EP0064154B1 - Method of preparing blue iron-hexacyanoferrate-iii pigments - Google Patents

Method of preparing blue iron-hexacyanoferrate-iii pigments Download PDF

Info

Publication number
EP0064154B1
EP0064154B1 EP82102445A EP82102445A EP0064154B1 EP 0064154 B1 EP0064154 B1 EP 0064154B1 EP 82102445 A EP82102445 A EP 82102445A EP 82102445 A EP82102445 A EP 82102445A EP 0064154 B1 EP0064154 B1 EP 0064154B1
Authority
EP
European Patent Office
Prior art keywords
iron
hexacyanoferrate
carried out
oxidation
hydrogen cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102445A
Other languages
German (de)
French (fr)
Other versions
EP0064154A1 (en
Inventor
Joachim Dr. Kranz
Wolfgang Habermann
Harry Dr. Distler
Helmut Dr. Knittel
Karl-Ludwig Dr. Hock
Fritz Dr. Brunmueller
Rolf Dr. Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0064154A1 publication Critical patent/EP0064154A1/en
Application granted granted Critical
Publication of EP0064154B1 publication Critical patent/EP0064154B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the invention relates to a process for the preparation of blue iron hexacyanoferrate III pigments.
  • Blue iron hexacyanoferrate III pigments (C.I. Pigment Blue 27; C.I. No. 77510) are commercially available under various names such as Prussian blue, Berlin blue, Milori blue or iron blue.
  • These blue pigments are formed by oxidizing complex iron (II) hexacyanoferrate (II) compounds, also known as Berlin's white or white dough (II), with oxidizing agents in dilute acids such as chlorate / hydrochloric acid, dichromate or air in dilute sulfuric acid (pH ⁇ 0 , 5) received.
  • II complex iron
  • II hexacyanoferrate
  • dilute acids such as chlorate / hydrochloric acid, dichromate or air in dilute sulfuric acid (pH ⁇ 0 , 5) received.
  • the chemical composition of the white dough (II) and the blue iron hexacyanoferrate III pigments (I) is complex and, within certain limits, also depends on the manufacturing process.
  • Me is an alkali metal cation, preferably potassium or sodium ion, an ammonium or a mixture of these cations.
  • the iron-II-cyanoferrate-II is prepared by precipitating iron-II salts with complex alkali metal hexacyanoferrates-II in aqueous solution.
  • this process approximately 2 parts by weight of alkali metal salts are obtained per part by weight of “white dough” (II), which are a considerable burden on the waste water.
  • Another disadvantage of the prior art method is that before oxidation to I, the salts contained in (II) have to be washed out, which is very time consuming.
  • blue iron hexacyanoferrate III pigments can be obtained by oxidation of complex iron II cyan compounds of the formula II if the complex iron II hexacyanoferrate II compound is obtained by anodic oxidation of metallic iron in hydrogen cyanide as the reaction medium or in a reaction medium containing hydrogen cyanide at pH ⁇ 7 and an anode potential - measured against the hydrogen normal electrode - of ⁇ 0.76 V.
  • the complex iron-II-cyan compound (II) is obtained in high yield and high purity by the process according to the present invention.
  • the process according to the invention is very environmentally friendly since there are practically no by-products or by-products due to the reaction. It was surprising that the anodic oxidation, i. H. by electrochemical reaction of iron with hydrogen cyanide in an acidic reaction medium (electrolyte) the complex iron-II-cyano compound (II) is formed practically quantitatively. In contrast, the complexes (II) are obtained by the process of the prior art only in an alkaline medium at pH> 8.
  • reaction medium - also referred to as an electrolyte - is filled into an electrolysis cell with an iron anode and an iron - or chromium-nickel-steel cathode and the electrolysis is measured at the desired temperature at an anode potential the normal hydrogen electrode - of ⁇ 0.76 V.
  • the process can be carried out batchwise or continuously.
  • the electrolyte will be circulated in the cell.
  • the filtrate can be used again as an electrolyte after the used parts have been added.
  • the electrolyte will be circulated in the cells and the iron II-cyano compound (II) formed is continuously separated from part of the electrolyte. After the used components have been added, the filtrate is continuously returned to the system.
  • the isolated (II) can then be oxidized to MeFe [Fe (CN) 6] pigments (I) in a manner known per se.
  • the iron-II complex can also be oxidized directly in the electrolyte, which offers advantages in terms of technical implementation.
  • Hydrogen cyanide and its mixtures with C 1 - bis come as the reaction medium for the electrolysis C 4 -alkanols with primary, secondary or tertiary hydroxyl group, C 2 - to C 6 -alkanediols, diethylene glycol, triethylene glycol, dipropylene glycol, C 3 - to C s -alkane polyols, water or with mixtures of these liquids.
  • the reaction medium is preferably a mixture of hydrogen cyanide and water.
  • the hydrogen cyanide content in the electrolyte can be between 100 and 0.001% by weight.
  • conductive salts are advantageously added to the electrolyte.
  • the conductive salts there are those of the prior art which are soluble in at least the required concentration in the electrolytes mentioned.
  • the amount of the conductive salts is generally 0.1 to 10% by weight, based on the electrolyte.
  • conductive salts come z. B. into consideration: salts of alkali metals, alkaline earth metals, earth metals and rare earths, such as salts of lithium, sodium, potassium, rubidium, magnesium, calcium, strontium, aluminum, cerium, as well as salts of metals of the iron group and ammonium
  • Suitable anions are e.g. B. chloride, sulfate, hydrogen sulfate, mono- and dihydrogen phosphate, hydrogen sulfite, cyanide, the hexacyanoferrates, hydrogen oxalate, oxalate, maleate and fumarate.
  • Ammonium and potassium salts are preferred as conductive salts.
  • Ammonium chloride, ammonium hydrogen oxalate, potassium chloride, potassium hydrogen sulfate, potassium hydrogen sulfite and potassium hydrogen oxalate are particularly preferred as conductive salts, since iron-II-cyano complexes (11) are obtained in the presence of these conductive salts, which give oxidation forms to (I) which are particularly strongly colored pigment forms which have a reddish blue color give high gloss.
  • the electrochemical reaction in which iron is anodically oxidized and hydrogen is deposited on the cathode, can be carried out at temperatures of from -20 ° C. to 150 ° C., if appropriate under pressure.
  • the reaction is preferably carried out without pressure at temperatures from -5 to + 20 ° C. If you work at temperatures> 20 ° C, the reaction must be carried out under pressure because of the low boiling point of the hydrogen cyanide.
  • the electrolysis will be carried out at normal pressure, in particular at temperatures from 10 to 20 ° C.
  • anode potential of ⁇ + 0.76 V (measured against the normal hydrogen electrode) should be maintained. At higher anode potential, dicyan and cyanate are formed, which reduces the yield.
  • the electrolysis is preferably carried out in the pH range from 1 to 6, in particular in the pH range from 2 to 5.
  • the current density is generally 30 to 5000 A / m 2. It is advantageous to work at current densities of 200 to 2,000 A / m 2 in order to ensure current yields of approximately 95% and above. At current densities> 2,000 A / m 2 , a very good mass transfer must be ensured so that there is no depletion of cyanide ions in the anode boundary layer and therefore a drop in the current efficiency. Current densities of ⁇ 30 A / m 2 require a higher concentration of hydrogen cyanide in order to ensure the complexation of the anodized iron.
  • fluidized bed or fluidized bed anodes which, for. B. from pieces of iron, iron granules or iron filings on an electrically conductive base or compact iron anodes in the form of rods, blocks or sheets or iron oxide anodes.
  • the anode material iron
  • the cathode compartment by diaphragms or anodically resistant screens or nets made of metal or plastic.
  • the electrical contacting of fluidized bed and fluidized bed anodes with the power source can take place when using metal sieves via the sieve or via anodic, stable metal or carbon rods inserted into the filling.
  • the cathode to reduce the hydrogen overvoltage on the surface for. B. with nickel-aluminum-zinc alloys, with nickel, cobalt, molybdenum, molybdenum-iron alloys, with tungsten, with tungsten-iron-nickel alloys or iron-cobalt alloys (iron content 65 to 95 wt.%; DE -OS 30 03 819 (P 30 03 819.8)) coated with vanadium, vanadium alloys or sulfides of molybdenum, tungsten, nickel or cobalt.
  • the electrolysis cells are preferably cells with compact iron anodes in the form of rods or plates.
  • the distance between the anode and cathode is preferably 2 to 10, in particular 3 to 6 mm.
  • Process product (11) can be separated and isolated by filtering, centrifuging or decanting electrolytes.
  • the reaction mixture is added
  • filter aids beforehand whereby the filtration time can be shortened considerably.
  • the filtrate can be used again as an electrolyte.
  • the oxidation of the complex iron (II) cyano compound (II) is carried out in a manner known per se, e.g. B. in aqueous suspension at pH ⁇ 6 with chlorate, chlorine or hydrogen peroxide.
  • the white dough II obtained by the process according to the invention is preferably oxidized in aqueous sulfuric acid suspension at pH 0 to 3 and at temperatures between 70 and 95 ° C. with air or oxygen. Under these conditions, very strong, grain-soft and reddish pigments I are obtained which are very easily dispersible and give very brilliant colorations.
  • the oxidation is preferably carried out at temperatures between 75 and 85 ° C.
  • the air or oxygen is stirred into the suspension and finely distributed or injected via a jet nozzle.
  • the oxidation can also take place in a column into which air or oxygen is injected in a fine distribution below.
  • the redox potential of the suspension is advantageously checked during the oxidation of II to avoid overoxidation.
  • the oxidation can be regarded as complete when 95 to 99% of the iron (II) cyano compound I have been oxidized.
  • the filtrate from (I) can be reused as an electrolyte after the missing components have been added.
  • Very fine-particle pigments I which are well dispersible in water, are obtained by oxidation of II with air or oxygen at pH> 8 and temperatures of 20 to 50 ° C. The oxidation can be followed by measuring the redox potential. After the oxidation has ended, the reaction mixture is acidified and the pigment is isolated. To improve dispersibility in water, a small amount (i.e. 0.01 to 0.2% by weight, based on (I)) of polyols, such as diethylene glycol, triethylene glycol or glycerol, is added to the reaction mixture.
  • polyols such as diethylene glycol, triethylene glycol or glycerol
  • the iron-II complex (II) can be anodically oxidized both in the acidic and in the alkaline range.
  • the invention is illustrated by the following examples.
  • the percentages relate to the weight.
  • the specified potentials were measured against the hydrogen standard electrode.
  • the electrolyte is a solution of 97% water, 2% hydrogen cyanide and 1% potassium hydrogen sulfate.
  • electrolysis is carried out until the hydrogen cyanide concentration in the electrolyte is 0.05%.
  • the white dough suspension obtained is then adjusted to pH 1.5 with Swedish acid and oxidized by gassing with atmospheric oxygen at 88 ° C. (duration: approx. 3 h).
  • the MeFe [Fe (CN) 6] (Berlin blue) formed during the oxidation is filtered off and washed neutral with water.
  • the filter cake is then dried at 120 ° C.
  • the yield is ⁇ 97% pigment, based on the hydrogen cyanide used.
  • the pigment gives purer, redder and glossier colorations in the lacquer than products which are obtained by the process of the prior art from iron (II) salt and sodium or potassium cyanoferrate (II).
  • a very granular pigment is obtained which, in comparison with the pigments of the prior art in the lacquer and in the printing ink, gives purer and redder colorations which are superior in gloss.
  • the colorings are approx. 19% stronger than those obtained with the strongest colored corresponding pigments on the market.
  • Example 1 In the electrolysis cell specified in Example 1, a solution of 88% methanol, 1.5% water, 10% hydrogen cyanide and 0.5% potassium chloride. At a current density of 1 200 A / m 2 , a cell voltage of 4.8 V, a flow rate of 1.8 m / sec and an anode potential of ⁇ - 0.2 V (measured against the hydrogen normal electrode), electrolysis is carried out until the hydrogen cyanide concentration in the electrolyte is 0.02%. This suspension is separated off on a suction filter under nitrogen and the isolated white dough is introduced into so much water that an 8% suspension is formed.
  • the aqueous suspension is adjusted to pH 1.0 with dilute sulfuric acid and, after addition of 0.15% potassium chlorate (based on the suspension), oxidized at 80 ° C. for 1 hour.
  • the MeFe [Fe (CN) 6] pigment (Berlin blue) resulting from the oxidation is worked up as in Example 1.
  • Example 2 It is electrolyzed as in Example 2, but the suspension obtained is filtered under nitrogen and the filter material is introduced into sufficient water to form a 5% suspension.
  • the suspension is adjusted to pH 12 with aqueous 25% potassium hydroxide solution and oxidized with atmospheric oxygen at 30 ° C. (duration about 1 h). After the oxidation, the suspension is acidified to pH 1 with dilute sulfuric acid and the Berlin blue is worked up as in Example 1.
  • a finely divided pigment is obtained which can be very easily dispersed in water after the addition of a little triethylene glycol.
  • the electrolysis is stopped at a hydrogen cyanide content of 0.05%.
  • the suspensions are oxidized at pH 1.5 and 80 ° C by gassing air (duration: approx. 3 h). After separation, washing and drying, pigments are obtained which give the paint good coverage. Depending on the alkaline earth or earth metal used, pigments are obtained which provide more or less greenish blue tints.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von blauen Eisenhexacyanoferrat-III-Pigmenten.The invention relates to a process for the preparation of blue iron hexacyanoferrate III pigments.

Blaue Eisenhexacyanoferrat-III-Pigmente (I) (C. I. Pigment Blue 27 ; C. I. Nr. 77510) sind unter verschiedenen Namen wie Preußisch Blau, Berliner Blau, Milori Blau oder Eisenblau im Handel.Blue iron hexacyanoferrate III pigments (I) (C.I. Pigment Blue 27; C.I. No. 77510) are commercially available under various names such as Prussian blue, Berlin blue, Milori blue or iron blue.

Diese Blaupigmente werden durch Oxidation von komplexen Eisen-II-Hexacyanoferrat-II-Verbindungen, die auch als Berliner Weiß oder Weißteig (II) bezeichnet werden, mit Oxidationsmitteln in verdünnten Säuren wie Chlorat/Salzsäure, Dichromat oder Luft in verdünnter Schwefelsäure (pH < 0,5) erhalten.These blue pigments are formed by oxidizing complex iron (II) hexacyanoferrate (II) compounds, also known as Berlin's white or white dough (II), with oxidizing agents in dilute acids such as chlorate / hydrochloric acid, dichromate or air in dilute sulfuric acid (pH <0 , 5) received.

Die chemische Zusammensetzung des Weißteiges (II) und der blauen Eisenhexacyanoferrat-III-Pigmente (I) ist komplex und innerhalb gewisser Grenzen auch vom Herstellverfahren abhängig. Im folgenden wir 11 durch die (vereinfachte) Formel

Figure imgb0001
und die Blaupigmente durch
Figure imgb0002
wiedergegeben, worin Me ein Alkalimetallkation, vorzugweise Kalium- oder Natriumion, ein Ammonium oder ein Gemisch dieser Kationen ist.The chemical composition of the white dough (II) and the blue iron hexacyanoferrate III pigments (I) is complex and, within certain limits, also depends on the manufacturing process. In the following we 11 by the (simplified) formula
Figure imgb0001
and the blue pigments through
Figure imgb0002
reproduced, wherein Me is an alkali metal cation, preferably potassium or sodium ion, an ammonium or a mixture of these cations.

Wegen der Zusammensetzung sei auf H. Kittel, « Pigmente », Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1960, S. 341/343 und die dort zitierte Literatur verwiesen.For the composition, reference is made to H. Kittel, “Pigments”, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1960, pp. 341/343 and the literature cited there.

Nach den Verfahren des Standes der Technik wird das Eisen-II-cyanoferrat-II (II) durch Fällen von Eisen-II-salzen mit komplexen Alkalimetallhexacyanoferraten-II in wäßriger Lösung hergestellt. Bei diesem Verfahren fallen je Gewichtsteil « Weißteig » (II) ungefähr 2 Gewichtsteile Alkalimentallsalze an, die eine erhebliche Belastung des Abwassers sind. Ein weiterer Nachteil des Verfahrens des Standes der Technik ist, daß vor der Oxidation zu I, die in (II) enthaltenen Salze ausgewaschen werden müssen, was sehr zeitaufwendig ist.According to the prior art processes, the iron-II-cyanoferrate-II (II) is prepared by precipitating iron-II salts with complex alkali metal hexacyanoferrates-II in aqueous solution. In this process, approximately 2 parts by weight of alkali metal salts are obtained per part by weight of “white dough” (II), which are a considerable burden on the waste water. Another disadvantage of the prior art method is that before oxidation to I, the salts contained in (II) have to be washed out, which is very time consuming.

Dieser Nachteil ist auch vorhanden, wenn der Weißteig durch Umsetzen von frisch gefälltem Eisen-IIhydroxid mit Cyanwasserstoff in alkalischem Medium oder durch Umsetzen von Eisen-II-salzen mit Cyanwasserstoff unter Zugeben von Alkalimetallhydroxid oder Ammoniak bie pH > 4 hergestellt wird. Aufgabe der vorliegenden Erfindung war es, ein technisch wenig aufwendiges und umweltfreundliches Verfahren zur Herstellung von blauen Eisenhexacyanoferrat-III-Pigmenten zu entwickeln.This disadvantage also exists if the white dough is produced by reacting freshly precipitated iron (II) hydroxide with hydrogen cyanide in an alkaline medium or by reacting iron (II) salts with hydrogen cyanide with the addition of alkali metal hydroxide or ammonia at pH> 4. The object of the present invention was to develop a technically inexpensive and environmentally friendly process for the production of blue iron hexacyanoferrate III pigments.

Es wurde gefunden, daß man blaue Eisenhexacyanoferrat-III-Pigmente durch Oxidation von komplexen Eisen-II-cyanverbindungen der Formel II erhält, wenn man die komplexe Eisen-II-hexacyanoferrat-II-Verbindung durch anodische Oxidation von metallischem Eisen in Cyanwasserstoff als Reaktionsmedium oder in einem Cyanwasserstoff enthaltenden Reaktionsmedium bei pH < 7 und einem Anodenpotential - gemessen gegen die Wasserstoffnormalelektrode - von < 0,76 V herstellt.It has been found that blue iron hexacyanoferrate III pigments can be obtained by oxidation of complex iron II cyan compounds of the formula II if the complex iron II hexacyanoferrate II compound is obtained by anodic oxidation of metallic iron in hydrogen cyanide as the reaction medium or in a reaction medium containing hydrogen cyanide at pH <7 and an anode potential - measured against the hydrogen normal electrode - of <0.76 V.

Nach dem Verfahren gemäß der vorliegenden Erfindung erhält man die komplexe Eisen-II-cyanverbindung (II) in hoher Ausbeute und hoher Reinheit. Das erfindungsgemäße Verfahren ist sehr umweltfreundlich, da praktisch keine Nebenprodukte oder durch die Umsetzung bedingte Koppelprodukte entstehen. Überraschend war, daß durch die anodische Oxidation, d. h. durch elektrochemische Umsetzung von Eisen mit Cyanwasserstoff in saurem Reaktionsmedium (Elektrolyten) die komplexe Eisen-II-cyanoverbindung (II) praktisch quantitativ gebildet wird. Dem gegenüber werden die Komplexe (II) nach dem Verfahren des Standes der Technik nur im alkalischen Medium bei pH > 8 erhalten.The complex iron-II-cyan compound (II) is obtained in high yield and high purity by the process according to the present invention. The process according to the invention is very environmentally friendly since there are practically no by-products or by-products due to the reaction. It was surprising that the anodic oxidation, i. H. by electrochemical reaction of iron with hydrogen cyanide in an acidic reaction medium (electrolyte) the complex iron-II-cyano compound (II) is formed practically quantitatively. In contrast, the complexes (II) are obtained by the process of the prior art only in an alkaline medium at pH> 8.

Das Verfahren wird im allgemeinen so durchgeführt, daß man das Reaktionsmedium - auch als Elektrolyt bezeichnet - in eine Elektrolysenzelle mit einer Eisenanode und einer Eisen - oder Chrom-Nickel-Stahl-Kathode einfüllt und bei der gewünschten Temperatur die Elektrolyse bei einem Anodenpotential - gemessen gegen die Normalwasserstoffelektrode - von ≤ 0,76 V durchgeführt.The process is generally carried out in such a way that the reaction medium - also referred to as an electrolyte - is filled into an electrolysis cell with an iron anode and an iron - or chromium-nickel-steel cathode and the electrolysis is measured at the desired temperature at an anode potential the normal hydrogen electrode - of ≤ 0.76 V.

Das Verfahren kann diskontinuierlich oder kontinuierlich durchgeführt werden. Im Falle der technischen Durchführung wird man den Elektrolyten in der Zelle umwälzen.The process can be carried out batchwise or continuously. In the case of technical implementation, the electrolyte will be circulated in the cell.

Im ersteren Fall elektrolysiert man bis sich genügend (II) gebildet hat. Dann wird die Suspension filtriert und das Filtergut mit Wasser weitgehend bis praktisch salzfrei gewaschen.In the former case, electrolysis is carried out until sufficient (II) has formed. The suspension is then filtered and the filter material is washed with water largely to practically salt-free.

Das Filtrat kann nach dem Ergänzen der verbrauchten Anteile wieder als Elektrolyt verwendet werden.The filtrate can be used again as an electrolyte after the used parts have been added.

Im Falle der kontinuierlichen Durchführung wird man den Elektrolyten in den Zellen umwälzen und kontinuierlich aus einem Teil des Elektrolyten die gebildete Eisen-II-cyanoverbindung (II) abtrennen. Das Filtrat wird nach dem Ergänzen der verbrauchten Bestandteile kontinuierlich in das System zurückgeführt.If the process is carried out continuously, the electrolyte will be circulated in the cells and the iron II-cyano compound (II) formed is continuously separated from part of the electrolyte. After the used components have been added, the filtrate is continuously returned to the system.

Die isolierte (II) kann dann in an sich bekannter Weise zu MeFe[Fe(CN)6]-Pigmenten (I) oxidiert werden. Man kann jedoch den Eisen-II-komplex auch direkt im Elektrolyten oxidieren, was bei der technischen Durchführung Vorteile bietet.The isolated (II) can then be oxidized to MeFe [Fe (CN) 6] pigments (I) in a manner known per se. However, the iron-II complex can also be oxidized directly in the electrolyte, which offers advantages in terms of technical implementation.

Als Reaktionsmedium für die Elektrolyse kommen Cyanwasserstoff und dessen Gemische mit C1- bis C4-Alkanolen mit primärer, sekundärer oder tertiärer Hydroxylgruppe, C2- bis C6-Alkandiolen, Diethylenglykol, Triethylenglykol, Dipropylenglykol, C3- bis Cs-Alkanpolyolen, Wasser oder mit Gemischen dieser Flüssigkeiten in Betracht.Hydrogen cyanide and its mixtures with C 1 - bis come as the reaction medium for the electrolysis C 4 -alkanols with primary, secondary or tertiary hydroxyl group, C 2 - to C 6 -alkanediols, diethylene glycol, triethylene glycol, dipropylene glycol, C 3 - to C s -alkane polyols, water or with mixtures of these liquids.

Das Reaktionsmedium (Elektrolyt) ist vorzugsweise ein Gemisch aus Cyanwasserstoff und Wasser.The reaction medium (electrolyte) is preferably a mixture of hydrogen cyanide and water.

Der Gehalt an Cyanwasserstoff im Elektrolyten kann zwischen 100 und 0,001 Gew.% liegen. Vorzugsweise dient als Elektrolyt ein Gemisch aus 99,9 bis 95 Gew.% Wasser und 0,1 bis 5 Gew.%, Cyanwasserstoff, bezogen auf Elektrolyt.The hydrogen cyanide content in the electrolyte can be between 100 and 0.001% by weight. A mixture of 99.9 to 95% by weight of water and 0.1 to 5% by weight of hydrogen cyanide, based on the electrolyte, is preferably used as the electrolyte.

Zur Verbesserung der Leitfähigkeit und zur Dotierung der Eisen-II-cyanoverbindungen (11) werden dem Elektrolyten vorteilhafterweise Leitsalze zugegeben. Als Leitsalze kommen die des Standes der Technik in Betracht, die in den genannten Elektrolyten mindestens in der erforderlichen Konzentration löslich sind.In order to improve the conductivity and to dope the iron (II) cyano compounds (11), conductive salts are advantageously added to the electrolyte. As the conductive salts, there are those of the prior art which are soluble in at least the required concentration in the electrolytes mentioned.

Die Menge der Leitsalze beträgt in der Regel 0,1 bis 10 Gew.%, bezogen auf Elektrolyt. Als Leitsalze kommen z. B. in Betracht : Salze der Alkalimentalle, der Erdalkalimetalle, der Erdmetalle und der seltenen Erden, wie Salze des Lithiums, Natriums, Kaliums, Rubidiums, Magnesiums, Calciums, Strontiums, Aluminiums, Cers, außerdem Salze von Metallen der Eisengruppe und AmmoniumThe amount of the conductive salts is generally 0.1 to 10% by weight, based on the electrolyte. As conductive salts come z. B. into consideration: salts of alkali metals, alkaline earth metals, earth metals and rare earths, such as salts of lithium, sodium, potassium, rubidium, magnesium, calcium, strontium, aluminum, cerium, as well as salts of metals of the iron group and ammonium

Geeignete Anionen sind z. B. Chlorid, Sulfat, Hydrogensulfat, Mono- und Dihydrogenphosphat, Hydrogensulfit, Cyanid, die Hexacyanoferrate, Hydrogenoxalat, Oxalat, Maleat und Fumarat.Suitable anions are e.g. B. chloride, sulfate, hydrogen sulfate, mono- and dihydrogen phosphate, hydrogen sulfite, cyanide, the hexacyanoferrates, hydrogen oxalate, oxalate, maleate and fumarate.

Als Leitsalze sind Ammonium- und Kaliumsalze bevorzugt. Besonders bevorzugt sind Ammoniumchlorid, Ammoniumhydrogenoxalat, Kaliumchlorid, Kaliumhydrogensulfat, Kaliumhydrogensulfit und Kaliumhydrogenoxalat als Leitsalze, da in Gegenwart dieser Leitsalze Eisen-II-cyanokomplexe (11) erhalten werden, die bei der Oxidation zu (I) besonders farbstarke Pigmentformen liefern, die rotstichige Blaufärbungen mit hohem Glanz geben.Ammonium and potassium salts are preferred as conductive salts. Ammonium chloride, ammonium hydrogen oxalate, potassium chloride, potassium hydrogen sulfate, potassium hydrogen sulfite and potassium hydrogen oxalate are particularly preferred as conductive salts, since iron-II-cyano complexes (11) are obtained in the presence of these conductive salts, which give oxidation forms to (I) which are particularly strongly colored pigment forms which have a reddish blue color give high gloss.

Die elektrochemische Umsetzung, bei der Eisen anodisch oxidiert und an der Kathode Wasserstoff abgeschieden wird, kann bei Temperaturen von -20°C bis 150 °C gegebenenfalls unter Druck durchgeführt werden. Vorzugsweise erfolgt die Umsetzung drucklos bei Temperaturen von - 5 bis + 20°C. Arbeitet man bei Temperaturen > 20°C, muß die Umsetzung wegen des niedrigen Siedepunktes des Cyanwasserstoffs unter Druck durchgeführt werden.The electrochemical reaction, in which iron is anodically oxidized and hydrogen is deposited on the cathode, can be carried out at temperatures of from -20 ° C. to 150 ° C., if appropriate under pressure. The reaction is preferably carried out without pressure at temperatures from -5 to + 20 ° C. If you work at temperatures> 20 ° C, the reaction must be carried out under pressure because of the low boiling point of the hydrogen cyanide.

Da die Leitfähigkeit des Elektrolyten von der Temperatur abhängig ist und die Leitfähigkeit mit der Temperatur zunimmt, wird man die Elektrolyse bei Normaldruck, insbesondere bei Temperaturen von 10 bis 20 °C durchführen.Since the conductivity of the electrolyte depends on the temperature and the conductivity increases with the temperature, the electrolysis will be carried out at normal pressure, in particular at temperatures from 10 to 20 ° C.

Bei der Elektrolyse im pH-Bereich ≤ 7 soll ein Anodenpotential von ≤ + 0,76 V (gemessen gegen die Wasserstoffnormalelektrode) eingehalten werden. Bei höherem Anodenpotential erfolgt die Bildung von Dicyan und Cyanat, wodurch die Ausbeute vermindert wird.For electrolysis in the pH range ≤ 7, an anode potential of ≤ + 0.76 V (measured against the normal hydrogen electrode) should be maintained. At higher anode potential, dicyan and cyanate are formed, which reduces the yield.

Die Elektrolyse erfolgt vorzugsweise im pH-Bereich von 1 bis 6, insbesondere im pH-Bereich von 2 bis 5.The electrolysis is preferably carried out in the pH range from 1 to 6, in particular in the pH range from 2 to 5.

Die Stromdichte beträgt in der Regel 30 bis 5000 A/m2. Vorteilhafterweise arbeitet man bei Stromdichten von 200 bis 2 000 A/m2 um Stromausbeuten von etwa 95 % und darüber zu gewährleisten. Bei Stromdichten > 2 000 A/m2 muß man für einen sehr guten Stoffaustausch sorgen, damit in der Anodengrenzschicht keine Verarmung an Cyanidionen und dadurch ein Abfall der Stromausbeute eintritt. Stromdichten von < 30 A/m2 erfordern eine höhere Konzentration von Cyanwasserstoff, um die Komplexierung des anodisch oxidierten Eisens zu gewährleisten.The current density is generally 30 to 5000 A / m 2. It is advantageous to work at current densities of 200 to 2,000 A / m 2 in order to ensure current yields of approximately 95% and above. At current densities> 2,000 A / m 2 , a very good mass transfer must be ensured so that there is no depletion of cyanide ions in the anode boundary layer and therefore a drop in the current efficiency. Current densities of <30 A / m 2 require a higher concentration of hydrogen cyanide in order to ensure the complexation of the anodized iron.

Als Anoden, an denen die Umsetzung zu (11) erfolgt, kommen Wirbelbett- oder Schüttbettanoden, die z. B. aus Eisenstücken, Eisengranulat oder Eisenspäne auf einer elektrisch leitenden Unterlage oder kompakte Eisenanoden in Form von Stangen, Blöcken oder Blechen oder auch Eisenoxidanoden in Betracht. Bei Wirbelbett- und Schüttbettanoden wird das Anodenmaterial (Eisen) durch Diaphragmen oder anodisch beständige Siebe oder Netze aus Metall oder Kunststoff vom Kathodenraum getrennt. Die elektrische Kontaktierung von Schüttbett- und Wirbelbettanoden mit der Stromquelle kann bei der Verwendung von Metallsieben über das Sieb oder über in die Schüttung eingeführte, anodische beständige Metall- oder Kohlestäbe erfolgen.As anodes on which the conversion to (11) takes place, come fluidized bed or fluidized bed anodes, which, for. B. from pieces of iron, iron granules or iron filings on an electrically conductive base or compact iron anodes in the form of rods, blocks or sheets or iron oxide anodes. In the case of fluidized bed and fluidized bed anodes, the anode material (iron) is separated from the cathode compartment by diaphragms or anodically resistant screens or nets made of metal or plastic. The electrical contacting of fluidized bed and fluidized bed anodes with the power source can take place when using metal sieves via the sieve or via anodic, stable metal or carbon rods inserted into the filling.

Bei Verwendung von kompakten Eisenanoden ist est zweckmäßig, wenn der Abstand Anode - Kathode nachgestellt werden kann, andernfalls muß mit zunehmenden Verbrauch der Anode (durch die Bildung von (II)) die Zellspannung erhöht werden, um den Anodenstrom konstant zu halten. Diese Regulierung kann in Abhängigkeit von der Zellenspannung automatisch oder durch Hand erfolgen.When using compact iron anodes it is advisable if the distance between anode and cathode can be adjusted, otherwise the cell voltage has to be increased with increasing consumption of the anode (through the formation of (II)) in order to keep the anode current constant. This regulation can take place automatically or by hand, depending on the cell voltage.

Als Kathodenmaterial kommen vor allem Eisen, Edelstähle oder andere leitende Materialien mit geringer Wasserstoffüberspannung in Betracht. Vorteilhafterweise ist die Kathode zur Herabsetzung der Wasserstoffüberspannung auf der Oberfläche z. B. mit Nickel-Aluminium-Zink-Legierungen, mit Nickel, Kobalt, Molybdän, Molybdän-Eisenlegierungen, mit Wolfram, mit Wolfram-Eisen-Nickel-Legierungen oder Eisen-Kobalt-Legierungen (Eisengehalt jeweils 65 bis 95 Gew.% ; DE-OS 30 03 819 (P 30 03 819.8)) mit Vanadium, Vanadiumlegierungen oder Sulfiden des Molybdäns, Wolframs, Nickels oder Kobalts beschichtet.Above all, iron, stainless steels or other conductive materials with low hydrogen overvoltage come into consideration as cathode material. Advantageously, the cathode to reduce the hydrogen overvoltage on the surface, for. B. with nickel-aluminum-zinc alloys, with nickel, cobalt, molybdenum, molybdenum-iron alloys, with tungsten, with tungsten-iron-nickel alloys or iron-cobalt alloys (iron content 65 to 95 wt.%; DE -OS 30 03 819 (P 30 03 819.8)) coated with vanadium, vanadium alloys or sulfides of molybdenum, tungsten, nickel or cobalt.

Als Elektrolysenzellen kommen vorzugsweise Zellen mit Kompakteisenanoden in Form von Stäben oder Platten in Betracht. Der Abstand zwischen Anode und Kathode beträgt vorzugsweise 2 bis 10, insbesondere 3 bis 6 mm.The electrolysis cells are preferably cells with compact iron anodes in the form of rods or plates. The distance between the anode and cathode is preferably 2 to 10, in particular 3 to 6 mm.

Das Verfahrensprodukt (11) kann durch Filtrieren, Zentrifugieren oder Dekantieren von Elektrolyten abgetrennt und isoliert werden. Im Falle der Abtrennung durch Filtrieren gibt man dem Reaktionsgemisch vorteilhafterweise vorher Filterhilfsmittel zu, wodurch die Filtrationszeit erheblich verkürzt werden kann. Das Filtrat kann nach Ergänzung der fehlenden Bestandteile wieder als Elektrolyt verwendet werden.Process product (11) can be separated and isolated by filtering, centrifuging or decanting electrolytes. In the case of separation by filtration, the reaction mixture is added Advantageously, filter aids beforehand, whereby the filtration time can be shortened considerably. After the missing components have been added, the filtrate can be used again as an electrolyte.

Die Oxidation der komplexen Eisen-II-cyanoverbindung (II) erfolgt in an sich bekannter Weise, z. B. in wäßriger Suspension bei pH < 6 mit Chlorat, Chlor oder Wasserstoffperoxid.The oxidation of the complex iron (II) cyano compound (II) is carried out in a manner known per se, e.g. B. in aqueous suspension at pH <6 with chlorate, chlorine or hydrogen peroxide.

Vorzugsweise erfolgt die Oxidation des nach dem erfindungsgemäßen Verfahren erhaltenen Weißteigs II in schwefelsaurer wäßriger Suspension bei pH 0 bis 3 und Temperaturen zwischen 70 und 95 °C mit Luft oder Sauerstoff. Unter diesen Bedingungen erhält man sehr farbstarke, kornweiche und rotstichige Pigmente I, die sehr leicht dispergierbar sind und sehr brillante Färbungen liefern.The white dough II obtained by the process according to the invention is preferably oxidized in aqueous sulfuric acid suspension at pH 0 to 3 and at temperatures between 70 and 95 ° C. with air or oxygen. Under these conditions, very strong, grain-soft and reddish pigments I are obtained which are very easily dispersible and give very brilliant colorations.

Vorzugsweise erfolgt die Oxidation bei Temperaturen zwischen 75 und 85 °C. Hierzu wird die Luft bzw. der Sauerstoff in die Suspension eingerührt und fein verteilt oder über eine Strahldüse eingedüst. Die Oxidation kann auch in einer Säule erfolgen, in die unten Luft oder Sauerstoff in feiner Verteilung eingedüst werden. Vorteilhafterweise wird während der Oxidation von II zu das Redoxpotential der Suspension kontrolliert, um eine Überoxidation zu vermeiden. Die Oxidation kann als beendet angesehen werden, wenn 95 bis 99 % der Eisen-II-cyanoverbindung I oxidiert sind.The oxidation is preferably carried out at temperatures between 75 and 85 ° C. For this purpose, the air or oxygen is stirred into the suspension and finely distributed or injected via a jet nozzle. The oxidation can also take place in a column into which air or oxygen is injected in a fine distribution below. The redox potential of the suspension is advantageously checked during the oxidation of II to avoid overoxidation. The oxidation can be regarded as complete when 95 to 99% of the iron (II) cyano compound I have been oxidized.

Bei der technischen Durchführung des Verfahrens kann man auf die Abtrennung des Eisen-II-komplexes auch verzichten und die Oxidation des Eisen-II-komplexes direkt im Elektrolyten durchführen und dann (I) in üblicher Weise isolieren.When carrying out the process industrially, it is also possible to dispense with the separation of the iron-II complex and to carry out the oxidation of the iron-II complex directly in the electrolyte and then isolate (I) in the customary manner.

Im Falle der Oxidation mit Luftsauerstoff oder Wasserstoffperoxid, kann das Filtrat von (I) nach Ergänzung der fehlenden Bestandteile als Elektrolyt wieder verwendet werden.In the case of oxidation with atmospheric oxygen or hydrogen peroxide, the filtrate from (I) can be reused as an electrolyte after the missing components have been added.

Sehr feinteilige Pigmente I, die in Wasser gut dispergierbar sind, erhält man durch Oxidation von II mit Luft oder Sauerstoff bei pH > 8 und Temperaturen von 20 bis 50 °C. Die Oxidation kann durch Messen des Redoxpotentials verfolgt werden. Nach Beendigung der Oxidation wird das Reaktionsgemisch angesäuert und das Pigment isoliert. Zur Verbesserung der Dispergierbarkeit in Wasser werden dem Reaktionsgemisch geringe Menge (d. h. 0,01 bis 0,2 Gew.%, bezogen auf (I) an Polyolen, wie Diethylenglykol, Triethylenglykol oder Glycerin zugegeben.Very fine-particle pigments I, which are well dispersible in water, are obtained by oxidation of II with air or oxygen at pH> 8 and temperatures of 20 to 50 ° C. The oxidation can be followed by measuring the redox potential. After the oxidation has ended, the reaction mixture is acidified and the pigment is isolated. To improve dispersibility in water, a small amount (i.e. 0.01 to 0.2% by weight, based on (I)) of polyols, such as diethylene glycol, triethylene glycol or glycerol, is added to the reaction mixture.

Der Eisen-II-komplex (II) kann sowohl im sauren wie auch im alkalischen Bereich anodisch oxidiert werden.The iron-II complex (II) can be anodically oxidized both in the acidic and in the alkaline range.

Die Erfindung soll durch die folgenden Beispiele weiter erläutert werden. Die Prozentangaben beziehen sich auf das Gewicht. Die angegebenen Potentiale wurden gegen die Wasserstoffnormalelektrode gemessen.The invention is illustrated by the following examples. The percentages relate to the weight. The specified potentials were measured against the hydrogen standard electrode.

Beispiel 1example 1

In eine Rohrzelle, deren Wand aus Edelstahl die Kathode ist und die zentrisch eine runde stabförmige Kompakteisenandode enthält (Abstand Anode-Kathode : ca. 4 mm ; Länge der Zelle : 600 mm) wird als Elektrolyt eine Lösung aus 97 % Wasser, 2 % Cyanwasserstoff und 1 % Kaliumhydrogensulfateingefüllt. Bei einer Stromdichte von 1 000 A/m2, Zellspannung ≈ 2,5 V, einer Strömungsgeschwindigkeit des Elektrolyten von 1,2 m/sec und einem Anodenpotential von - 0,2 V (gemessen gegen die Wasserstoftnormalelektrode) wird so lange elektrolysiert, bis die Cyanwasserstoffkonzentration im Elektrolyten 0,05 % beträgt. Die erhaltene Weißteigsuspension wird anschließend mit Schwedelsäure auf pH 1,5 gestellt und durch Begasen mut Luftsauerstoff bei 88 °C oxidiert (Dauer: ca. 3 h). Das bei der Oxidation gebildete MeFe[Fe(CN)6] (Berliner Blau) wird abfiltriert und mit Wasser neutral gewaschen. Der Filterkuchen wird anschließend bei 120°C getrocknet. Die Ausbeute beträgt ≈ 97 % Pigment, bezogen auf eingesetzten Cyanwasserstoff.In a tubular cell, the stainless steel wall of which is the cathode and which contains a round, rod-shaped compact iron anode (distance anode-cathode: approx. 4 mm; length of the cell: 600 mm), the electrolyte is a solution of 97% water, 2% hydrogen cyanide and 1% potassium hydrogen sulfate. At a current density of 1 000 A / m 2 , cell voltage ≈ 2.5 V, a flow rate of the electrolyte of 1.2 m / sec and an anode potential of - 0.2 V (measured against the normal hydrogen electrode), electrolysis is carried out until the hydrogen cyanide concentration in the electrolyte is 0.05%. The white dough suspension obtained is then adjusted to pH 1.5 with Swedish acid and oxidized by gassing with atmospheric oxygen at 88 ° C. (duration: approx. 3 h). The MeFe [Fe (CN) 6] (Berlin blue) formed during the oxidation is filtered off and washed neutral with water. The filter cake is then dried at 120 ° C. The yield is ≈ 97% pigment, based on the hydrogen cyanide used.

Das Pigment gibt im Lack reinere, rötere und im Glanz verbesserte Färbungen als Produkte, die nach dem Verfahren des Standes der Technick aus Eisen-II-Salz und Natrium- oder Kaliumcyanoferrat-II erhalten werden.The pigment gives purer, redder and glossier colorations in the lacquer than products which are obtained by the process of the prior art from iron (II) salt and sodium or potassium cyanoferrate (II).

Beispiel 2Example 2

In der in Beispiel 1 angegebenen Elektrolysezelle wird als Elektrolyt eine Lösung aus 93 % Wasser, 5 % Cyanwasserstoff und 2% Kaliumchlorid eingefüllt. Bei einer Stromdichte von 1 500 A/m2, einer Zellspannung von 2,0 V, einer Strömungsgeschwindigkeit von 1,5 m/sec und einem Anodenpotential von = - 0,2 V (gemessen gegen die Wasserstoffnormalelektrode) wird so lange elektrolysiert, bis die Cyanwasserstoffkonzentration im Elektrolyten 0,04 % beträgt. Der erhaltenen Weißteigsuspension werden dann je Liter Suspension 5 mg Fe++ in Form von FeS04 zugegeben und der pH-Wert mit Schwefelsäure auf 1,0 gestellt. Die Oxidation zum Pigment und die Aufarbeitung werden wie in Beispiel 1 durchgeführt.In the electrolysis cell specified in Example 1, a solution of 93% water, 5% hydrogen cyanide and 2% potassium chloride is introduced as the electrolyte. With a current density of 1,500 A / m 2 , a cell voltage of 2.0 V, a flow rate of 1.5 m / sec and an anode potential of = - 0.2 V (measured against the hydrogen normal electrode), electrolysis is carried out until the hydrogen cyanide concentration in the electrolyte is 0.04%. The white dough suspension obtained is then added 5 mg of Fe ++ in the form of FeSO 4 per liter of suspension and the pH is adjusted to 1.0 using sulfuric acid. The oxidation to the pigment and the work-up are carried out as in Example 1.

Man erhält ein sehr kornweiches Pigment, das im Vergleich zu den Pigmenten des Standes der Technik im Lack und in der Druckfarbe reinere und rötere sowie im Glanz überlegene Färbungen gibt. Die Färbungen sind ca. 19% stärker als Färbungen, die mit den farbstärksten im Handel befindlichen entsprechenden Pigmenten erhalten wurden.A very granular pigment is obtained which, in comparison with the pigments of the prior art in the lacquer and in the printing ink, gives purer and redder colorations which are superior in gloss. The colorings are approx. 19% stronger than those obtained with the strongest colored corresponding pigments on the market.

Beispiel 3Example 3

In der in Beispiel 1 angegebenen Elektrolysezelle wird als Elektrolyt eine Lösung aus 88 % Methanol, 1,5 % Wasser, 10 % Cyanwasserstoff und 0,5 % Kaliumchlorid eingefüllt. Bei einer Stromdichte von 1 200 A/m2, einer Zellspannung von 4,8 V, einer Strömungsgeschwindigkeit von 1,8 m/sec und einem Anodenpotential von ≈ - 0,2 V (gemessen gegen die Wasserstoffnormalelektrode) wird so lange elektrolysiert, bis die Cyanwasserstoffkonzentration im Elektrolyten 0,02% beträgt. Diese Suspension wird auf einer Nutsche unter Stickstoff abgetrennt und der isolierte Weißteig in soviel Wasser eingetragen, daß eine 8 %ige Suspension entsteht. Die wäßrige Suspension wird mit verdünnter Schwefelsäure auf pH 1,0 eingestellt und nach Zugabe von 0,15% Kaliumchlorat (bezogen auf die Suspension) 1 Stunde bei 80 °C oxidiert. Das bei der Oxidation anfallende MeFe[Fe(CN)6]-Pigment (Berliner Blau) wird wie in Beispiel 1 aufgearbeitet.In the electrolysis cell specified in Example 1, a solution of 88% methanol, 1.5% water, 10% hydrogen cyanide and 0.5% potassium chloride. At a current density of 1 200 A / m 2 , a cell voltage of 4.8 V, a flow rate of 1.8 m / sec and an anode potential of ≈ - 0.2 V (measured against the hydrogen normal electrode), electrolysis is carried out until the hydrogen cyanide concentration in the electrolyte is 0.02%. This suspension is separated off on a suction filter under nitrogen and the isolated white dough is introduced into so much water that an 8% suspension is formed. The aqueous suspension is adjusted to pH 1.0 with dilute sulfuric acid and, after addition of 0.15% potassium chlorate (based on the suspension), oxidized at 80 ° C. for 1 hour. The MeFe [Fe (CN) 6] pigment (Berlin blue) resulting from the oxidation is worked up as in Example 1.

Beispiel 4Example 4

Es wird wie in Beispiel 2 elektrolysiert, jedoch wird die erhaltene Suspension unter Stickstoff filtriert und das Filtergut in soviel Wasser eingetragen, daß eine 5 %ige Suspension entsteht. Die Suspension wird mit wäßriger 25 %iger Kalilauge auf pH 12 gestellt und mit Luftsauerstoff bei 30 °C oxidiert (Dauer etwa 1 h). Nach der Oxidation wird die Suspension mit verd. Schwefelsäure auf pH 1 angesäuert und das Berliner Blau wie in Beispiel 1 aufgearbeit. Man erhält ein feinteiliges Pigment, das in Wasser nach dem Zugeben von wenig Triethylenglykol sehr leicht dispergiert werden kann.It is electrolyzed as in Example 2, but the suspension obtained is filtered under nitrogen and the filter material is introduced into sufficient water to form a 5% suspension. The suspension is adjusted to pH 12 with aqueous 25% potassium hydroxide solution and oxidized with atmospheric oxygen at 30 ° C. (duration about 1 h). After the oxidation, the suspension is acidified to pH 1 with dilute sulfuric acid and the Berlin blue is worked up as in Example 1. A finely divided pigment is obtained which can be very easily dispersed in water after the addition of a little triethylene glycol.

Beispiel 5Example 5

Es wird wie in Beispiel 1 verfahren, jedoch werden als Elektrolyt die folgenden Lösungen verwendet :

  • 5.1 93 % Wasser, 5 % Cyanwasserstoff, 2 % MgCI2
  • 5.2 93 % Wasser, 5 % Cyanwasserstoff, 2 % CaC12
  • 5.3 93 % Wasser, 5 % Cyanwasserstoff, 2 % Al(H2O)6Cl3
  • 5.4 93 % Wasser, 5 % Cyanwasserstoff, 2 % Ce2(SO4)3
  • 5.5 91 % Wasser, 5 % Cyanwasserstoff, 2 % NiS04 + 2 % KHS04
The procedure is as in Example 1, but the following solutions are used as the electrolyte:
  • 5.1 93% water, 5% hydrogen cyanide, 2% MgCl 2
  • 5.2 93% water, 5% hydrogen cyanide, 2% CaC1 2
  • 5.3 93% water, 5% hydrogen cyanide, 2% Al (H 2 O) 6 Cl 3
  • 5.4 93% water, 5% hydrogen cyanide, 2% Ce 2 (SO 4 ) 3
  • 5.5 91% water, 5% hydrogen cyanide, 2% NiS0 4 + 2% KHS0 4

Die Elektrolyse wird bei einem Cyanwasserstoffgehalt von 0,05 % abgebrochen. Die Suspensionen werden bei pH 1,5 und 80 °C durch Eingasen von Luft oxidiert (Dauer: ca. 3 h). Nach dem Abtrennen, Waschen und Trocknen erhält man Pigmente, die im Lack gut deckende Färbungen geben. Je nach dem verwendeten Erdalkali- oder Erdmetall erhält man Pigmente, die mehr oder weniger grünstichigere Blaufärbungen liefern.

Figure imgb0003
The electrolysis is stopped at a hydrogen cyanide content of 0.05%. The suspensions are oxidized at pH 1.5 and 80 ° C by gassing air (duration: approx. 3 h). After separation, washing and drying, pigments are obtained which give the paint good coverage. Depending on the alkaline earth or earth metal used, pigments are obtained which provide more or less greenish blue tints.
Figure imgb0003

Claims (11)

1. A process for the preparation of blue iron hexacyanoferrate-III pigments by oxidizing complex iron-II hexacyanoferrate-II compounds of the formula Me2Fe[Fe(CN)6], wherein the complex iron-II hexacyanoferrate-II compound is preparad by anodic oxidation of metallic iron in hydrogen cyanide as the reaction medium or in a reaction medium containing hydrogen cyanide, at pH < 7 and at an anode potential of ≤ 0.76 V, measured against the standard hydrogen electrode.
2. A process as claimed in claim 1, wherein a mixture of hydrogen cyanide and water or of hydrogen cyanide and C1-C4-alkanols and/or C1-C4-alkanediols is used as the reaction medium.
3. A process as claimed in claim 1 or 2, wherein the anodic oxidation of the iron is carried out at a pH of from 2 to 5.
4. A process as claimed in claim 1, 2 or 3, wherein the reaction medium contains one or more conductive salts.
5. A process as claimed in claim 4, wherein the conductive salts used are potassium or ammonium salts or mixtures thereof.
6. A process as claimed in claim 1, 2, 3, 4 or 5, wherein the anodic oxidation of the iron is carried out at from - 20 to 100 °C at atmospheric or superatmospheric pressure.
7. A process as claimed in claims 1 to 5, wherein the anodic oxidation is carried out at from - 5 to 25 °C.
8. A process as claimed in claims 1 to 7, wherein the complex iron-II hexacyanoferrate-II compound is oxidized to MeFe[Fe(CN)6] at pH > 8.
9. A process as claimed in claim 8, wherein the oxidation is carried out with air or oxygen.
10. A process as claimed in claims 1 to 7, wherein the oxidation of the complex iron-II hexacyanoferrate-II compound is carried out with air or oxygen at from 70 to 95 °C and a pH of from 0 to 4.
11. A process as claimed in claim 8, 9 or 10, wherein the oxidation is carried out in the presence of potassium and/or ammonium ions.
EP82102445A 1981-04-04 1982-03-24 Method of preparing blue iron-hexacyanoferrate-iii pigments Expired EP0064154B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813113777 DE3113777A1 (en) 1981-04-04 1981-04-04 METHOD FOR PRODUCING FE (DOWN ARROW) 4 (DOWN ARROW) (FE (CN) (DOWN ARROW) 6 (DOWN ARROW)) (DOWN ARROW) 3 (DOWN ARROW) PIGMENTS, AND THE PIGMENTS OBTAINED AFTER THE PROCESS
DE3113777 1981-04-04

Publications (2)

Publication Number Publication Date
EP0064154A1 EP0064154A1 (en) 1982-11-10
EP0064154B1 true EP0064154B1 (en) 1984-11-28

Family

ID=6129436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102445A Expired EP0064154B1 (en) 1981-04-04 1982-03-24 Method of preparing blue iron-hexacyanoferrate-iii pigments

Country Status (4)

Country Link
US (1) US4451339A (en)
EP (1) EP0064154B1 (en)
JP (1) JPS57179018A (en)
DE (2) DE3113777A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858288A (en) * 1981-10-02 1983-04-06 Seiko Instr & Electronics Ltd Synthesizing method for iron hexacyanoferrate
JPS6077991A (en) * 1983-10-06 1985-05-02 Nissan Motor Co Ltd Method for electrodepositing complex iron cobalt cyanide
DE3672473D1 (en) * 1985-12-23 1990-08-09 Hoffmann La Roche METHOD FOR PRODUCING ION SELECTIVE ELECTRODES FOR EXAMINING SPECIFIC IONS IN SOLUTION.
EP0231476A1 (en) * 1985-12-23 1987-08-12 Siddiqi, Iqbal W., Dr. Selectively ion-permeable electrodes for analyzing selected ions in aqueous solution
US20030165413A1 (en) * 2001-07-18 2003-09-04 Benjamin Scharifker Process to recover vanadium contained in acid solutions
US20030029728A1 (en) * 2001-07-18 2003-02-13 Benjamin Scharifker Process to separate the vanadium contained in inorganic acid solutions
US7498007B2 (en) * 2002-07-18 2009-03-03 Benjamin Scharifker Process to recover vanadium contained in acid solutions
EP1873117B1 (en) * 2005-02-17 2018-05-30 National Institute of Advanced Industrial Science and Technology Methods for producing ultrafine particle of prussian blue-type metal complex and of a dispersion liquid thereof
JP5753337B2 (en) * 2008-09-30 2015-07-22 グンゼ株式会社 Method for producing finely divided potassium ferricyanide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273798A (en) * 1939-10-31 1942-02-17 Nat Carbon Co Inc Electrolytic process
US2353781A (en) * 1942-05-02 1944-07-18 Gen Chemical Corp Electrolytic preparation of alkali metal ferricyanides
US4032415A (en) * 1974-08-16 1977-06-28 The Mead Corporation Method for promoting reduction oxidation of electrolytically produced gas
SU697606A1 (en) * 1976-09-14 1979-11-15 Plotnikov Nikolaj Method of producing berlin white

Also Published As

Publication number Publication date
EP0064154A1 (en) 1982-11-10
JPS57179018A (en) 1982-11-04
US4451339A (en) 1984-05-29
DE3261338D1 (en) 1985-01-10
DE3113777A1 (en) 1982-10-28

Similar Documents

Publication Publication Date Title
EP0012215B1 (en) 2-Hydroxybutanesulfonic acid choline and its use as conducting salt
DE10030093C1 (en) Method and device for producing metal hydroxides or basic metal carbonates
EP0064154B1 (en) Method of preparing blue iron-hexacyanoferrate-iii pigments
EP0433748B1 (en) Process for the preparation of chromic acid
DE3110320A1 (en) ANODE SUPPORTED CATION REDUCTION
DE2713236C3 (en)
DE3206663A1 (en) METHOD FOR PRODUCING BLUE IRON HEXACYANOFERRATE III PIGMENTS
DE710962C (en) Process for the production of ammonia and pure chlorine by electrolysis of aqueous chlorammonium solutions
DE2331296C3 (en) Process for the production of hydrogen peroxide
DE194038C (en)
CH682661A5 (en) A process for the reduction of aromatic nitro compounds with the aid of trivalent titanium compounds.
DE937048C (en) Process for the production of acetylenecarboxylic acids
EP0040331B1 (en) Method of preparing diacetoketogulonic acid
EP0356806B1 (en) Process for the production of chromic acid
EP0356803A2 (en) Process for the preparation of an electrolyte for obtaining alkali metal bichromates and chromic acid
DE1695344A1 (en) Process for the preparation of purine derivatives
EP0031905B1 (en) Process for producing mono-(trichloro)-tetra-(monopotasso-dichloro)-penta-isocyanurate
DE102021103580A1 (en) Process for preparing formamidine acetate
DE2332319A1 (en) CONTINUOUS PROCESS FOR THE MANUFACTURING OF INNY MIXED METAL OXYDES
DE744458C (en) Manufacture of copper oxide pigments
DE102009001168A1 (en) Preparation of hypophosphite, useful in electroless metal deposition, comprises electrolysis of a mixture of white phosphorus, water, cosolvent and optionally conducting salt by excluding oxygen at specific pH and current density
DE2063904C3 (en) Dry cell with a depolarizer containing manganese dioxide
DE1265152B (en) Process for the electrolytic precipitation of one or more metal oxides
DE2837774A1 (en) METHOD OF OPERATING AN ELECTROLYTIC CELL
DE2063906A1 (en) Manganese dioxide dry cell depolariser - having diffraction lines of high intensity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT

17P Request for examination filed

Effective date: 19821013

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3261338

Country of ref document: DE

Date of ref document: 19850110

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870331

Ref country code: CH

Effective date: 19870331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19871130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121