EP0058232B1 - Enroulement en disque à partir de bobines doubles ou simples enroulées les unes dans les autres - Google Patents
Enroulement en disque à partir de bobines doubles ou simples enroulées les unes dans les autres Download PDFInfo
- Publication number
- EP0058232B1 EP0058232B1 EP81108637A EP81108637A EP0058232B1 EP 0058232 B1 EP0058232 B1 EP 0058232B1 EP 81108637 A EP81108637 A EP 81108637A EP 81108637 A EP81108637 A EP 81108637A EP 0058232 B1 EP0058232 B1 EP 0058232B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turns
- winding
- coils
- insulation
- coil winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 title claims abstract description 88
- 235000012771 pancakes Nutrition 0.000 title claims 14
- 238000009413 insulation Methods 0.000 claims abstract description 53
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 230000007423 decrease Effects 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/323—Insulation between winding turns, between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/346—Preventing or reducing leakage fields
Definitions
- the invention relates to disc coil windings made of single or double coils, in which the insulation of the outer turns against the inner or outer surface of the winding is reinforced compared to the normal insulation of the winding conductor.
- Simple disk coil windings have a non-linear surge voltage distribution in the axial direction along the individual coils, so that breakdowns can occur between two adjacent coils when subjected to voltage surges.
- FIG. 1 and FIG. 2 show cross sections of exemplary embodiments of interwoven disc coils.
- FIG. 1 is an example of two inter-wound single coils and FIG. 2 is an example of a pair of inter-wound double coils.
- the windings of these disc coils are traversed by the load current in the order of the digits entered in them.
- the disc coils are wound from two winding conductors fed simultaneously and spatially parallel to each other during the winding process. Subsequently, the wedge conductor sections lying within the individual disk coils are electrically connected in series by soldering together in such a way that the windings are removed from the high-voltage connection and thus also from the point of introduction of the impulse voltage pulses in accordance with the order of their digits. Correspondingly, the voltage against earth potential decreases with an increasing number of turns.
- the winding indices can therefore also be viewed as a multiple of the winding voltage compared to the winding input.
- the voltage drop in a single pass through a disc coil is called the branch voltage that occurs along the conductor. Accordingly, the single branch voltage is present in the case of a single coil winding between adjacent turns and twice the branch voltage in the case of a double coil winding between the turns.
- the single-coil circuit is therefore preferred for higher surge voltage stresses.
- the known interwoven disc coil windings also have their disadvantages. These are due to the increased winding stress, since instead of the single winding voltage which occurs in double coils which are not wound into one another, the single or multiple branch voltage occurs between adjacent turns, which is a multiple of the linearly calculated value during collision processes. As a result, pre-discharges in or between the disc coils are not excluded.
- the winding insulation is therefore reinforced in interwoven coils compared to simple coils so that no winding breakdown occurs, but pre-discharges at the winding edges are accepted. As a result, part of the longitudinal capacity gained by wrapping one another is lost again.
- the invention is based on the object of selecting the reinforcement of the conductor insulation while taking into account the economic viability and while maintaining the high longitudinal capacitance achieved by the interweaving so that pre-discharges are adjacent to one another ten turns as well as between different disc coils with the intended test voltage are excluded.
- the solution to this problem according to the invention is based on the assumption that the high field strength between adjacent windings contributes to the cause of the longitudinal rollover if the voltage between the two radially most inner or outer windings of a disk coil is rectified with the axially extending voltage along several disk coils overlaid. This is particularly the case at the edge areas on the inside and outside of the disc coils. In contrast, in the radially central area of the individual disk coils, the tension does not increase monotonically from turn to turn, but alternately increases and decreases, so that there are no crossovers. It is therefore possible to make the conductor insulation weaker in this area.
- windings of the coils located at the winding input can be made with additional insulation, the thickness of which decreases to zero at the coils that are further away from the input.
- an axial cooling channel is arranged in each case between the winding lying on the inner or outer jacket surface and the respective neighboring winding.
- the additional insulation can consist of a paper casing surrounding the windings on all sides, U-shaped or angled pressboard covers.
- the additional insulation decreases one after the other at the locations outside, bottom inside and top inside, and in the case of the neighboring turn, the bottom inside and top inside decreases.
- the insulation reinforcement decreases in order at the locations inside, top outside, bottom inside, and in the neighboring turn in turn upwards outside and bottom outside, again in the downward direction Earth potential and above means towards the high voltage input.
- the windings lying on the inner surface of the winding on the lower outer edge and their respective neighboring winding on the lower inner edge are covered with an additional insulation angle and, accordingly, the windings lying on the outer surface of the winding on the upper inner edge and their each adjacent turn on the upper outer edge is covered with an additional insulation angle and the turns are otherwise insulated like the turns in the middle part of the disc coils.
- the middle turns in the individual disc coils advantageously have a common paper wrap. This paper wrapping avoids pre-discharges in the oil channel between two coils if pre-discharges in the edge conductor gussets are avoided.
- the additional insulation and / or additional axial cooling channels are provided at least in the disk coils located near the high-voltage input of the winding and the thickness of the additional insulation is reduced with increasing distance from the high-voltage input of the winding.
- the disc coil arrangement according to the invention can be used very advantageously in interwoven disc coils because it significantly improves their dielectric strength in the winding assembly without significantly reducing the high longitudinal capacitance obtained by the interweaving.
- the impulse voltage of the coil winding is increased by increasing its longitudinal strength due to the winding design according to the invention. This enables the construction of a more cost-effective winding for higher voltages compared to the conventional design.
- the arrangement of additional axial cooling channels also partially compensates for the higher temperature rise in the more insulated edge turns. A complete compensation of the higher heating in the edge turns of the arrangement according to the invention is, if necessary, possible by a slight reinforcement of their cross sections, the 1 2 R losses then decreasing with R more than the eddy current losses increase.
- interwoven disc coils are wound from two simultaneously and spatially parallel winding conductors, the windings 1 through n of which the load current flows through in the order of the digits entered. There is a multiple of the winding voltage between adjacent turns. To determine this voltage, the difference between the numbers in the windings under consideration must be multiplied by the simple winding voltage, from which the voltage difference between neighboring conductors, which occurs in the case of linear distribution, for example with alternating voltage, is obtained, which is increased by a multiple of the linear component in the case of surge voltage. The continuous insulation of the winding conductors is designed for this voltage difference.
- angle rings 30 have so far been provided on the innermost and outermost turns of each individual disk coil.
- arcing is often observed with increasing voltage along the lines 31 indicated by dashed lines (see FIGS. 1 to 3).
- the inner lines 31 often run from the uppermost input coil drawn to the innermost adjacent conductor gap (gusset) of a coil four or more coils away.
- the outer lines 31 extend from the outer winding (not shown) of the uppermost input coil to the outermost adjacent conductor gap (gusset) of the lower coil drawn in, which is four or more coils away from the input coil.
- the high field strength at the point of separation between the two adjacent edge conductors of the input coils is considered to be the cause of the first preliminary discharges.
- the invention is based on the idea that these pre-discharges from these "critical oil gussets", which arise at the edge of the neighboring conductor gap, only along the line 31, i. H. run in the radial direction to the coil surface and then in the axial direction along this surface or vice versa, because only starting from these critical gussets in both directions the voltage applied to 31 increases or decreases monotonously and there are always lengths of 31 at which the permissible Slip resistance is exceeded, so that there is a longitudinal rollover along 31.
- the permissible slip resistance of 31 is to be understood as the experimentally determined surge voltage applied to a length 31, which just does not yet lead to a breakdown along 31 if pre-discharges occur at one end of 31 due to high oil field strengths.
- an additional insulation 32 is provided according to the invention at least on the two innermost and outermost windings in each disk coil lying close to the input, the thickness of the additional insulation 32 decreasing to zero for all turns of these input coils with decreasing voltage to earth Normal coils.
- This additional insulation 32 is supported in its effect in the exemplary embodiments according to FIGS. 13 to 17 by an axial cooling channel 33 at the above-mentioned separation points, as a result of which the critical conductor gussets are avoided entirely.
- the additional insulation 32 is shown by simple edge angles and in the embodiment according to FIG. 14, the innermost and outermost turns of the disc coil are surrounded by a plurality of edge protection angles which are staggered in accordance with the decreasing field strength.
- isolating agent parts protruding in the axial direction from the disc coils are dispensed with, for example by B.
- the edge turns receive a modified turn cross-section that the axial height including the additional insulation 32 is equal to the normal height of a normal turn.
- this is represented by a joint turn of the middle windings of the disk coil.
- FIGS. 4 to 17 are drawn for the example of interwoven single coils according to FIG. 1, but also apply according to the invention for interwoven double coils according to FIG. 2.
- FIGS. 4 to 17 with the exception of FIG. 9, only the two inner and outer edge turns additional insulation 32, of course, embodiments according to the invention are also conceivable if all turns of the coils located at the winding input are provided with this additional insulation, so that they look when using insulated turn insulation 32 as shown in FIGS. 1, and 9, and that only the coils further away from the input are designed with turns without additional insulation.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
- Insulating Of Coils (AREA)
- Superconductive Dynamoelectric Machines (AREA)
- Windings For Motors And Generators (AREA)
- Moving Of Heads (AREA)
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81108637T ATE11464T1 (de) | 1981-02-13 | 1981-10-21 | Scheibenspulenwicklung aus ineinandergewickelten einzel- oder doppelspulen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3105317 | 1981-02-13 | ||
DE19813105317 DE3105317A1 (de) | 1981-02-13 | 1981-02-13 | Scheibenspulenwicklung aus ineinandergewickelten einzel- oder doppelspulen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0058232A1 EP0058232A1 (fr) | 1982-08-25 |
EP0058232B1 true EP0058232B1 (fr) | 1985-01-23 |
Family
ID=6124823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81108637A Expired EP0058232B1 (fr) | 1981-02-13 | 1981-10-21 | Enroulement en disque à partir de bobines doubles ou simples enroulées les unes dans les autres |
Country Status (7)
Country | Link |
---|---|
US (1) | US4510475A (fr) |
EP (1) | EP0058232B1 (fr) |
JP (1) | JPS57152114A (fr) |
AT (1) | ATE11464T1 (fr) |
BR (1) | BR8200685A (fr) |
CA (1) | CA1186759A (fr) |
DE (2) | DE3105317A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE31125T1 (de) * | 1984-07-02 | 1987-12-15 | Siemens Ag | Scheibenspulenwicklung fuer transformatoren. |
HU192219B (en) * | 1985-05-03 | 1987-05-28 | Budapesti Mueszaki Egyetem | Arrangement for generating high d.c. voltage from medium frequency a.c. voltage |
JP5932515B2 (ja) * | 2012-06-25 | 2016-06-08 | 株式会社東芝 | 油入静止誘導電器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE975856C (de) * | 1945-01-04 | 1962-10-31 | English Electric Co Ltd | Wicklungsanordnung mit Scheibenwicklungen, insbesondere fuer Transformatoren |
US2829354A (en) * | 1954-04-29 | 1958-04-01 | Allis Chalmers Mfg Co | Coil with end turn having increased insulation |
DE1039620B (de) * | 1957-08-21 | 1958-09-25 | Siemens Ag | Aus Scheibenspulen aufgebaute Roehrenwicklung fuer Transformatoren u. dgl. |
US3023386A (en) * | 1958-05-27 | 1962-02-27 | Westinghouse Electric Corp | Winding for electrical apparatus |
US3106690A (en) * | 1958-12-10 | 1963-10-08 | Wagner Electric Corp | Electrical induction apparatus |
US3246270A (en) * | 1962-09-10 | 1966-04-12 | Westinghouse Electric Corp | Graded insulation for interleaved windings |
DE1413549B2 (de) * | 1963-09-10 | 1971-04-08 | Licentia Patent Verwaltungs GmbH, 6000 Frankfurt | Hochspannungslagenwicklung mit inneneingang fuer trans formatoren und drosselspulen |
NL6507966A (fr) * | 1965-06-22 | 1966-12-23 | ||
US3392326A (en) * | 1966-09-28 | 1968-07-09 | Gen Electric | Coil winding buffer conductors having impedance means |
DE2059669A1 (de) * | 1970-12-04 | 1972-06-08 | Westinghouse Electric Corp | Isoliersystem fuer ein hoher elektrischer Spannungs- und Waermebeanspruchung ausgesetztes elektrisches Geraet,wie Transformator od.dgl. |
DE2246398C3 (de) * | 1972-09-21 | 1978-06-22 | Transformatoren Union Ag, 7000 Stuttgart | Oberspannungsstammlagenwicklung hoher Spannung für Transformatoren, Drosselspulen u.dgl |
-
1981
- 1981-02-13 DE DE19813105317 patent/DE3105317A1/de not_active Withdrawn
- 1981-10-21 EP EP81108637A patent/EP0058232B1/fr not_active Expired
- 1981-10-21 DE DE8181108637T patent/DE3168525D1/de not_active Expired
- 1981-10-21 AT AT81108637T patent/ATE11464T1/de not_active IP Right Cessation
-
1982
- 1982-02-08 JP JP57018690A patent/JPS57152114A/ja active Granted
- 1982-02-08 US US06/346,880 patent/US4510475A/en not_active Expired - Fee Related
- 1982-02-09 BR BR8200685A patent/BR8200685A/pt unknown
- 1982-02-12 CA CA000396203A patent/CA1186759A/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
BR8200685A (pt) | 1982-12-14 |
JPS57152114A (en) | 1982-09-20 |
JPS6344283B2 (fr) | 1988-09-05 |
DE3105317A1 (de) | 1982-09-02 |
DE3168525D1 (en) | 1985-03-07 |
EP0058232A1 (fr) | 1982-08-25 |
US4510475A (en) | 1985-04-09 |
CA1186759A (fr) | 1985-05-07 |
ATE11464T1 (de) | 1985-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1438666A1 (de) | Induktives elektrisches Geraet | |
EP1315182A2 (fr) | Enroulement pour un transformateur ou une bobine | |
EP0058232B1 (fr) | Enroulement en disque à partir de bobines doubles ou simples enroulées les unes dans les autres | |
DE3108161C2 (de) | Wicklung für einen Transformator bzw. eine Drossel | |
DE2323304C3 (de) | Stufenwicklung für Transformatoren | |
EP1183696B1 (fr) | Enroulement haute tension a commande capacitive | |
EP0167896B1 (fr) | Bobinage de bobine à plateaux pour transformateurs | |
DE2328375B2 (de) | Kondensatorbatterie zur Spannungssteuerung an Wicklungen von Transformatoren und Drosseln | |
DE19608289C2 (de) | Aus Scheibenspulen bestehende Hochspannungswicklung für Transformatoren und Drosselspulen | |
EP0014418B2 (fr) | Enroulement pour un transformateur à sec refroidi par air | |
DE3326422C2 (fr) | ||
EP0088934A1 (fr) | Enroulement constitué de bobines en disque à bobines simples ou doubles intercalées | |
DE2237054C3 (de) | Wicklung für Transformatoren und Drosselspulen | |
DE4333185C2 (de) | Wicklungsanordnung | |
DE2418230A1 (de) | Kapazitiv gesteuerte hochspannungswicklung aus scheibenspulen | |
DE19609260C2 (de) | Isolationsanordnung für rechteckige Wickeldrähte zur Herstellung von Wicklungen aus Scheibenspulen für Transformatoren und Drosseln | |
DE2505085A1 (de) | Aus scheibenspulen aufgebaute zylinderwicklung fuer hochspannungstransformatoren | |
DE1069279B (fr) | ||
DE3040412C2 (de) | Wicklungsanordnung für Transformatoren | |
DE1174421B (de) | Wicklungsanordnung fuer Leistungs-transformatoren hoher Spannung | |
DE1244945B (de) | Aus zu Doppelspulen fortlaufend geschalteten Scheibenspulen gleicher Windungszahl, zwischen denen radiale OElkanaele liegen, aufgebaute Wicklung fuer Transformatoren undDrosselspulen | |
DE2262290A1 (de) | Scheibenwicklung | |
DD281048A1 (de) | Wicklungsanordnung fuer hochspannungswandler | |
DD222725A1 (de) | Schild zur blitzspannungssteuerung in lagenwicklungen von transformatoren | |
DE2030887A1 (de) | Hochspannungswicklung für Transforma toren, Meßwandler oder dergleichen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19811021 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 11464 Country of ref document: AT Date of ref document: 19850215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3168525 Country of ref document: DE Date of ref document: 19850307 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19850927 Year of fee payment: 5 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19851031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19851031 Year of fee payment: 5 |
|
26 | Opposition filed |
Opponent name: ELIN-UNION AKTIENGESELLSCHAFT FUER ELEKTRISCHE IND Effective date: 19851019 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: ELIN-UNION AKTIENGESELLSCHAFT FUER ELEKTRISCHE IND |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19861021 Ref country code: AT Effective date: 19861021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19861022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19861031 Ref country code: CH Effective date: 19861031 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: TRANSFORMATOREN UNION AKTIENGESELLSCHAFT |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: TRANSFORMATOREN UNION AKTIENGESELLSCHAFT TE NEUREN |
|
BERE | Be: lapsed |
Owner name: TRANSFORMATOREN UNION A.G. Effective date: 19861031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19870501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
27W | Patent revoked |
Effective date: 19870605 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81108637.0 Effective date: 19870811 |