EP0063240B1 - Rotationskolbenmaschine - Google Patents

Rotationskolbenmaschine Download PDF

Info

Publication number
EP0063240B1
EP0063240B1 EP82102196A EP82102196A EP0063240B1 EP 0063240 B1 EP0063240 B1 EP 0063240B1 EP 82102196 A EP82102196 A EP 82102196A EP 82102196 A EP82102196 A EP 82102196A EP 0063240 B1 EP0063240 B1 EP 0063240B1
Authority
EP
European Patent Office
Prior art keywords
piston
rotor
hollow shaft
per
rotary piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102196A
Other languages
English (en)
French (fr)
Other versions
EP0063240A3 (en
EP0063240A2 (de
Inventor
Felix Dr. H.C. Wankel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT82102196T priority Critical patent/ATE22160T1/de
Publication of EP0063240A2 publication Critical patent/EP0063240A2/de
Publication of EP0063240A3 publication Critical patent/EP0063240A3/de
Application granted granted Critical
Publication of EP0063240B1 publication Critical patent/EP0063240B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/088Elements in the toothed wheels or the carter for relieving the pressure of fluid imprisoned in the zones of engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/20Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms

Definitions

  • the invention relates to a rotary piston machine according to the preamble of claim 1.
  • Machines of this type are known for example from US Pat. Nos. 516 385, 1 751 843, 3 545 895 and 3 923 014.
  • the use of this known design principle for a modern machine comparatively very high rotational speeds lead to unsatisfactory power losses due to squeezing currents which occur when the piston passes through a gap in the shut-off rotor. So far, these squeezing currents have been accepted, such.
  • B. shows the widespread "Roots type, although it is known per se from GB-PS 448 951 to make the engagement space for a piston larger in the radial direction than is necessary for the engagement of the piston or a tooth.
  • DE-PS 296 588 shows another example of this.
  • this enlargement does not prevent squeezing currents, such as occur with surfaces that move quickly towards one another, since it only forms an escape area against compression of an incompressible medium in a closed space in order to prevent excessive loads on the shaft bearings of the rotor.
  • the object of the invention is to improve a rotary piston machine in accordance with the preamble of claim 1 in such a way that it has low losses due to squeezing currents and consequently an improved efficiency even at high rotational speeds. This object is achieved on the basis of the characterizing features of patent claim 1.
  • the relative movement of surfaces in the rotary piston machine also takes place away from each other, so that the recess can also have the function of preventing a reverse squeezing flow by preventing a substantial negative pressure on surfaces moving away from one another by means of sufficient downstream flow cross sections.
  • the losses caused by negative pressure are, however, much lower, since this can only reach a size of 1 bar at most.
  • two bodies 4 and 5 or 4 and 6, 6 ' are enclosed between two housing plates 2, 3 and are movable relative to one another such that, for example, one of the bodies 5, 6 is stationary, while the other slides towards this body between the housing plates 2, 3.
  • the bodies 4, 5 and 6 correspond to a piston rotor 4 and a counter-rotor 5, which can also be a rotor or a housing peripheral part.
  • FIGS. 1 and 2 correspond to the prior art, and they show by the two movement positions shown that the gas molecules 7 have to accelerate considerably when they move out of the space 8 between the two bodies 4 and 5, since they are squeezed out.
  • the end faces 9, 10 of the two bodies 4, 5 can move against one another until they come into contact.
  • the schematic representation of FIGS. 1 and 2 shows that the gas molecule 7 'or a corresponding amount of gas had to travel four times the distance W of the body 4 in the direction of the fixed body 5 and was thus accelerated considerably. A corresponding further acceleration results when the body 4 moves further against the body 5.
  • FIGS. 3 and 4 show an embodiment according to the invention in two corresponding movement positions, the difference of which also corresponds to the path length w.
  • the gas molecules only had to move laterally out of the space 8 'between the two bodies 4, 6 by the same path w, so that they were not accelerated and thus there was no squeezing flow.
  • a recess 11 FIG. 5
  • 11 ′ FIG. 6
  • the recess 11 extends in the direction of movement of the bodies 4, 6 against one another beyond the boundary line 14, which indicates the maximum mechanically possible movement of the bodies against one another.
  • this boundary line 14 corresponds to the line of engagement, so that the space between the end face 9 of the body 4 and this line of engagement corresponds to the chamber 15 of a rotary piston machine.
  • Figures 5 and 6 show in cross section different shapes of recesses 11, 11 '.
  • the recess has a deflection surface 16.
  • the recess can be shaped close to the edge of a rotary piston rotor that forms and seals the engagement line 14 or engagement surface, as will be explained in more detail below with reference to design exemplary embodiments.
  • the recess 11, 11 ' must have a certain size in order to prevent acceleration or substantial local acceleration when the gas is displaced.
  • the recess 11, 11 ' is preferably provided in combination with an outflow opening 12 which is sufficiently large to prevent flow acceleration due to narrowing of the cross section.
  • outflow opening can also be located in relation to one another in the direction of movement of the bodies 4, 6, 6 ', in which case it must then be able to be closed in accordance with the working cycle of the rotary piston machine (cf. FIGS. 7-10).
  • the rotary piston machine of the exemplary embodiment in FIGS. 7 to 10 is driven by a gas flow and accordingly has an inlet channel 18 and an outlet channel 19. A part of the outflowing gas is passed through the hollow shaft 6a 'of the piston rotor with the pistons 6a "via the openings 11c, 11c' dissipated.
  • FIG. 7 shows a rotary piston rotor and the shut-off rotor 4a at the beginning of the passage process when the piston 6a "is being passed through the engagement space of the shut-off rotor 4a, which is delimited by the engagement lines 14a and 14b.
  • a comparison between the rotational positions of FIGS. 7 and 8 shows that the peripheral surface 9b of the shut-off rotor 4a moves in the direction against the surface 10a of the piston 6a "and the cylindrical peripheral surface 10b of a cylindrical counter-body 6a.
  • an opening 11c is provided in the direction in which the space 15b becomes increasingly smaller in the counter body 6a, to which an opening provided in the hollow shaft 6a 'is provided Opening 11c 'connects.
  • the gas can then flow out after deflection in the direction of the hollow shaft, as shown in FIG. 13 using the example of a compressor.
  • the openings 11c, 11c 'in the direction of movement of the surface 9b thus correspond to a recess 11, 11' of the exemplary embodiment in FIGS. 5 and 6, and the outflow channel 12c in the hollow shaft of the side opening 12 in the side housing wall 2.
  • FIG. 9 shows the rotary piston machine of FIGS. 7 and 8 in a further rotational position during the passage process of the piston 6a "through the engagement space 15a of the shut-off rotor 4a, in which a considerable squeezing flow could also be present if a recess 11 according to the invention were not provided, which could be
  • This recess 11a is arranged adjacent to the engagement edge 21 of the shut-off rotor 4a and its distance from this engagement edge should be chosen to be as small as possible, taking into account the mechanical stresses.
  • the engagement edge 22 of the piston 6a at the end of its circumferential surface 9a, the rotor moves in the direction of the arrows 23, 24 along the line of engagement 14a delimiting the engagement space 15a.
  • the recess 11a is connected during the engagement process in both axial directions of the machine with a slot-shaped opening 12a in the housing side wall 2a, which enables an outflow into the outflow channel 19.
  • This lateral outflow can be designed as shown in FIG.
  • a cutout 11b is provided in the shut-off rotor 4a, which can be designed in the same way as the aforementioned recess 11a in a mirror-symmetrical arrangement.
  • This recess 11b adjoins the engagement edge ⁇ 20.
  • the recess 11b is also connected in the axial direction to an opening 12b which leads to the inlet channel 18.
  • the cutout 11b in combination with the connection opening 12b to the inlet duct 18 advantageously also starts the machine from the position shown, ie. H. without starting assistance, made possible by the gas pressure which acts on the shut-off rotor in the recess 11b and thus leads to a torque.
  • both runners are in drive connection with one another.
  • FIG. 10 shows a further measure to avoid a reverse squeezing flow or suction flow when the surface 9c of the shut-off rotor 4a moves away from the line of engagement 14c on the piston 6a ".
  • a recess 11e is also provided for this purpose, which allows gas to flow into the room 15c in the direction of arrow 25.
  • FIG. 11 shows an exemplary embodiment of a rotary piston machine in which the main flow of the machine runs through the hollow shaft 6b 'of the piston rotor.
  • this machine and, like the rotary piston machines described above, can be driven by the pressure of an inflowing medium or can convey and / or compress a medium by mechanical driving of the rotor. It is also possible to reverse the direction of flow.
  • the openings 11g, 11g 'in the fixed ring body 6b and the hollow shaft 6b' correspond to the openings 11c, 11c 'of the exemplary embodiment described with reference to FIGS. 7 and 8, but they are made wider in the circumferential direction.
  • this machine differs by the omission of the channel 19 opposite the inflow channel 18 (FIG. 7) and an annular channel 26 (FIG. 13) indicated by dashed lines in FIG. 11, which connects the lateral openings 12d, 12e to one another.
  • the two openings 11g and 11g overlap only during a certain angle of rotation of the piston rotor, so that they together form a controlled valve.
  • the resulting control of the gas flow has the advantage that when this machine is used as a compressor, the piston rotor does not have to continuously deliver against the full counter pressure.
  • shut-off rotor rotates at a higher speed than the piston rotor, namely in the illustrated embodiments in a ratio of 2: 1 corresponding to the ratio between the number of pistons on the piston rotor and the number of gaps on the shut-off rotor, results in a significantly smaller size for the same Throughput volume and less harmful rooms as will be explained in more detail below.
  • the arrangement of the fixed ring body on the circumference of the hollow shaft of the piston rotor according to the representations of FIGS. 7 to 11 has u. a. the advantage that the harmful space present through the opening 11g is particularly small, because this fixed ring body 6b can be made particularly thin-walled, since it is not exposed to any significant mechanical stresses. 13 and 15 show how the arrangement of a fixed ring body 6b around the hollow shaft is structurally possible.
  • the most important step by which the arrangement of the fixed ring body 6b could be realized is to fasten the pistons to a central hub part of the hollow shaft and to omit the otherwise usual face plates of the piston rotor, so that the fixed ring body 6b is divided into two parts can engage between the rotary piston 6a "and the hollow shaft 6b 'from two axial sides, as the axial sectional view in FIG. 15 shows.
  • the shut-off rotor 4a was not shown in order to simplify the illustration.
  • the rotary pistons 6a " of which two are provided diametrically opposite one another, for example in accordance with FIG. 11, are each fastened by two screws 27 to the hub part 28 of the hollow shaft 6b 'of the rotary piston rotor.
  • the screws 27 can also be designed as long screws 27a which run transversely to the other piston 6a ".
  • the hollow shaft 6b ' has a diametrical crossbar 29 through which the screws 27a extend.
  • FIG. 17 shows an exemplary embodiment of a rotary piston machine which is designed similarly to that of FIG. 13, but with the essential difference that the pistons 6a "'are connected in one piece to a relatively narrow hub part 28a of the hollow shaft 6b'.
  • the shaft 6b ' has an outer sleeve body 30, which extends from the circumference of the hub part 28a on both sides in the axial direction, and a neck part 31 at the outlet end of the hollow shaft 6b' for bearing against a stationary housing part 32.
  • the hub 28a and the neck part 31 are carried by a central shaft 33 of the hollow shaft 6b ', and enable openings 34 in the hub part 28a and connecting webs 35 between the central shaft 33 and the neck part 31.
  • the hollow shaft 6b ' according to the exemplary embodiment in FIG. 13 has to be made more solid for reasons of strength, since its hub part 28 is designed in a ring shape, i. H. has no support disc as in the embodiment of FIG. 17.
  • the hollow shaft 6b ' is provided with a base part 39 for the connection to a shaft journal 37 which serves for the mounting and fastening of a gear wheel 38.
  • the shaft neck 40 at the outlet-side end of the hollow shaft 6b ' is mounted on the fixed housing part 32a by means of a bearing 41 which, like in the exemplary embodiment according to FIG. 17, merges into the ring body 6b.
  • FIGS. 13 and 17 The remaining design of the machine housing, the mounting of the shut-off rotor and the drive connection between the piston rotor and the shut-off rotor is identical in both exemplary embodiments of FIGS. 13 and 17.
  • a housing circumferential part 42 which encloses both runners, is clamped between two housing side walls 43, 44 by means of screws 45 passing through.
  • the side walls 43, 44 are used for the lateral sealing of the rotor and the mounting of the shaft journals 37, 37 ', (31, 40) of the piston rotor and the shaft journals 46, 47 of the shut-off rotor.
  • they receive the ring channel 26 (FIG. 11), which connects the slot openings 12d and 12e with one another.
  • the transmission ratio due to the engagement of the gear wheels 38, 48 of both rotors is 1: 2, i. H. the stop valve must rotate twice as fast as the piston rotor.
  • the bearings on both sides of the rotor and the drive connection through the gear wheels 38, 48 are enclosed on the outside by housing shells 50, 51 which are clamped together with the housing side walls by means of the housing screws 45.
  • One of the housing shells 50 carries the outlet (inlet) connector 52, while the inflow (outflow) to the machine takes place tangentially via the channels 18 (FIGS. 11, 14).
  • 18a-18e show an embodiment of a z. B. as a charger for an internal combustion engine suitable rotary piston machine, in which the main flow is also guided through the hollow shaft of one of the rotors, which is designed as a piston rotor, while the other rotor rotates only as a shut-off rotor.
  • the control sleeve 6d which is fixed or can also be angularly adjusted for control purposes, is arranged within the hollow shaft 6d 'of the piston rotor.
  • Rotary piston machines with two rotors of which only one forms a piston rotor while the other is a shut-off rotor and in which the throughput also takes place through the hollow shaft of the piston rotor, are steam engines by US Pat. No. 516,385 and combustion engines by the US PS-3 923 014 known per se.
  • the speed ratio of both rotors is 1: 1 in these machines, and the shut-off rotor causes a relatively large dimension of the machine.
  • the cut-out in the shut-off valve is shaped exactly as it is required due to the movement of the piston as the generator.
  • the squeezing currents to be avoided according to the invention thus also occur in these machines.
  • the execution of such a machine for. B.
  • this throughflow opening 11h 'in the control sleeve must be closed by the hollow shaft in a position of the piston 58' which is substantially earlier in the direction of rotation, since the seal at point 60 'in the direction of arrow 59 when it continues to rotate is lifted and the harmful space 62 ', which is pressurized by points, between the front surface of the piston and the cutout of the shut-off rotor 4b' comes into connection with the suction side 61 'of the machine.
  • this space 62 opens when the runners continue to rotate into the cavity of the shut-off Runner 4b into it, which is composed of the recess 15e delimited by the line of engagement 14e and the escape space 11 which extends beyond the line of engagement.
  • the resulting intermediate relaxation into this space 15e, 11k results from the fact that the sealing edge 64 moves faster than the edge 65 of the opening 11 due to the faster rotational speed of the shut-off rotor compared to the piston rotor, in the direction of the engagement line 14h it produces h in the hollow shaft from the position shown in Fig. 18 a moved away from the sealing peripheral surface 9h of the gate valve.
  • a free surface 66 undercutting the piston 58 enables this intermediate relaxation after the edge 64 of the shut-off rotor has moved up to it. According to that.
  • the size ratio between the space 62 and the cavity 15e, 11k of the shut-off rotor relaxes the harmful gas volume that is sealed in this space 62, and since this intermediate relaxation takes place within the machine, it is not associated with any significant noise.
  • the slight overpressure created in the cavity 11e, 11k of the gate valve by this intermediate relaxation relaxes backwards into the pressure chamber 67 of the machine after the rear edge 68 of the piston 58 has left the edge 69 of the housing, as is the case when moving from the position 18b in the position of FIG. 18c.
  • the power loss due to a harmful volume is thus reduced to an insignificant extent by two measures, that is to say in that the harmful space 62 is reduced and the harmful gas volume reaches the suction side 61 of the machine under the pressure reduced by the intermediate relaxation.
  • This intermediate relaxation into the cavity of the shut-off rotor enlarged by the escape space 11 k has the further advantage that any squeezing currents that may still be present, for example when the peripheral surface 70 of the piston 58 moves against the sealing inner surface 71 of the shut-off rotor, with a correspondingly reduced pressure of the gas or Air.
  • a comparison of the shape of the piston of the piston rotor of the embodiment of FIG. 18 with that of the previously described embodiment z. B. corresponding to FIG. 11 shows that the pistons according to FIG. 18 are considerably narrower in the circumferential direction or to the rear. It is thereby achieved that the engagement surface in the shut-off rotor for the pistons can be made substantially smaller in the circumferential direction.
  • FIGS. 20 and 21 of a rotary piston machine in accordance with the embodiment of FIG. 18 illustrate the essential design simplification which results from the arrangement of the control sleeve 6d compared to the embodiments shown in FIGS. 13 and 17.
  • the control sleeve 6d is rotatably supported relative to the hollow shaft 6d 'by a bearing 72, so that it is possible to influence the control times or the performance of the machine.
  • the shafts 74, 75 of the shut-off rotor and the piston rotor are in drive connection via two toothed wheels 76, 77. Since the shut-off rotor is not exposed to any significant torques, this drive connection 76, 77 is advantageously subjected to very little load.
  • the design of the machine housing is comparable to the exemplary embodiments in FIGS. 13 and 17.
  • the exemplary embodiment in FIG. 21 differs from that 20 by the fact that the piston 58 engages between side end walls 79, 80 of the shut-off rotor 41.
  • This sectional view also shows an existing radial escape space 81 between the radially outer surface 82 of the piston 58 and the boundary surface 83 of the cut-out of the shut-off rotor 42 in the engagement position between the piston runner and the shut-off runner.
  • the partially visible cavity 84 of the shut-off runner serves to compensate for imbalances.
  • the shut-off rotor is supported via the shaft journal 74 'and the axle journal 85.

Description

  • Die Erfindung betrifft eine Rotationskolbenmaschine gemäss dem Oberbegriff des Patentanspruchs 1. Maschinen dieser Art sind beispielsweise bekannt durch die US-Patentschriften Nr. 516 385, 1 751 843, 3 545 895 und 3 923 014. Die Anwendung dieses bekannten Konstruktionsprinzips für eine moderne Maschine mit verhältnismässig sehr hohen Drehgeschwindigkeiten führt zu unbefriedigenden Leistungsverlusten infolge von Quetschströmungen, die beim Durchlauf des Kolbens durch eine Lücke im Absperrläufer auftreten. Bisher wurden diese Quetschströmungen in Kauf genommen, wie z. B. die weit verbreitete « Roots -Bauart zeigt, obwohl es durch die GB-PS 448 951 an sich bekannt ist, den Eingriffsraum für einen Kolben in radialer Richtung grösser auszuführen, als für den Eingriff des Kolbens bzw. eines Zahnes erforderlich ist. Die DE-PS 296 588 zeigt hierzu ein weiteres Beispiel. Diese Vergrösserung verhindert jedoch nicht Quetschströmungen, wie sie bei sich schnell aufeinander zu bewegenden Flächen auftreten, da sie nur einen Ausweichraum gegen Kompression eines inkompressiblen Mediums in einem abgeschlossenen Raum bildet, um übermässige Belastungen an den Wellenlagern der Läufer zu verhindern.
  • Der Erfinding liegt die Aufgabe zugrunde, eine Rotationskolbenmaschine gemäss dem Oberbegriff des Patentanspruchs 1 derart zu verbessern, dass sie auch bei hohen Drehgeschwindigkeiten geringe Verluste durch Quetschströmungen und folglich einen verbesserten Wirkungsgrad aufweist. Die Lösung dieser Aufgabe erfolgt aufgrund der kennzeichnenden Merkmale des Patentanspruchs 1.
  • Die Relativbewegung von Flächen in der Rotationskolbenmaschine erfolgt zum Teil auch voneinander weg, so dass die Aussparung auch die Funktion haben kann, eine umgekehrte Quetschströmung zu verhindern, indem durch ausreichende Nachströmquerschnitte ein wesentlicher Unterdruck an sich voneinander weg bewegenden Flächen verhindert wird. Die durch Unterdruck entstehenden Verluste sind jedoch wesentlich geringer, da dieser maximal nur die Grösse von 1 bar erreichen kann.
  • Die Grösse der zur Vermeidung von Quetschströmungsverlusten erforderlichen Aussparungen ergibt sich aufgrund der Lehre der Erfindung, und sie ergibt sich in Anpassung an die jeweiligen konstruktiven Gegebenheiten.
  • Im folgenden wird die Erfindung anhand der Zeichnungen erläutert, die das Phänomen der Quetschströmungen veranschaulichen und vorteilhafte Ausführungsformen der Erfindung zeigen. Es zeigt :
    • Figuren 1 und 2 schematische Darstellungen entsprechend Ausschnitten aus einer Rotationskolbenmaschine zur Veranschaulichung des Phänomens der Quetschströmungen, mit zwei Bewegungspositionen von gegeneinander bewegten Körpern,
    • Figuren 3 und 4 Darstellungen entsprechend Fig. 1 und 2, mit erfindungsgemässer Gestaltung an einem Körper, zur Vermeidung von Quetschströmungen,
    • Figur 5 eine Anordnung nach Fig. 3 ohne « Gaskugeln •,
    • Figur 6 ein weiteres erfindungsgemässes Ausführungsbeispiel in schematischer Darstellung,
    • Figuren 7 bis 10 schematische Querschnittsdarstellungen einer Rotationskolbenmaschine in verschiedenen Drehpositionen,
    • Figur 11 einen Querschnitt durch eine Ausführungsform einer Rotationskolbenmaschine, bei der der Hauptstrom durch die Hohlwelle des Kolbenläufers geführt ist,
    • Figur 12 einen Querschnitt durch einen Rotationskolben entlang der Linie XII-XII der Fig. 11,
    • Figur 13 einen durch die Achsen beider Läufer und einen Kolben geführten Axialschnitt einer Rotationskolbenmaschine nach Fig. 11,
    • Figur 14 einen Querschnitt durch den Absperrläufer mit angrenzendem Gehäuse, entlang der Linie XIV-XIV der Fig. 13,
    • Figur 15 einen Radialschnitt durch eine weitere Ausführungsform eines Kolbenläufers, z. B. für eine Maschine entsprechend Fig. 13 mit mittlerem Nabenteil,
    • Figur 16 einen axialen Teilschnitt entlang der Linie XVI-XVI der Fig. 15,
    • Figur 17 eine Axialschnittdarstellung entsprechend Fig. 13 mit einer weiteren Ausführungsform des Kolbenläufers,
    • Figuren 18a-e schematische Querschnittsdarstellungen von verschiedenen Drehpositionen einer weiteren Ausführungsform einer Rotationskolbenmaschine, bei der der Hauptstrom durch die Hohlwelle des Kolbenläufers geführt ist,
    • Figur 19 eine schematische Querschnittsdarstellung einer an sich bekannten Rotationskolbenmaschine zur Veranschaulichung der Grösse des schädlichen Raumes,
    • Figur 20 eine Axialschnittdarstellung einer Rotationskolbenmaschine nach Fig. 18, mit unvollständiger Darstellung des Absperrläufers und
    • Figur 21 eine Axialschnittdarstellung einer Rotationskolbenmaschine nach Fig. 18, deren Absperrläufer seitliche Abschlusswände hat.
  • In den schematischen Darstellungen der Figuren 1 bis 6 sind zwischen zwei Gehäuseplatten 2, 3 zwei Körper 4 und 5, bzw. 4 und 6, 6' eingeschlossen, die relativ so gegeneinander beweglich sind, dass beispielsweise einer der Körper 5, 6 fest steht, während der andere in Richtung zu diesem Körper zwischen den Gehäuseplatten 2, 3 gleitet. Die Körper 4, 5 bzw. 6 entsprechen in diesen schematischen Darstellungen einem Kolbenläufer 4 und einem Gegenläufer 5, der ebenfalls ein Läufer sein kann oder auch ein Gehäuseumfangsteil.
  • Um die durch die relative Gegeneinanderbewegung der Körper 4, 5 bzw. 4, 6 verursachte Gasbewegung zu veranschaulichen, sind die Gasmoleküle vergrössert als Kugeln 7 dargestellt.
  • Die Fig. 1 und 2 entsprechen dem Stand der Technik, und sie zeigen durch die dargestellten zwei Bewegungspositionen, dass die Gasmoleküle 7 sich bei ihrer Herausbewegung aus dem Raum 8 zwischen den beiden Körpern 4 und 5 erheblich beschleunigen müssen, da sie herausgequetscht werden. Bei diesem Ausführungsbeispiel entsprechend dem Stand der Technik können die Stirnflächen 9, 10 der beiden Körper 4, 5 sich bis zum gegenseitigen Kontakt gegeneinander bewegen. Die schematische Darstellung der Figuren 1 und 2 zeigt, dass das Gasmolekül 7' bzw. eine entsprechende Gasmenge das Vierfache des Weges W des Körpers 4 in Richtung zu dem feststehenden Körper 5 zurücklegen musste und somit erheblich beschleunigt wurde. Eine entsprechende weitere Beschleunigung ergibt sich bei weiterer Bewegung des Körpers 4 gegen den Körper 5.
  • Die Figuren 3 und 4 zeigen eine erfindungsgemässe Ausführungsform in zwei entsprechenden Bewegungspositionen, deren Unterschied ebenfalls der Weglänge w entspricht. Im Unterschied zum Stand der Technik nach den Figuren 1 und 2 mussten sich jedoch die Gasmoleküle nur um den gleichen Weg w seitlich aus dem Raum 8' zwischen den beiden Körpern 4, 6 herausbewegen, so dass sie nicht beschleunigt wurden und somit keine Quetschströmung vorliegt. Erfindungsgemäss wurde in einem der Körper 6 eine Aussparung 11 (Fig. 5) bzw. 11' (Fig. 6) vorgesehen, über die die Gasmoleküle 7 ohne Beschleunigung seitlich über die Oeffnung 12 in der seitlichen Gehäuseplatte 2 ohne Quetschung ausgeschoben werden. Die Aussparung 11 erstreckt sich in Bewegungsrichtung der Körper 4, 6 gegeneinander über die Grenzlinie 14 hinaus, die die maximal mechanisch mögliche Bewegung der Körper gegeneinander andeutet. Diese Grenzlinie 14 entspricht bei Rotationskolbenmaschinen der Eingriffslinie, so dass der Raum zwischen der Stirnfläche 9 des Körpers 4 und dieser Eingriffslinie dem Eingriffsraum 15 einer Rotationskolbenmaschine entspricht.
  • Die Figuren 5 und 6 zeigen im Querschnitt verschiedene Formen von Aussparungen 11, 11'. Im Beispiel nach Fig. 5 hat die Aussparung eine Umlenkfläche 16. In Richtung senkrecht zur Zeichenebene kann die Aussparung nahe an der die Eingriffslinie 14 bzw. Eingriffsfläche erzeugenden und abdichtenden Kante eines Rotationskolbenläufers geformt sein, wie im folgenden anhand von konstruktiven Ausführungsbeispielen näher erläutert wird. Den schematischen Darstellungen der Figuren 3 und 4 ist zu entnehmen, dass die Aussparung 11, 11' eine bestimmte Grösse haben muss, um eine Beschleunigung oder wesentliche örtliche Beschleunigung bei der Verdrängung des Gases zu verhindern. Die Aussparung 11, 11' wird worzugsweise in Kombination mit einer Abströmöffnung 12 vorgesehen, die ausreichend gross ist, um eine Strömungsbeschleunigung durch Querschnittsverengungen zu verhindern. Es versteht sich, dass die Abströmöffnung sich auch in Bewegungsrichtung der Körper 4, 6, 6' gegeneinander befinden kann, wobei sie dann entsprechend dem Arbeitszyklus der Rotationskolbenmaschine schliessbar sein muss (vergl. Fig. 7-10).
  • In der folgenden Beschreibung von Ausführungsbeispielen entsprechend den Darstellungen in den Figuren 7-21 wurden für Teile die denjenigen der schematischen Ausführungsbeispiele nach den Figuren 3 bis 6 entsprechen, die gleichen Bezugsziffern verwendet, so dass die anhand der Figuren 3-6 erläuterte erfindungsgemässe Lehre besonders deutlich wird.
  • Die Rotationskolbenmaschine des Ausführungsbeispieles der Figuren 7 bis 10 wird durch einen Gasstrom angetrieben und hat entsprechend einen Eintrittskanal 18 und einen Austrittskanal 19. Ein Teil des abströmenden Gases wird über die Hohlwelle 6a' des Kolbenläufers mit den Kolben 6a" über die Oeffnungen 11c, 11c' abgeführt.
  • Die Figur 7 zeigt einen Drehkolbenläufer und den Absperrläufer 4a zu Beginn des Durchschleusvorganges beim Durchschleusen des Kolbens 6a" durch den Eingriffsraum des Absperrläufers 4a, der durch die Eingriffslinien 14a und 14b begrenzt ist. Ein Vergleich zwischen den Drehpositionen der Figuren 7 und 8 zeigt, dass die Umfangsfläche 9b des Absperrläufers 4a sich in Richtung gegen die Fläche 10a des Kolbens 6a" und die zylindrische Umfangsfläche 10b eines zylindrischen Gegenkörpers 6a bewegt. Um eine Quetschung des Gases in dem Raum 15b zwischen den sich gegeneinander bewegenden Flächen zu verhindern, ist in der Richtung, in der sich der Raum 15b zunehmend verkleinert in dem Gegenkörper 6a eine Oeffnung 11c vorgesehen, an die sich eine in der Hohlwelle 6a' vorgesehene Oeffnung 11c' anschliesst. Anschliessend kann das Gas nach Umlenkung in Richtung der Hohlwelle abströmen, wie in Fig. 13 am Beispiel eines Verdichters gezeigt ist. Die Oeffnungen 11c, 11c' in Bewegungsrichtung der Fläche 9b entsprechen somit einer Aussparung 11, 11' des Ausführungsbeispiels der Figuren 5 und 6 und der Abströmkanal 12c in der Hohlwelle der seitlichen Oeffnung 12 in der seitlichen Gehäusewand 2.
  • Die Figur 9 zeigt die Rotationskolbenmaschine der Figuren 7 und 8 in einer weiteren Drehposition beim Durchschleussvorgang des Kolbens 6a" durch den Eingriffsraum 15a des Absperrläufers 4a, in der ebenfalls eine erhebliche Quetschströmung vorhanden sein könnte, falls nicht eine erfindungsgemässe Aussparung 11 vorgesehen wäre, die sich über die Eingriffslinie 14a hinaus erstreckt. Diese Aussparung 11a ist angrenzend an die Eingriffskante 21 des Absperrläufers 4a angeordnet und ihr Abstand von dieser Eingriffskante sollte unter Berücksichtigung der mechanischen Beanspruchungen möglichst gering gewählt sein. Die Eingriffskante 22 des Kolbens 6a" am Ende seiner Umfangsfläche 9a bewegt sich aufgrund der Drehung der Läufer in Richtung der Pfeile 23, 24 entlang der den Eingriffsraum 15a begrenzenden Eingriffslinie 14a. Dabei steht die Aussparung 11a während des Eingriffsvorganges in beiden axialen Richtungen der Maschine mit einer schlitzförmigen Oeffnung 12a in der Gehäuseseitenwand 2a in Verbindung, die eine Abströmung in den Abströmkanal 19 hinein ermöglicht. Die Ausgestaltung dieser seitlichen Abströmung kann entsprechend der Darstellung in Fig. 14 erfolgen.
  • Bei der Weiterdrehung aus der Position nach Fig. 9 bewegt sich die Kolbenumfangsfläche 9a von der Eingriffslinie 14b bzw. Eingriffsfläche weg, und um dabei die Entstehung eines Unterdruckes zu verhindern ist eine Aussparung 11 b in dem Absperrläufer 4a vorgesehen, die genauso gestaltet sein kann wie die zuvor erwähnte Aussparung 11a bei spiegelsymmetrischer Anordnung. Diese Aussparung 11b grenzt an die Eingriffskante · 20 an. Die Aussparung 11 b ist ebenfalls ir, axialer Richtung mit einer Oeffnung 12b verbunden, die zu dem Eintrittskanal 18 hinführt.
  • Aus der Darstellung in Fig. 9 ist ersichtlich, dass die Aussparung 11 b in Kombination mit der Verbindungsöffnung 12b zu dem Eintrittskanal 18 in vorteilhafter Weise auch das Anlaufen der Maschine aus der dargestellten Position heraus, d. h. ohne Anlasshilfe, durch den Gasdruck ermöglicht, der in der Aussparung 11b auf den Absperrläufer wirkt und somit zu einem Drehmoment führt. Beide Läufer stehen, wie dem Beispiel nach Fig. 13 zu entnehmen ist, miteinander in Antriebsverbindung.
  • Die Figur 10 zeigt eine weitere Massnahme zur Vermeidung einer umgekehrten Quetschströmung bzw. Saugströmung bei der Bewegung der Fläche 9c des Absperrläufers 4a von der Eingriffslinie 14c am Kolben 6a" weg. Hierfür ist ebenfalls eine Aussparung 11e vorgesehen, die ein Nachströmen von Gas in den Raum 15c in Richtung des Pfeiles 25 ermöglicht.
  • Die Fig. 11 zeigt ein Ausführungsbeispiel einer Rotationskolbenmaschine bei der der Hauptstrom der Maschine durch die Hohlwelle 6b' des Kolbenläufers verläuft. Es versteht sich, dass diese Maschine und ebenso wie die zuvor beschriebenen Rotationskolbenmaschinen durch den Druck eines zuströmenden Mediums angetrieben sein kann oder durch mechanischen Antrieb der Läufer ein Medium fördern und/oder komprimieren kann. Ausserdem ist auch eine Umkehrung der Strömungsrichtung möglich. Die Oeffnungen 11g, 11g' in dem feststehenden Ringkörper 6b und der Hohlwelle 6b' entsprechen den Oeffnungen 11c, 11c' des anhand der Figuren 7 und 8 beschriebenen Ausführungsbeispieles, jedoch sind sie in Umfangsrichtung breiter ausgeführt. Des weiteren unterscheidet sich diese Maschine durch den Wegfall des dem Zustromkanal 18 gegenüberliegenden Kanales 19 (Fig. 7) und einen in Fig. 11 durch Strichlinien angedeuteten Ringkanal 26 (Fig. 13), der die seitlichen Oeffnungen 12d, 12e miteinander verbindet.
  • Die beiden Oeffnungen 11g und 11g' überdecken sich nur während eines bestimmten Drehwinkels des Kolbenläufers, so dass sie gemeinsam ein gesteuertes Ventil bilden. Die sich somit ergebende Absteuerung des Gasstromes hat den Vorteil, dass bei der Verwendung dieser Maschine als Verdichter der Kolbenläufer nicht dauernd gegen den vollen Gegendruck fördern muss.
  • Dadurch, dass der Absperrläufer mit höherer Drehzahl dreht als der Kolbenläufer, und zwar bei den dargestellten Ausführungsbeispielen im Verhältnis 2: 1 entsprechend dem Verhältnis zwischen der Anzahl der Kolben am Kolbenläufer und der Anzahl der Lücken am Absperrläufer, ergibt sich eine wesentlich geringere Baugrösse bei gleichem Durchsatzvolumen sowie geringeren schädlichen Räumen wie im folgenden noch näher erläutert wird. Die Anordnung des feststehenden Ringkörpers am Umfang der Hohlwelle des Kolbenläufers entsprechend den Darstellungen der Fig. 7 bis 11 hat u. a. den Vorteil, dass der durch die Oeffnung 11g vorhandene schädliche Raum besonders gering ist, denn dieser feststehende Ringkörper 6b kann besonders dünnwandig ausgeführt werden, da er keinen wesentlichen mechanischen Beanspruchungen ausgesetzt ist. Die Fig. 13 und 15 zeigen, auf welche Weise die Anordnung eines feststehenden Ringkörpers 6b um die Hohlwelle herum konstruktiv möglich ist.
  • Der wesentlichste Schritt, durch den die genannte Anordnung des feststehenden Ringkörpers 6b verwirklicht werden konnte, besteht in der Befestigung der Kolben an einem mittleren Nabenteil der Hohlwelle und der Weglassung der sonst üblichen stirnseitigen Deckscheiben des Kolbenläufers, so dass der feststehende Ringkörper 6b zweiteilig in den Raum zwischen dem Drehkolben 6a" und der Hohlwelle 6b' von zwei axialen Seiten aus eingreifen kann, wie die Axialschnittdarstellung der Fig. 15 zeigt.
  • In Fig. 13 wurde zur Vereinfachung der Darstellung der Absperrläufer 4a nicht mit dargestellt. Die Drehkolben 6a", von denen z. B. entsprechend Fig. 11, zwei diametral einander gegenüberliegt vorgesehen sind, sind jeweils durch zwei Schrauben 27 an dem Nabenteil 28 der Hohlwelle 6b' des Drehkolbenläufers befestigt. Wie die Schnittdarstellungen der Figuren 17, 18 zeigen, können jedoch die Schrauben 27 auch als quer zum anderen Kolben 6a" durchlaufende lange Schrauben 27a ausgeführt sein. In diesem Falle hat die Hohlwelle 6b' einen diametralen Quersteg 29, durch den sich die Schrauben 27a hindurcherstrecken. Die Befestigung mittels Schrauben 27, 27a ermöglicht hohe Zentrifugalbeanspruchungen der Kolben, obgleich diese nur in ihrem mittleren Bereich, d. h. im Bereich der Wellennabe 28 befestigt sind. Ausserdem ergeben sich durch die Verwendung der Schrauben Vorteile hinsichtlich einer einfacheren Herstellung des Kolbenläufers sowie beim Auswechseln der Kolben nach Verschleiss.
  • Die Fig. 17 zeigt ein Ausführungsbeispiel einer Drehkolbenmaschine, die ähnlich ausgeführt ist, wie diejenige der Fig. 13, jedoch mit dem wesentlichen Unterschied, dass die Kolben 6a"' in einem Stück mit einem verhältnismässig schmalen Nabenteil 28a der Hohlwelle 6b' verbunden sind. Die Welle 6b' hat einen äusseren Hülsenkörper 30, der sich vom Umfang des Nabenteiles 28a beidseitig in axialer Richtung weg erstreckt sowie einen Halsteil 31 am Austrittsende der Hohlwelle 6b' für die Lagerung gegenüber einem feststehenden Gehäuseteil 32. Die Nabe 28a sowie der Halsteil 31 werden von einem Zentralschaft 33 der Höhlwelle 6b' getragen, und Oeffnungen 34 in dem Nabenteil 28a sowie Verbindungsstege 35 zwischen dem Zentralschaft 33 und dem Halsteil 31 ermöglichen. die axiale Durchströmung der Hohlwelle in Richtung der Pfeile 36.
  • Es versteht sich, dass die Hohlwelle 6b' entsprechend dem Ausführungsbeispiel der Figur 13 aus Festigkeitsgründen massiver ausgeführt werden muss, da ihr Nabenteil 28 ringförmig gestaltet ist, d. h. keine Stützscheibe wie im Ausführungsbeispiel nach Fig. 17 aufweist. Für die Verbindung mit einem Wellenzapfen 37, der der Lagerung sowie Befestigung eines Zahnrades 38 dient, ist die Hohlwelle 6b' im Gegensatz zum Ausführungsbeispiel nach Fig. 19 mit einem Bodenteil 39 versehen. Der Wellenhals 40 am austrittseitigen Ende der Hohlwelle 6b' ist mittels eines Lagers 41 am feststehenden Gehäuseteil 32a gelagert, der ebenso wie im Ausführungsbeispiel nach Fig. 17 in den Ringkörper 6b übergeht.
  • Die übrige Ausgestaltung des Machinengehäuses, der Lagerung des Absperrläufers und der Antriebsverbindung zwischen Kolbenläufer und Absperrläufer ist bei beiden Ausführungsbeispielen der Figuren 13 und 17 identisch. Ein Gehäuseumfangsteil 42, der beide Läufer umschliesst, ist zwischen zwei Gehäuseseitenwänden 43, 44 mittels durchlaufender Schrauben 45 eingespannt. Die Seitenwände 43, 44 dienen der seitlichen Abdichtung der Läufer sowie der Lagerung der Wellenzapfen 37, 37', (31, 40) des Kolbenläufers sowie der Wellenzapfen 46, 47 des Absperrläufers. Ausserdem nehmen sie den Ringkanal 26 (Fig. 11) auf, der die Schlitzöffnungen 12d und 12e miteinander verbindet. Da der Kolbenläufer zwei diametral einander gegenüberliegende Kolben hat, während der Absperrläufer nur eine Eingriffsöffnung zum Durchschleussen der Kolben aufweist, beträgt das Uebersetzungsverhältnis aufgrund des Eingriffes der Zahnräder 38, 48 beider Läufer 1 : 2, d. h. der Absperrläufer muss sich doppelt so schnell drehen wie der Kolbenläufer. Die Lager auf beiden Seiten der Läufer sowie die Antriebsverbindung durch die Zahnräder 38, 48 sind nach aussen durch Gehäuseschalen 50, 51 eingeschlossen, die mittels der Gehäuseschrauben 45 zusammen mit den Gehäuseseitenwänden verspannt sind. Eine der Gehäuseschalen 50 trägt den Austritts-(Eintrits-)Stutzen 52, während der Zustrom (Abstrom) zu der Machine tangential über die Kanäle 18 (Fig. 11, 14) erfolgt.
  • Die Fig. 18a-18e zeigen ein Ausführungsbeispiele einer z. B. als Lader für einen Verbrennungsmotor geeigneten Rotationskolbenmaschine, bei der der Hauptstrom ebenfalls durch die Hohlwelle eines der Läufer geführt ist, der als Kolbenläufer ausgebildet ist, während der andere Läufer sich nur als Absperrläufer mitdreht. Im Unterschied zum Ausführungsbeispiel nach Fig. 13 ist die feststehende oder auch zu Steuerzwecken winkelverstellbare Steuerhülse 6d innerhalb der Hohlwelle 6d' des Kolbenläufers angeordnet. Rotationskolbenmaschinen mit zwei Läufern, von denen nur einer einen Kolbenläufer bildet, während der andere ein Absperrläufer ist, und bei denen ebenfalls der Durchsatz durch die Hohlwelle des Kolbenläufers erfolgt, sind als Dampfmaschinen durch die US-PS 516 385 und als Verbrennungskraftmaschine durch die US-PS-3 923 014 an sich bekannt. Das Drehzahlverhältnis beider Läufer beträgt bei diesen Maschinen jedoch 1 : 1, und der Absperrläufer bewirkt eine verhältnismässig grosse Abmessung der Maschine. Die Aussparung im Absperrläufer ist dabei genau so geformt, wie es aufgrund der Bewegung des Kolbens als Erzeugender erforderlich ist. Die erfindungsgemäss zu vermeidenden Quetschströme treten somit auch bei diesen Maschinen auf. Die Ausführung einer solchen Maschine z. B. als Lader mit einer im Durchmesser wesentlich grösseren Hohlwelle, deren Durchmesser ungefähr dem Durchmesser des Absperrläufers entspricht, würde zu einer Konstruktion führen, die beispielsweise entsprechend der Darstellung in Fig. 19 ausgeführt ist. Ein Vergleich einer solchen Maschine mit den erfindungsgemässen Ausführungsbeispielen, z. B. entsprechend den Fig. 11, 18a-e, zeigt deutlich die Vorteile dieser erfindungsgemässen Ausführungsbeispiele. In Fig. 18a unf Fig. 19 ist der Kolbenläufer jeweils in einer Drehposition dargestellt, in der die hintere Kante 55, 55' der Durchströmöffnung 11 h in der Hohlwelle 6d' der Schliesskante 56, 56' der Steuerhülse 6d gegenübersteht und im Falle eines Laders der Ausschiebvorgang durch die Oeffnung 11h' hindurch abgeschlossen ist. Bei einer Maschine entsprechend der Darstellung in Fig. 19 muss diese Durchströmöffnung 11h' in der Steuerhülse in einer in Drehrichtung wesentlich früheren Position des Kolbens 58' durch die Hohlwelle verschlossen sein, da bei Weiterdrehung in Richtung des Pfeiles 59 die Abdichtung an der Stelle 60' aufgehoben wird und der durch Punkte unter Ueberdruck stehende schädliche Raum 62' zwischen der Vorderfläche des Kolbens und der Aussparung des Absperrläufers 4b' in Verbindung mit der Saugseite 61' der Maschine gelangt. Der mit diesem sehr grossen schädlichen Raum 62' vergleichbare Raum 62 einer Maschine entsprechend dem Ausführungsbeispiel der Fig. 18 ist um ein Vielfaches kleiner. Ausserdem öffnet sich dieser Raum 62 bei Weiterdrehung der Läufer in.den Hohlraum des Absperrläufers 4b hinein, der aus der durch die Eingriffslinie 14e begrenzten Aussparung 15e und dem sich über die Eingriffslinie hinaus erstreckenden Ausweichraum 11 zusammensetzt. Die daraus resultierende Zwischenentspannung in diesen Raum 15e, 11 k hinein ergibt sich dadurch, dass sich die abdichtende Kante 64 aufgrund der im Vergleich zum Kolbenläufer schnelleren Umdrehungsgeschwindigkeit des Absperrläufers schneller in Richtung der von ihr « erzeugten Eingriffslinie 14h bewegt als die Kante 65 der Oeffnung 11 h in der Hohlwelle aus der in Fig. 18 a dargestellten Position von der abdichtenden Umfangsfläche 9h des Absperrläufers wegbewegt. Eine den Kolben 58 hinterschneidende Freifläche 66 ermöglicht diese Zwischenentspannung, nachdem die Kante 64 des Absperrläufers sich bis zu ihr hinbewegt hat. Entsprechend dem. Grössenverhältnis zwischen dem Raum 62 und dem Hohlraum 15e, 11k des Absperrläufers entspannt sich das in diesem Raum 62 eingeschlotisene schädliche Gasvolumen, und da diese Zwischenentspannung somit innerhalb der Maschine erfolgt, ist sie mit keiner wesentlichen Geräuschentwicklung verbunden. Der in dem Hohlraum 11e, 11k des Absperrläufers durch diese Zwischenentspannung entstandene geringe Ueberdruck entspannt sich rückwärts in den Druckraum 67 der Maschine, nachdem die rückseitige Kante 68 des Kolbens 58 die Kante 69 des Gehäuses verlassen hat, wie es sich bei der Bewegung aus der Position der Fig. 18b in die Position der Fig. 18c ergibt. Der Leistungsverlust aufgrund eines schädlichen Volumens wird somit durch zwei Massnahmen auf ein unwesentliches Mass verringert, d. h. dadurch, dass der schädliche Raum 62 verkleinert ist und das schädliche Gasvolumen unter dem durch die Zwischenentspannung verringerten Druck auf die Saugseite 61 der Maschine gelangt. Diese Zwischenentspannung in den durch den Ausweichraum 11 k vergrösserten Hohlraum des Absperrläufers hinein hat den weiteren Vorteil, dass allenfalls noch vorhandene Quetschströmungen beispielsweise bei der Bewegung der Umfangsfläche 70 des Kolbens 58 gegen die abdichtende Innenfläche 71 des Absperrläufers bei entsprechend verringertem Druck des Gases bzw. der Luft erfolgen.
  • Ein Vergleich der Form der Kolben des Kolbenläufers des Ausführungsbeispieles nach Fig. 18 mit derjenigen des zuvor beschriebenen Ausführungsbeispieles z. B. entsprechend Fig. 11 zeigt, dass die Kolben nach Fig. 18 in Umfangsrichtung oder nach hinten wesentlich schmaler sind. Hierdurch wird erreicht, dass die Eingriffsfläche in dem Absperrläufer für die Kolben in Umfangsrichtung wesentlich kleiner ausgeführt werden kann.
  • Die Axialschnitte der Fig. 20 und 21 einer Rotationskolbenmaschine entsprechend dem Ausführungsbeispiel der Fig. 18 veranschaulichen die wesentliche konstruktive Vereinfachung, die sich aufgrund der Anordnung der Steuerhülse 6d gegenüber den in den Fig. 13 und 17 dargestellten Ausführungsbeispielen ergibt. Die Steuerhülse 6d ist gegenüber der Hohlwelle 6d' durch ein Lager 72 drehbar gelagert, so dass eine Beeinflussung der Steuerzeiten bzw. der Leistung der Maschine möglich ist. Die Wellen 74, 75 des Absperrläufers und des Kolbenläufers stehen über zwei Zahnräder 76, 77 in Antriebsverbindung. Da der Absperrläufer keinen wesentlichen Drehmomenten ausgesetzt ist, ergibt sich in vorteilhafter Weise eine sehr geringe Belastung dieser Antriebsverbindung 76, 77. Die Ausführung des Maschinengehäuses ist vergleichbar mit den Ausführungsbeispielen der Fig. 13 und 17. Das Ausführungsbeispiel der Fig. 21 unterscheidet sich von dem Ausführungsbeispiel nach Fig. 20 dadurch, dass der Kolben 58 zwischen seitliche Abschlusswände 79, 80 des Absperrläufers 41 eingreift. Diese Schnittdarstellung zeigt auch in Eingriffsposition zwischen Kolbenläufer und Absperrläufer einen vorhandenen radialen Ausweichraum 81 zwischen der radial äusseren Fläche 82 des Kolbens 58 und der Begrenzungsfläche 83 der Aussparung des Absperrläufers 42. Der teilweise sichtbare Hohlraum 84 des Absperrläufers dient dem Ausgleich von Unwuchten. Die Lagerung des Absperrläufers erfolgt über den Wellenzapfen 74' und den Achszapfen 85.
  • Die vorangehende Beschreibung hat gezeigt, wie das anhand der Fig. 3 und 4 eingangs erläuterte allgemeine Lösungsprinzip erfindungsgemäss zu verschiedenen konstruktiven Verbesserungen an einer Rotationskolbenmaschine führen kann. Die Ausführungsbeispiele zeigen, dass durch geeignete Gestaltung und Bemessungen im Bereich des gegenseitigen Eingriffes zwischen beiden Läufern überall ausreichende Strömungsquerschnitte geschaffen wurden, durch die Quetschungen des geförderten oder antreibenden Mediums verhindert werden. Diese Verbesserungen führen in Kombination zu einer Maschine mit überraschend geringen Strömungsverlusten, so dass sie auch in Drehzahlbereichen angewandt werden kann, für die bisher nur Turbomaschinen als geeignet erschienen. Der Liefergrad und Wirkungsgrad der erfindungsgemässen Maschine ist nur unwesentlich von der Drehzahl ihrer Läufer abhängig. Weiterhin führt die Vermeidung von Quetschströmungen in der beschriebenen Weise auch zur Vermeidung von Totpunkten, so dass die durch einen Gasstrom angetriebene Maschine keine Anlasshilfen benötigt. Schliesslich wurde bei der Vermeidung von Quetscchströmungen auch gezeigt, wie ein schädlicher Raum wesentlich verringert werden kann.

Claims (12)

1. Rotationskolbenmaschine mit einem eine Hohlwelle (6b', 6b') aufweisenden Kolbenläufer, in der mindestens ein radial gerichteter Ab- oder Zuströmkanal (11g', 11h) vorgesehen ist und die eine feststehende Steuerhülse (6b, 6d) mit einer radial gerichteten Oeffnung (11g, 11h') umschliesst oder von ihr umschlossen ist sowie einem mindestens eine Lücke für den Durchgang des oder der Kolben des Kolbenläufers aufweisenden Absperrläufer, dessen zylindrische Aussenfläche sich dichtend an einer an der Hohlwelle (6b', 6d') vorgesehenen zylindrischen Aussenfläche bzw. an der umschliessenden Steuerhülse (6b) vorbeidreht, wobei eine Kante (20, 64) des Absperrläufers sich entlang einer Seitenfläche des oder der Kolben des Kolbenläufers bewegt, dadurch gekennzeichnet, dass zur Vermeidung von Quetschströmungsverlusten angrenzend an eine erzeugende und/oder abdichtende Eingriffskante (20, 21, 22, 64) mindestens eine Aussparung (11) vorhanden ist, die sich über die Eingriffskurve (14) hinaus mindestens angenähert in Bewegungsrichtung der sich beim Durchschleusvorgang relativ zueinander bewegenden Flächen erstreckt und deren Rauminhalt so bemessen ist, dass die Strömung in ihm auch bei Richtungsänderung nicht wesentlich beschleunigt wird.
2. Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kolbenläufer mindestens zwei Kolben aufweist und die Drehgeschwindigkeit des Absperrläufers in ganzzahligem Verhältnis von insbesondere 2 : 1 grösser ist als diejenige des Kolbenläufers.
3. Rotationskolbenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine in Drehrichtung vordere Fläche des Kolbens (58) des Kolbenläufers eine hinterschneidende Freifläche (66) bildet, so dass eine abdichtenden Eingrifskante (64) des Absperrläufers sich in Eingriff mit dem Kolben bewegt, bis die vordere Kante (65) der Oeffnung (11 h) in der Hohlwelle (6d') sich wesentlich über die Dichtstelle (60) zwischen beiden Läufern hinaus bewegt hat.
4. Rotationskolbenmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die Freifläche (66) an ihrem radial inneren Ende in eine Oeffnungskante (55) der jeweils in Drehrichtung vor einem Kolben angeordneten Oeffnung (11 h) in der Hohlwelle (6d') übergeht.
5. Rotationskolbenmaschine nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die, bezogen auf die Drehrichtung eines Kompressors hintere Kante (68) des oder der Kolben (58) sich in Drehrichtung in oder vor einer die Achse des Kolbenläufers einschliessenden Axialebene befindet, die sich durch eine Ansatzstelle des Kolbens an der Hohlwelle hindurcherstreckt.
6. Rotationskolbenmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Steuerhülse relativ zu der Hohlwelle des Kolbenläufers verdrehbar ist.
7. Rotationskolbenmaschine nach Anspruch 1, bei der die Steuerhülse (6b) die Hohlwelle (6b') des Kolbenläufers umschliesst, dadurch gekennzeichnet, dass die Hohlwelle einen Nabenteil (28, 28a) hat, an dessen Umfang mindestens ein Drehkolben (6a", 6a"') nach beiden axialen Richtungen auskragend angeordnet ist, so dass die Steuerhülse (6b) zweiteilig beidseitig des Nabenteils (28, 28a) zwischen dem Kolben und der Hohlwelle angeordnet ist.
8. Rotationskolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass mindestens ein Drehkolben (6a") mittels in den Nabenteil (28) eingreifender Schrauben (27) an der Hohlwelle befestigt ist.
9. Rotationskolbenmaschine nach Anspruch 8, dadurch gekennzeichnet, dass zwei einander diametral gegenüberliegende Drehkolben (6a") durch mindestens eine sich quer durch die Hohlwelle (6b') erstreckende Schraube (27a) verbunden sind.
10. Rotationskolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass der Nabenteil (28) der Hohlwelle (6b') ringförmig ist und die Hohlwelle einen geschlossenen Bodenteil (39) mjt einem Wellenzapfen (37) aufweist.
11. Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass der oder die Kolben des Kolbenläufers eine kreiszylindrische Umfangsfläche (9a, 70) aufweisen, die sich an der kreiszylindrischen Umfangsfläche (71) des Absperrläufers abwälzt, wobei je eine Quetschströmungsverluste vermeidende Aussparung (11), bezogen auf die Achse des Absperrläufers, beidseitig zu dieser Umfangsfläche (9a, 70) des Absperrläufers vorhanden ist, von denen eine einen Unterdruckausgleichsraum bildet.
12. Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass an der nach- und/oder vorlaufenden Seite eines Kolbens . (6a") des Ko!benIäufeœ eine sich in Umfangsrichtung über eine Eingriffslinie mit dem Absperrläufer (4a) hinaus erstreckende Aussparung (11e) vorgesehen ist.
EP82102196A 1981-04-14 1982-03-18 Rotationskolbenmaschine Expired EP0063240B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82102196T ATE22160T1 (de) 1981-04-14 1982-03-18 Rotationskolbenmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2482/81 1981-04-14
CH2482/81A CH661318A5 (de) 1981-04-14 1981-04-14 Rotationskolbenmaschine.

Publications (3)

Publication Number Publication Date
EP0063240A2 EP0063240A2 (de) 1982-10-27
EP0063240A3 EP0063240A3 (en) 1983-09-28
EP0063240B1 true EP0063240B1 (de) 1986-09-10

Family

ID=4234789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102196A Expired EP0063240B1 (de) 1981-04-14 1982-03-18 Rotationskolbenmaschine

Country Status (6)

Country Link
US (1) US4561836A (de)
EP (1) EP0063240B1 (de)
JP (1) JPS57181901A (de)
AT (1) ATE22160T1 (de)
CH (1) CH661318A5 (de)
DE (1) DE3273101D1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU567706B2 (en) * 1983-01-10 1987-12-03 Fairbairn International Pty. Ltd. Fluid machine
GB2133473B (en) * 1983-01-10 1987-07-08 George Anthony Fairbairn Rotary positive displacement
CH663446A5 (de) * 1983-10-10 1987-12-15 Wankel Felix Aussenachsige rotationskolbenmaschine.
DE3340202A1 (de) * 1983-11-07 1985-05-15 Wankel Gmbh, 1000 Berlin Parallel- und aussenachsiges im kaemmeingriff arbeitendes rotationskolbengeblaese
US5518382A (en) * 1993-07-22 1996-05-21 Gennaro; Mark A. Twin rotor expansible/contractible chamber apparauts
US5466138A (en) * 1993-07-22 1995-11-14 Gennaro; Mark A. Expansible and contractible chamber assembly and method
US6526925B1 (en) 1999-05-19 2003-03-04 Willie A. Green, Jr. Piston driven rotary engine
US6739307B2 (en) * 2002-03-26 2004-05-25 Ralph Gordon Morgado Internal combustion engine and method
US20060156711A1 (en) * 2005-01-20 2006-07-20 Carpenter Todd L Internal combustion engine with secondary air pump for catalyst
TR200805753A2 (tr) 2008-08-04 2009-03-23 Yaşar Tuncer Yilmaz Rotatif içten patlamalı motor
ITFR20100013A1 (it) * 2010-05-20 2010-08-19 Fabrizio Capogna Topologia e funzionamento di una macchina volumetrica rotante con paletta fissa adiale e concenytrica rispetto all'asse di rotazione e con asdsoluta assenza di particolari meccanici soggetti a variaioni di moto
EP3099898A1 (de) * 2014-01-28 2016-12-07 Imre Nagy Kompressionsfreier verbrennungsmotorrotor und verfahren

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA637521A (en) * 1962-03-06 W. Marshall John Compressors
US516385A (en) * 1894-03-13 Rotary engine
DE296588C (de) *
DE108969C (de) *
US12874A (en) * 1855-05-15 of hartford
AT585B (de) * 1897-05-12 1899-11-25 Alexander Monski
US893485A (en) * 1906-06-25 1908-07-14 John Grindrod Rotary machine.
DE503579C (de) * 1927-03-24 1930-07-28 Nat Automatic Tool Company Werkzeugmaschine mit einem Maschinenteil, welcher gleichzeitig zwei Bewegungen ausfuehrt
US1751843A (en) * 1929-06-05 1930-03-25 Rosett Joshua Air compressor
US1978480A (en) * 1930-06-20 1934-10-30 Ernest J Svenson Pumping mechanism
AT135849B (de) * 1931-02-12 1933-12-11 Wilhelm Klein Drehkolbengebläse.
GB448951A (en) * 1935-02-04 1936-06-18 Francis Benjamin Levetus Improvements in or relating to rotary pumps and engines and rotors for rotary pumps and engines
US2724340A (en) * 1949-05-05 1955-11-22 British Internal Combust Eng Rotary pump
GB816753A (en) * 1954-10-07 1959-07-15 Jean Andre Monteil Rotary pump, motor or internal combustion engine
GB871219A (en) * 1958-01-17 1961-06-21 Henry Charles Nurse Improvements in or relating to rotary motors or pumps
US3439582A (en) * 1967-11-13 1969-04-22 Elwood Smith Rotary engine
DE1935621A1 (de) * 1968-07-22 1970-01-29 Leybold Heraeus Gmbh & Co Kg Verdraengerpumpe
US3545895A (en) * 1968-09-18 1970-12-08 Cornell Aeronautical Labor Inc Rotary inflow compressors and the like
US3612735A (en) * 1969-07-07 1971-10-12 Anthony Graham Rotary engine
DE2249952C3 (de) * 1972-10-12 1975-03-27 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Hydraulische Zahnradmaschine
US3923014A (en) * 1974-04-24 1975-12-02 Karl Knickerbocker Internal combustion rotary engine
JPS5110362A (ja) * 1974-07-15 1976-01-27 Matsushita Electric Works Ltd Tasoinsatsuhaisenbanno seizohoho
US3990409A (en) * 1975-12-16 1976-11-09 Beverly Harvey W Rotary engine
US4068988A (en) * 1976-07-30 1978-01-17 Ingersoll-Rand Company Positive-displacement, fluid machine

Also Published As

Publication number Publication date
EP0063240A3 (en) 1983-09-28
ATE22160T1 (de) 1986-09-15
CH661318A5 (de) 1987-07-15
US4561836A (en) 1985-12-31
EP0063240A2 (de) 1982-10-27
DE3273101D1 (en) 1986-10-16
JPS57181901A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
EP0063240B1 (de) Rotationskolbenmaschine
DE1936492A1 (de) Rotationsmaschine
DE4211809A1 (de) Schwimmringdichtung
DE19901110C2 (de) Schwenkkolbenmaschine
DE2700731C2 (de) Rotationskolbenverdichter
EP0337950B1 (de) Innenachsige Rotationskolbenmaschine
DE2614471C2 (de) Drehkolbenmaschine
CH675896A5 (de)
DE1653921C3 (de) Rotationskolbenpumpe
EP0137421B1 (de) Aussenachsige Rotationskolbenmaschine
DE3027898A1 (de) Fluegelrad-fluidmotor
DE2062219C3 (de) Schmierung und Kühlung eines Gleitlagers einer Kreiskolben-Brennkraftmaschine in Trochoidenbauart
EP0088288A1 (de) Innenachsige Rotationskolbenmaschine
DE2160073C3 (de) Rotationskolbenmaschine mit Hubeingriff und Schlupfeingriff
DE2029833C2 (de) Parallel- und außenachsiger Rotationskolbenverdichter
DE4310621C2 (de) Innenachsiger Drehkolbenverdichter
DE2835826A1 (de) Rotationskolbenverdichter mit zusammenwirkenden laeufern
AT243569B (de) Stirnflächendichtung für eine Rotationskolben-Brennkraftmaschine
AT219623B (de) Kraft- oder Arbeitsmaschine mit mindestens einem in einem ringförmigen Zylinder kreisenden Drehkolben
DE1475469A1 (de) Fluessigkeitskupplung
DE1476672B2 (de) Parallel- und innenachsige druckluft-rotationskolben-kraftmaschine
DE535209C (de) Drehkolbenmaschine
DE3245974A1 (de) Fluegelzellenpumpe
AT207495B (de) Schraubenradmaschine, insbesondere Schraubenradkompressor
CH669974A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

RHK1 Main classification (correction)

Ipc: F04C 2/28

17P Request for examination filed

Effective date: 19840319

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 22160

Country of ref document: AT

Date of ref document: 19860915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3273101

Country of ref document: DE

Date of ref document: 19861016

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910218

Year of fee payment: 10

Ref country code: DE

Payment date: 19910218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910220

Year of fee payment: 10

Ref country code: BE

Payment date: 19910220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910311

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910604

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920318

Ref country code: AT

Effective date: 19920318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

Ref country code: BE

Effective date: 19920331

BERE Be: lapsed

Owner name: WANKEL FELIX DR. H.C.

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82102196.1

Effective date: 19921005