 to tune the pipeline 3 for resonance.
  • FIG. 2 shows a partial section through the half-shells 1a, 1b of the microwave device 1 with mirror-symmetrical construction.
  • the tubular conductors 3 are rectangular and are interrupted by a gap S through which the web 2 is guided.
  • the pipe conductors 3 are formed by the shells 1a, 1b and the conductive webs 15.
  • the width b of each tubular conductor elements 3 of the construction of the H io -Feldtyps is correspondingly dimensioned. (The field type in the right pipe is of the H 10 (TE-10) mode).
  • the width f of the conductive webs 15 between the adjacent pipe halves 3 is between 20 and 200% of the gap width S.
  • FIG. 3 shows a microwave device 1 with all devices according to the invention.
  • the web 2 was cut and the upper half-shell 1 was partly cut and shown unfolded.
  • the web 2 is passed in the direction of the arrow over rollers through the device 1.
  • the energy for heating and drying the web 2 is generated by microwave generators 6 via circulators 7, rectangular feed lines 9 of the device 1 and fed into the pipeline 3 with iris couplers 4.
  • the iris couplers 4 determine the strength of the magnetic coupling between the rectangular pipe feed lines 9 coming from the generator 6 and the pipe elements 3, can be adjusted by adjusting devices 16 and protrude into the border area between the pipe elements 3 and 9.
  • the pipe elements 3 are drawn in dashed lines in the lower shell half 1a and the associated upper parts are shown in the upper shell half 1b.
  • the length of the pipe 3 short-circuited on both sides is n times half the tube wavelength A, where n can be between 2 and 20.
  • the resonance of the microwave energy in the device is set with short-circuit slides 8, which are adjustable with an adjusting device 17.
  • Dielectric tuning elements 14 can also be used for tuning.
  • square-working detectors 12 are arranged opposite the coupling point. These detectors 12 serve both to monitor the microwave energy during operation and to tune the resonance of the pipeline 3 with the short-circuit slides 8 or the dielectric tuning elements 14.
  • each half-shell 1a, 1b is covered by a gas-tight cover with a thin, low-loss film 10, preferably made of approx. 0.2 mm thick polytetrafluoroethylene (PTFE), reinforced with glass fabric, to prevent contamination of the pipe ducts or condensation.
  • PTFE polytetrafluoroethylene
  • This cover 10 lies directly on the surface of the half-shells 1a, 1b and is continuously fixed in the region of the webs and on the edge of the half-shells 1a, 1b by nozzle heads 11 sunk at periodic intervals.
  • the nozzle heads 11 located in the web area serve to supply air or gases when flammable vapors are removed in order to ensure their removal without the formation of condensation.
  • the drag air is supplied from the rear of the half-shells 1a, 1 and can be tempered beforehand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Textile Engineering (AREA)
  • Molecular Biology (AREA)
  • Drying Of Solid Materials (AREA)

Claims (10)

1. Dispositif en vue de chauffer et/ou de sécher uniformément des bandes superficielles larges et minces de papier, de matière synthétique, de matières textiles ou de matériaux photographiques en utilisant un transporteur d'énergie alimenté en microondes et qui, pour le passage du matériau, est constitué de conducteurs tubulaires divisés symétriquement en deux, et disposés parallèlement l'un à l'autre, ces conducteurs étant reliés l'un à l'autre, tandis que leur longueur est déterminée d'après un nombre entier de demi-ondes (d/2) tandis que, pour éviter des couplages électromagnétiques inopportuns entre les éléments conducteurs tubulaires, on prévoit alternativement un déport de ces derniers correspondant à un quart d'onde (A/4) et, pour l'alimentation des différents éléments conducteurs tubulaires, on utilise chaque fois des générateurs de micro-ondes séparés en association avec des circulateurs, caractérisé en ce que:
a) les différents éléments conducteurs tubulaires (3) sont disposés dans leur sens longitudinal parallèlement ou sous un faible angle (a) par rapport au sens de défilement de la bande (2),
b) le nombre d'éléments conducteurs tubulaires (3) est choisi proportionnelement à la largeur de la bande (2), le facteur de proportionnalité résultant des conditions requises,
c) la largeur (b) des différents éléments conducteurs tubulaires (3) est calculée en fonction de la formation du type de champ H10, et
d) pour régler la puissance des micro-ondes agissant dans chaque élément conducteur tubulaire (3), on prévoit des coupleurs à iris (4) réglables, agissant magnétiquement et permettant une évolution uniforme ou quelconque de la puissance acheminée en micro-ondes transversalement au sens de défilement de la bande.
2. Dispositif selon la revendication 1, caractérisé en ce que plusieurs moités de conducteurs tubulaires (3) sont disposées parallèlement et sont réunies l'une à l'autre par des barrettes conductrices parallèles (15) pour former une de- micoquille continue (la, 1 b).
3. Dispositif selon la revendication 1, caractérisé en ce que le transporteur d'énergie est constitué de deux demi-coquilles (la, 1b) à structure symétrique spéculaire contenant chacune toutes les moitiés de conducteurs tubulaires (3), tandis que les demi-coquilles (1a, 1b) sont assemblées l'une à l'autre de manière rabattable sur un côté longitudinal du transporteur d'énergie en prévoyant une demi-coquille fixe (1a) et une demi-coquille rabattable (1 b).
4. Dispositif selon la revendication 1, caractérisé en ce que la largeur (f) des barrettes conductrices (15) situées entre les moitiés de conducteurs tubulaires voisines (3) se situe entre 20 et 200% de l'écartement (S) ménagé entre les moitiés de conducteurs tubulaires (3) attribuées l'une à l'autre.
5. Dispositif selon la revendication 1, caractérisé en ce que l'écartement (S) entre les moitiés de conducteurs tubulaires (3) ou les demico- quilles (1a, 1b) se situe entre 2% et 40% de la longueur d'onde d'espace libre de la micro-onde d'alimentation.
6. Dispositif selon la revendication 1, caractérisé en ce que la logueur des différents éléments conducteurs tubulaires (3) est égale et s'élève à n · A12 où n = 2, 3, 4 à 20 et, pour déterminer chaque élément conducteur tubulaire (3) d'après la résonance avec la micro-onde d'alimentation, les éléments conducteurs tubulaires (3) sont équipés chacun, dans les deux demi-coquilles (1a, 1b) d'un curseur de court-circuit (8) et/ou de barres diélectriques (14).
7. Dispositif selon la revendication 1, caractérisé en ce que, pour le couplage variable de l'énergie de micro-ondes, dans les petits côtés des profilés rectangulaires de chacun des éléments conducteurs tubulaires (3) et dans la demi-coquille fixe (1a), on prévoit des coupleurs à iris (4) agissant magnétiquement dans les éléments conducteurs tubulaires (3), les coupleurs à iris (4) étant éloignés de l'extrémité des éléments conducteurs tubulaires (3) d'une distance d'un quart d'onde (A/4).
8. Dispositif selon la revendication 1, caractérisé en ce que l'alimentation (6, 7, 9) de l'énergie de micro-ondes est effectuée sur le côté d'entrée de la bande (2) tandis que, pour le contrôle et le réglage continus de l'excitation en micro- ondes, on prévoit, dans chaque élément conducteur tubulaire (3), un détecteur (12) à un endroit situé en face du point de couplage.
9. Dispositif selon la revendication 1, caractérisé en ce que, en vue d'assurer un chauffage uniforme dans le profil transversal, l'angle (α) formé entre le sens longitudinal des éléments conducteurs tubulaires (3) et le sens de défilement de la bande (2) est réglable.
10. Dispositif selon la revendication 1, caractérisé en ce que les surfaces des deux demi-coquilles (1a, 1b), qui sont tournées vers la bande (2) sont recouvertes de manière étanche aux gaz avec une feuille protectrice (10) d'une épaisseur de 0,1-0,5 mm ayant une faible constante diélectrique tandis que, dans la zone des barrettes (15), la feuille protectrice (10) est fixée par des têtes d'injecteurs noyées (11) servant en même temps à assurer l'alimentation des gaz pour l'évacuation des vapeurs hors de la bande (2).
EP82106440A 1981-07-31 1982-07-17 Dispositif pour réchauffer et/ou sécher, au moyen de micro-ondes, des matériaux plats passant à travers ce dispositif Expired EP0071123B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813130358 DE3130358A1 (de) 1981-07-31 1981-07-31 Vorrichtung zur erwaermung und/oder trocknung durchlaufender flaechenhafter materialien mit mikrowellen
DE3130358 1981-07-31

Publications (2)

Publication Number Publication Date
EP0071123A1 EP0071123A1 (fr) 1983-02-09
EP0071123B1 true EP0071123B1 (fr) 1985-10-02

Family

ID=6138269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106440A Expired EP0071123B1 (fr) 1981-07-31 1982-07-17 Dispositif pour réchauffer et/ou sécher, au moyen de micro-ondes, des matériaux plats passant à travers ce dispositif

Country Status (3)

Country Link
EP (1) EP0071123B1 (fr)
JP (1) JPS5826979A (fr)
DE (2) DE3130358A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202882A (zh) * 2014-06-13 2015-12-30 宁德时代新能源科技有限公司 极片干燥装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI74062C (fi) * 1985-12-12 1987-12-10 Imatran Voima Oy Foerfarande och anordning foer minskning hoegfrekvent elenergi av fuktighetsdifferenserna hos en roerlig bana medelst.
US5314647A (en) * 1992-07-20 1994-05-24 Eastman Kodak Company Method of making cellulose ester photographic film base
US6207941B1 (en) 1998-07-16 2001-03-27 The University Of Texas System Method and apparatus for rapid drying of coated materials with close capture of vapors
CZ297159B6 (cs) * 2001-12-17 2006-09-13 Výzkumný ústav textilních stroju Liberec, a.s. Mikrovlnná susárna plosných textilií
US6938358B2 (en) 2002-02-15 2005-09-06 International Business Machines Corporation Method and apparatus for electromagnetic drying of printed media
DE102008038215A1 (de) * 2008-08-18 2010-02-25 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Trocknung einer Papierbahn
DE102013009064B3 (de) * 2013-05-28 2014-07-31 Püschner GmbH + Co. KG Mikrowellen-Durchlaufofen
CN105928361A (zh) * 2016-05-06 2016-09-07 马宁 一种微波干燥机大容量机箱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449836A (en) * 1967-10-25 1969-06-17 Bechtel Int Corp Air suspension system in microwave drying
US3475827A (en) * 1967-12-06 1969-11-04 Bechtel Int Corp R.f. seal in microwave drier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1050493A (fr) *
US3355812A (en) * 1965-08-04 1967-12-05 Fitchburg Paper Drying by high frequency electric field
GB1172228A (en) * 1966-11-10 1969-11-26 Hirst Microwave Heating Ltd Microwave Heating Device
US3528179A (en) * 1968-10-28 1970-09-15 Cryodry Corp Microwave fluidized bed dryer
US3672066A (en) * 1970-10-30 1972-06-27 Bechtel Int Corp Microwave drying apparatus
GB2042703A (en) * 1979-02-06 1980-09-24 Ciba Geigy Ag Drying of Web Material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449836A (en) * 1967-10-25 1969-06-17 Bechtel Int Corp Air suspension system in microwave drying
US3475827A (en) * 1967-12-06 1969-11-04 Bechtel Int Corp R.f. seal in microwave drier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105202882A (zh) * 2014-06-13 2015-12-30 宁德时代新能源科技有限公司 极片干燥装置
CN105202882B (zh) * 2014-06-13 2017-06-13 宁德时代新能源科技股份有限公司 极片干燥装置

Also Published As

Publication number Publication date
DE3266685D1 (en) 1985-11-07
JPS5826979A (ja) 1983-02-17
DE3130358A1 (de) 1983-02-17
EP0071123A1 (fr) 1983-02-09

Similar Documents

Publication Publication Date Title
DE69835083T2 (de) Verfahren und vorrichtung zur elektromagnetischen bestrahlung von flaechigen materialen oder dergleichen
DE2362258C3 (de) Vorrichtung zum Messen des Feuchtigkeitsgehalts eines Materials, insbesondere , einer Papierbahn
EP0071123B1 (fr) Dispositif pour réchauffer et/ou sécher, au moyen de micro-ondes, des matériaux plats passant à travers ce dispositif
DE2900617B2 (de) Mikrowellenapplikator
DE2504860A1 (de) Mikrowellenofen
DE102012023103A1 (de) Mikrowellen-Heizeinrichtung und diese verwendende Bildfixiervorrichtung
DE3332437C2 (fr)
EP1183709B1 (fr) Dispositif a dilatation lineaire destine au traitement micro-ondes de grande surface et a la production de plasma grande surface
DE2645765B1 (de) Vorrichtung zum Aufschmelzen und Fixieren eines Tonerbildes auf einem Bildtraeger
SE460499B (sv) Saett och anordning foer torkning av faner och liknande produkter
DE4143104A1 (de) Mikrowellen-hohlraumresonator -bestrahlungsgeraet zum erwaermen von gegenstaenden unbestimmter laenge
DE102013005798A1 (de) Mikrowellen-heizeinrichtung und bildfixiervorrichtung, welche diese verwendet
DE3132979C2 (de) Heizvorrichtung mit einer Mikrowellenheizeinrichtung mit einer Gruppe von Mikrowellenleitern
US4446348A (en) Serpentine microwave applicator
DE102013009064B3 (de) Mikrowellen-Durchlaufofen
CH621620A5 (fr)
DE2047119A1 (de) Vorrichtung zur Einwirkung von Warme auf eine Bahn od dgl oder davon getrage nes Gut
WO2011061283A1 (fr) Dispositif et procédé pour générer un plasma au moyen d'un résonateur à ondes progressives
DE2340130B2 (de) Verfahren zur Bestimmung des Wassergehaltes von dünnen, flächenhaften Materialien
DE4240104A1 (de) Vorrichtung zum Erwärmen/Trocknen mit Mikrowellen
EP1895290B1 (fr) Dispositif à micro-ondes destiné à déterminer au moins une grandeur de mesure sur un produit
DE2653461C3 (de) Verfahren und Vorrichtung zum Entwickeln eines wärmeentwickelbaren Zweikomponenten-Diazotypiematerials
DE2250901A1 (de) Wellenleiter fuer elektromagnetische wellen im submillimeter- und infrarot-bereich
JP3213998B2 (ja) 連続的に移送される平坦材料を熱処理するための共振高周波またはマイクロ波印加装置
DE69830083T2 (de) Elektromagnetische strahlung expositionskammer für verbesserte heizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820717

AK Designated contracting states

Designated state(s): BE DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 3266685

Country of ref document: DE

Date of ref document: 19851107

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19870731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880331

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890731