EP0054743B1 - Process for the chemical removal of oxidic layers from titanium or titanium alloys - Google Patents

Process for the chemical removal of oxidic layers from titanium or titanium alloys Download PDF

Info

Publication number
EP0054743B1
EP0054743B1 EP81109537A EP81109537A EP0054743B1 EP 0054743 B1 EP0054743 B1 EP 0054743B1 EP 81109537 A EP81109537 A EP 81109537A EP 81109537 A EP81109537 A EP 81109537A EP 0054743 B1 EP0054743 B1 EP 0054743B1
Authority
EP
European Patent Office
Prior art keywords
titanium
fluoride
removal
alkali
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81109537A
Other languages
German (de)
French (fr)
Other versions
EP0054743A1 (en
Inventor
Ludwig Fahrmbacher-Lutz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0054743A1 publication Critical patent/EP0054743A1/en
Application granted granted Critical
Publication of EP0054743B1 publication Critical patent/EP0054743B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/08Refractory metals

Definitions

  • the invention relates to a method for the chemical removal of oxide layers from objects made of titanium or titanium alloys for subsequent coating with metals, in particular in an organic electrolyte.
  • the invention therefore has for its object to provide a method by means of which it is possible to effectively remove the oxide films from workpieces made of titanium or titanium alloys without impairing the dimensional accuracy of the workpieces and the material properties, for example of screws.
  • the organic media used are those in which both the hydrogen fluoride and alkali metal fluoride or ammonium fluoride can be dissolved.
  • the media preferably consist of alcohols, in particular methanol.
  • the treatment is preferably carried out with a medium containing 3 to 8% by weight of hydrogen fluoride, 5 to 8% by weight of ammonium fluoride and 5 to 10% by weight of an alkali fluoride, in particular sodium fluoride.
  • the treatment temperature is preferably between 10 ° C and 50 ° C.
  • the removal of the oxide layer can preferably be supported electrochemically by the process according to the invention, the procedure being in particular such that adding an alkali metal salt, for.
  • an alkali metal salt for.
  • the z. B. can consist of titanium or platinum, the workpieces alternately anodic and cathodic switches.
  • the workpieces are preferably rinsed with an inert solvent under a water vapor and oxygen-free atmosphere, in particular in an inert gas atmosphere, whereby they are fed to the device in which the metal coating, preferably by electrolytic means, is also carried out under oxygen and water vapor-free conditions , takes place, in particular as metals to be layered aluminum, copper, nickel and silver, but also germanium, beryllium, molybdenum, tungsten and Zirconium.
  • electrolytic deposition known electrolyte systems can be used (US Pat. No. 2,763,605; Hurley FH, Wier TP "Electrodeposition of AI from nonaquous solutions", J. Elektrochem. Soc.
  • a workpiece consisting of titanium is fastened to a suitable device, which ensures safe handling and safe electrical contact.
  • the part is then in methanol, which is also with z.
  • B. is oxygen and hydrogen-free argon saturated, free of grease residues and any other adhering particles.
  • the workpiece Under inert gas, the workpiece is placed in a pickling solution consisting of a methanolic solution of 8% hydrogen fluoride, 5% ammonium fluoride and 10% sodium fluoride.
  • This solution contains platinum electrodes which, like the workpiece, are connected to a voltage source. These make it possible to change the potential from +10 V to -10 V within one second.
  • a voltage ratio of anode / cathode 2-1 is maintained at a temperature of 15 ° C, with the current direction changing every 10 seconds. The process described is complete after about 3 minutes.
  • the electrolyte consists of an ethereal solution of 3 mol of aluminum chloride and approx. 1 mol of LiH or LiAIH 4 and allows smooth, reversing direct current at a current density of approx. 3 A / Dm 2 . to deposit dense aluminum layers of approx. 0.08 cm, whereby an excellent adhesion to the base material is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Physical Vapour Deposition (AREA)

Description

Die Erfindung betrifft ein Verfahren zur chemischen Entfernung von Oxidschichten von Gegenständen aus Titan oder Titanlegierungen zur anschließenden Beschichtung mit Metallen, insbesondere in einem organischen Elektrolyten.The invention relates to a method for the chemical removal of oxide layers from objects made of titanium or titanium alloys for subsequent coating with metals, in particular in an organic electrolyte.

Werkstücke aus Titan oder Titanlegierungen besitzen an ihrer Oberfläche immer eine Oxidschicht, die sich nach einem Entfernen mit chemischen oder mechanischen Mitteln an der Luft oder in wäßrigen Medien spontan wieder neu ausbildet.Workpieces made of titanium or titanium alloys always have an oxide layer on their surface, which spontaneously forms again after removal by chemical or mechanical means in air or in aqueous media.

Eine haftfeste Beschichtung der Werkstoffe ist daher nur dann möglich, wenn diese Schichten vor dem Beschichten entfernt werden und die anschließende Beschichtung in einem organischen Elektrolyten erfolgt, wobei während und nach der Oxidschichtentfernung unter absolut sauerstoff- und wasserdampffreien Bedingungen in geschlossenen Apparaturen gearbeitet werden muß, die beispielsweise unter Argon oder Stickstoff stehen.An adherent coating of the materials is therefore only possible if these layers are removed before coating and the subsequent coating takes place in an organic electrolyte, during and after the oxide layer removal under absolutely oxygen and water vapor-free conditions in closed equipment that must be worked for example under argon or nitrogen.

Zur Entfernung von Oxidschichten von Werkstücken aus Metallen bzw. Legierungen sind Verfahren bekannt, die im Vakuum arbeiten, wobei eine Reinigung durch Sputtern erfolgt (DE-OS 2 809 444). Ferner ist eine Reinigung unter Einsatz von Metallschmelzen, die mit einem Flußmittel bedeckt sind, bekannt (US-PS 2 992135). Bei diesem letzteren Verfahren kann es insbesondere dann, wenn aus Gründen einer verbesserten Haftung ein Diffusionsglühen durchgeführt wird, zu einer unerwünschten Bildung von intermetallischen Phasen kommen, die eine Versprödung des Werkstoffes verursachen (Faulkner G. E., Lewis W. J., »Recent development in Ti-brazing«, DMIL Mem. (1960) Nr. 45, Battell Mem. Inst. Columbus, Ohio und Odgen H. R., Holden F. I. »Metallography of Ti alloys« TML Report 103, Battell Mem. Inst. Columbus, Ohio). Dieses Verfahren ist für hochwertige endbearbeitete Werkstücke mit hohen Anforderungen an die Maßhaltigkeit auch deshalb nicht geeignet, da die Maßhaltigkeiten bei den Temperaturen der Schmelzen leiden. Die erwähnten Vakuumverfahren sind nicht nur störanfällig, sondern auch mit dem Nachteil sehr hoher Investitionskosten behaftet.Methods are known for removing oxide layers from workpieces made of metals or alloys, which work in a vacuum, cleaning being carried out by sputtering (DE-OS 2 809 444). Furthermore, cleaning using molten metals covered with a flux is known (US Pat. No. 2,992,135). This latter process can lead to undesired formation of intermetallic phases, which cause embrittlement of the material, in particular if diffusion annealing is carried out for reasons of improved adhesion (Faulkner GE, Lewis WJ, "Recent development in Ti-brazing" , DMIL Mem. (1960) No. 45, Battell Mem. Inst. Columbus, Ohio and Odgen HR, Holden FI "Metallography of Ti alloys" TML Report 103, Battell Mem. Inst. Columbus, Ohio). This method is also unsuitable for high-quality finished workpieces with high dimensional accuracy requirements because the dimensional accuracy suffers from the temperatures of the melts. The vacuum processes mentioned are not only prone to failure, but also have the disadvantage of very high investment costs.

Es ist bekannt (White E. L. Miller, P. D. Peoples R. S. »Antigalling coatings and lubricants of Ti«, TML Report 34, Titanium Metallurgical Laboratory Battell Institut), daß eine Beschichtung von Titan mit Aluminium zu einer Minderung des Werkzeugverschleißes bei Warmformvorgängen sowie zu einer Verhinderung einer starken Oxidation des Titans führt. Es ist ferner bekannt, daß metallische Schichten auf Titanoberflächen zu einer Verbesserung der Haftung von Schmiermitteln führen und damit einem starken Gleitverschleiß entgegenwirken (Factica N. »Lubrication of Ti« WDL Techn. Report 57-61 II ASTIA Doc. 155564 (1958); Laat de F. G. A., Adams T. »Inhibiting the Wear and Galling Characteristics of Ti«, Metals Eng. Quarterly 8 (39-48) (1968); Padberg D. L., Crosby J. J., »Fretting Resistant Coatings for Ti alloys«, 2. intern. Konferenz Ti 1972 MIT Cambridge/Mass und Kingsbary E. P. Rabinowicz E. »Friktion and Wear of Metals« Trans. ASME-Paper 58-Lub. 6 (1968). Eine Beschichtung von Titan mit Silber ermöglicht einen einfachen Hartlötprozeß (Odgen H. R., Holden F. L. »Metallography of Ti alloys« TML Report 103, Battell Mem. lnst. Columbus, Ohio). Ferner ist es bekannt, daß auf Titan aufgebrachte Zinkschichten als Schutz vor Kontaktkorrosion bei in Aluminium eingesetzten Titanverbindungselementen dienen.It is known (White EL Miller, PD Peoples RS "Antigalling coatings and lubricants of Ti", TML Report 34, Titanium Metallurgical Laboratory Battell Institute) that a coating of titanium with aluminum reduces tool wear during thermoforming processes and prevents strong oxidation of the titanium leads. It is also known that metallic layers on titanium surfaces lead to an improvement in the adhesion of lubricants and thus counteract severe sliding wear (Factica N. "Lubrication of Ti" WDL Technical Report 57-61 II ASTIA Doc. 155564 (1958); Laat de FGA, Adams T. "Inhibiting the Wear and Galling Characteristics of Ti", Metals Eng. Quarterly 8 (39-48) (1968); Padberg DL, Crosby JJ, "Fretting Resistant Coatings for Ti alloys", 2nd intern. Conference Ti 1972 with Cambridge / Mass and Kingsbary EP Rabinowicz E. "Friction and Wear of Metals" Trans. ASME-Paper 58-Lub. 6 (1968) A coating of titanium with silver enables a simple brazing process (Odgen HR, Holden FL "Metallography of Ti alloys." TML Report 103, Battell Mem., Columbus, Ohio) It is also known that zinc layers applied to titanium serve as protection against contact corrosion in titanium connecting elements used in aluminum.

Es besteht daher der häufige Bedarf, Werkstücke aus Titan oder Titanlegierungen mit einem Metall, insbesondere Aluminium, Zink oder Silber, insbesondere auf elektrolytischem Wege, zu beschichten, wobei vorher der störende Oxidfilm unter exakter Beibehaltung der Maßhaltigkeit der Werkstücke entfernt werden muß.There is therefore a frequent need to coat workpieces made of titanium or titanium alloys with a metal, in particular aluminum, zinc or silver, in particular by electrolytic means, the disruptive oxide film having to be removed beforehand while maintaining the dimensional accuracy of the workpieces.

Die Erfindung hat sich daher die Aufgabe gestellt, ein Verfahren zu schaffen, mit dessen Hilfe es möglich ist, die Oxidfilme von Werkstücken aus Titan oder Titanlegierungen in wirksamer Weise ohne Beeinträchtigung der Maßhaltigkeit der Werkstücke und der Werkstoffeigenschaften, beispielsweise von Schrauben, zu entfernen.The invention therefore has for its object to provide a method by means of which it is possible to effectively remove the oxide films from workpieces made of titanium or titanium alloys without impairing the dimensional accuracy of the workpieces and the material properties, for example of screws.

Diese Aufgabe wird durch die Erfindung gemäß dem Patentanspruch 1 gelöst.This object is achieved by the invention according to claim 1.

Als organische Medien werden solche verwendet, in denen sowohl der Fluorwasserstoff als auch Alkalifluoride bzw. Ammoniumfluoride lösbar sind. Vorzugsweise bestehen die Medien aus Alkoholen, insbesondere Methanol.The organic media used are those in which both the hydrogen fluoride and alkali metal fluoride or ammonium fluoride can be dissolved. The media preferably consist of alcohols, in particular methanol.

Die Behandlung erfolgt vorzugsweise mit einem Medium mit einem Gehalt von 3 bis 8 Gew.-% Fluorwasserstoff, 5 bis 8 Gew.-% Ammoniumfluorid und 5 bis 10 Gew.-% eines Alkalifluorids, insbesondere Natriumfluorid.The treatment is preferably carried out with a medium containing 3 to 8% by weight of hydrogen fluoride, 5 to 8% by weight of ammonium fluoride and 5 to 10% by weight of an alkali fluoride, in particular sodium fluoride.

Die Behandlungstemperatur liegt vorzugsweise zwischen 10° C und 50° C.The treatment temperature is preferably between 10 ° C and 50 ° C.

Die Entfernung der Oxidschicht kann vorzugsweise nach dem erfindungsgemäßen Verfahren elektrochemisch unterstützt werden, wobei man insbesondere in der Weise verfährt, daß man unter Zugabe eines Alkalisalzes, z. B. Natriumsulfat, zur Erhöhung der Leitfähigkeit der Lösung und unter Anwendung von Gegenelektroden, die z. B. aus Titan oder Platin bestehen können, die Werkstücke abwechselnd anodisch und kathodisch schaltet.The removal of the oxide layer can preferably be supported electrochemically by the process according to the invention, the procedure being in particular such that adding an alkali metal salt, for. As sodium sulfate, to increase the conductivity of the solution and using counter electrodes, the z. B. can consist of titanium or platinum, the workpieces alternately anodic and cathodic switches.

Nach der Entfernung der Oxidschicht werden die Werkstücke vorzugsweise mit einem inerten Lösungsmittel unter einer wasserdampf- und sauerstofffreien Atmosphäre gespült, insbesondere in einer Inertgasatmosphäre, wobei sie unter ebenfalls sauerstoff- und wasserdampffreien Bedingungen der Vorrichtung zugeführt werden, in welcher die Metallbeschichtung, vorzugsweise auf elektrolytischem Wege, erfolgt, wobei insbesondere als aufzuschichtende Metalle Aluminium, Kupfer, Nickel und Silber, jedoch auch Germanium, Beryllium, Molybdän, Wolfram und Zirkonium, in Frage kommen. Im Falle einer elektrolytischen Abscheidung kann man auf bekannte Elektrolytsysteme zurückgreifen (US-PS 2 763 605; Hurley F. H., Wier T. P. »Elektrodeposition of AI from nonaquous solutions«, J. Elektrochem. Soc. 96, 48-56 (1949), US-PS 2446331, 2 446 349 und 2 446 350; Elze Lange Meyer »Zur elektrolytischen Abscheidung von Al«, Metall 13, 541-549 (1959); Ziegler, Lehmkul, »Zeitschrift anorg. chem.« 283, 414 (1956); Heritage R. J. »The Electrodeposition of Al«, Trans. Inst. Met. Finishing 32, 61 -71 (1955) und Connor J. H., Reid E. E., Wood »Elektrodeposition of Magnesium and Mg. alloys«, J. electrochem. Soc. 104, 38/41 (1957)).After removal of the oxide layer, the workpieces are preferably rinsed with an inert solvent under a water vapor and oxygen-free atmosphere, in particular in an inert gas atmosphere, whereby they are fed to the device in which the metal coating, preferably by electrolytic means, is also carried out under oxygen and water vapor-free conditions , takes place, in particular as metals to be layered aluminum, copper, nickel and silver, but also germanium, beryllium, molybdenum, tungsten and Zirconium. In the case of electrolytic deposition, known electrolyte systems can be used (US Pat. No. 2,763,605; Hurley FH, Wier TP "Electrodeposition of AI from nonaquous solutions", J. Elektrochem. Soc. 96, 48-56 (1949), US Pat. PS 2446331, 2 446 349 and 2 446 350; Elze Lange Meyer "For the electrolytic deposition of Al", Metall 13, 541-549 (1959); Ziegler, Lehmkul, "Zeitschrift anorg. Chem." 283, 414 (1956); Heritage RJ "The Electrodeposition of Al", Trans. Inst. Met. Finishing 32, 61-71 (1955) and Connor JH, Reid EE, Wood "Elektrodeposition of Magnesium and Mg. Alloys", J. electrochem. Soc. 104, 38/41 (1957)).

Das folgende Beispiel erläutert die Erfindung: Ein aus Titan bestehendes Werkstück wird an einer geeigneten Vorrichtung, welche eine sichere Handhabung sowie einen sicheren Stromkontakt gewährleistet, befestigt. Das Teil wird danach in Methanol, das ebenso mit z. B. sauerstoff- und wasserstofffreiem Argon gesättigt ist, von Fettrückständen und allenfalls anhaftenden sonstigen Partikeln befreit.The following example explains the invention: A workpiece consisting of titanium is fastened to a suitable device, which ensures safe handling and safe electrical contact. The part is then in methanol, which is also with z. B. is oxygen and hydrogen-free argon saturated, free of grease residues and any other adhering particles.

Unter Inertgas wird das Werkstück in eine Beizlösung, die aus einer methanolischen Lösung von 8% Fluorwasserstoff, 5% Ammoniumfluorid und 10% Natriumfluorid besteht, eingebracht. In dieser Lösung befinden sich Platinelektroden, die ebenso wie das Werkstück mit einer Spannungsquelle verbunden sind. Diese ermöglichen es, das Potential von +10 V auf -10 V innerhalb einer Sekunde zu wechseln. Während dieses Beizprozesses wird bei einer Temperatur von 15°C ein Spannungsverhältnis von Anode/Kathode = 2-1 aufrechterhalten, wobei die Stromrichtung alle 10 Sekunden wechselt. Der beschriebene Prozeß ist nach etwa 3 Minuten beendet.Under inert gas, the workpiece is placed in a pickling solution consisting of a methanolic solution of 8% hydrogen fluoride, 5% ammonium fluoride and 10% sodium fluoride. This solution contains platinum electrodes which, like the workpiece, are connected to a voltage source. These make it possible to change the potential from +10 V to -10 V within one second. During this pickling process, a voltage ratio of anode / cathode = 2-1 is maintained at a temperature of 15 ° C, with the current direction changing every 10 seconds. The process described is complete after about 3 minutes.

Das gereinigte und vor allem von jeglicher Oxidschicht befreite Werkstück wird danach gespült, wiederum mit einem inertgasgesättigten Methanol, und unter ununterbrochener Inertatmosphäre (Argon) in den Elektrolyt eingebracht. Entsprechend den US-PS 2446331, 2446349 und 2446350 besteht der Elektrolyt aus einer ätherischen Lösung von 3 Mol Aluminiumchlorid und ca. 1 Mol LiH bzw. LiAIH4 und erlaubt es bei reversierendem Gleichstrom bei einer Stromdichte von ca. 3 A/Dm2 glatte, dichte Aluminiumschichten von ca. 0,08 cm abzuscheiden, wobei eine ausgezeichnete Haftung zum Grundwerkstoff erzielt wird.The cleaned and, above all, any oxide layer is then rinsed, again with methanol saturated with inert gas, and introduced into the electrolyte under an uninterrupted inert atmosphere (argon). According to US Pat. Nos. 2446331, 2446349 and 2446350, the electrolyte consists of an ethereal solution of 3 mol of aluminum chloride and approx. 1 mol of LiH or LiAIH 4 and allows smooth, reversing direct current at a current density of approx. 3 A / Dm 2 . to deposit dense aluminum layers of approx. 0.08 cm, whereby an excellent adhesion to the base material is achieved.

Claims (8)

1. A process for the chemical removal of oxide layers from objects of titanium or titanium alloys for the subsequent coating with metals, characterized in that the treatment is carried through in an anhydrous organic solution of a mixture of hydrogen fluoride and one or more alkali fluorides and/or ammonium fluoride.
2. The process of claim 1, characterized in that the solution used consists of an anhydrous alcohol with a content of from 3 to 8% by weight of hydrogen fluoride, from 5 to 8% by weight of ammonium fluoride and from 5 to 10% by weight of an alkali fluoride.
3. The process of claim 2, characterized in that the anhydrous alcohol used consists of methanol.
4. The process of claims 1 to 3, characterized in that the alkali fluoride used consists of sodium fluoride.
5. The process of claims 1 to 4, characterized in that the treatment is carried through at a temperature of from 10° C to 50° C.
6. The process of claims 1 to 5, characterized in that the removal of the oxide layer is enhanced electrochemically.
7. The process of claim 6, characterized in that the electrochemical enhancing of the removal of the oxide layer is carried out by the addition of alkali salts so as to increase the conductivity of the solution and by means of counter-electrodes.
8. The process of claims 1 to 7, characterized in that the workpieces freed from the oxide layer are, prior to coating with a metal, rinsed with an inert solvent in an atmosphere free from water vapor and oxygen.
EP81109537A 1980-12-19 1981-11-05 Process for the chemical removal of oxidic layers from titanium or titanium alloys Expired EP0054743B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3048083A DE3048083C2 (en) 1980-12-19 1980-12-19 Process for the chemical removal of oxide layers from objects made of titanium or titanium alloys
DE3048083 1980-12-19

Publications (2)

Publication Number Publication Date
EP0054743A1 EP0054743A1 (en) 1982-06-30
EP0054743B1 true EP0054743B1 (en) 1985-01-23

Family

ID=6119718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109537A Expired EP0054743B1 (en) 1980-12-19 1981-11-05 Process for the chemical removal of oxidic layers from titanium or titanium alloys

Country Status (3)

Country Link
US (1) US4525250A (en)
EP (1) EP0054743B1 (en)
DE (1) DE3048083C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267534A1 (en) * 1986-11-11 1988-05-18 INTERATOM Gesellschaft mit beschränkter Haftung Process and apparatus for the electrolytic deposition of metals on a substrate
EP0504705A1 (en) * 1991-03-20 1992-09-23 Siemens Aktiengesellschaft Pretreatment of metallic material for the electrodeposition coating with metal
EP0504704A1 (en) * 1991-03-20 1992-09-23 Siemens Aktiengesellschaft Pretreatment of metallic material for the electrodeposition coating with metal
DE19533748A1 (en) * 1995-09-12 1997-03-13 Alcotec Beschichtungsanlagen G Metal activating soln. of acid and ether-type solvent
DE10057560A1 (en) * 2000-11-21 2002-05-23 Volkswagen Ag Increasing corrosion resistance of workpiece made from titanium (alloy) and contaminated with metallic iron comprises treating the workpiece with pickling solution

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344958C1 (en) * 1983-12-13 1984-07-19 VEGLA Vereinigte Glaswerke GmbH, 5100 Aachen Method for soldering a power connection element to the power supply conductor of a heatable glass pane
US4968383A (en) * 1985-06-18 1990-11-06 The Dow Chemical Company Method for molding over a preform
US4861407A (en) * 1985-06-18 1989-08-29 The Dow Chemical Company Method for adhesive bonding articles via pretreatment with energy beams
US4755263A (en) * 1986-09-17 1988-07-05 M&T Chemicals Inc. Process of electroplating an adherent chromium electrodeposit on a chromium substrate
US5227036A (en) * 1990-02-23 1993-07-13 Gordon Roy G Electrolytic removal of tin oxide from a coater
DE4120305C1 (en) * 1991-06-20 1992-08-27 Mtu Muenchen Gmbh
AT403931B (en) * 1993-07-08 1998-06-25 Andritz Patentverwaltung METHOD AND DEVICE FOR TREATING TREATED STAINLESS STEEL PRODUCTS, ESPECIALLY TREATED STEEL C-STEEL WARMBAND
US5464524A (en) * 1993-09-17 1995-11-07 The Furukawa Electric Co., Ltd. Plating method for a nickel-titanium alloy member
US5376236A (en) * 1993-10-29 1994-12-27 At&T Corp. Process for etching titanium at a controllable rate
US6800326B1 (en) * 1997-01-14 2004-10-05 Seiko Epson Corporation Method of treating a surface of a surface of a substrate containing titanium for an ornament
US6416589B1 (en) 1999-02-18 2002-07-09 General Electric Company Carbon-enhanced fluoride ion cleaning
US6248704B1 (en) 1999-05-03 2001-06-19 Ekc Technology, Inc. Compositions for cleaning organic and plasma etched residues for semiconductors devices
US6537816B1 (en) * 1999-06-14 2003-03-25 General Electric Company Standards, methods for making, and methods for using the standards in evaluation of oxide removal
ES2159477B1 (en) * 1999-08-17 2002-04-16 Montana Exposito Vicenta De Metal coating of eg. sports shoes for decoration purposes consists of application of eg. gold by electrolysis after covering the shoe with a conductive metal and varnish mixture
US6355116B1 (en) 2000-03-24 2002-03-12 General Electric Company Method for renewing diffusion coatings on superalloy substrates
US6527938B2 (en) 2001-06-21 2003-03-04 Syntheon, Llc Method for microporous surface modification of implantable metallic medical articles
US6932897B2 (en) * 2003-03-03 2005-08-23 Com Dev Ltd. Titanium-containing metals with adherent coatings and methods for producing same
US6913791B2 (en) * 2003-03-03 2005-07-05 Com Dev Ltd. Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
US6960370B2 (en) * 2003-03-27 2005-11-01 Scimed Life Systems, Inc. Methods of forming medical devices
US6878215B1 (en) 2004-05-27 2005-04-12 General Electric Company Chemical removal of a metal oxide coating from a superalloy article
US7611588B2 (en) * 2004-11-30 2009-11-03 Ecolab Inc. Methods and compositions for removing metal oxides
US7115171B2 (en) 2004-12-27 2006-10-03 General Electric Company Method for removing engine deposits from turbine components and composition for use in same
DE102007043479A1 (en) * 2007-09-12 2009-03-19 Valeo Schalter Und Sensoren Gmbh Process for the surface treatment of aluminum and a layer structure of a component made of aluminum with an electrical contact
EP2570520B1 (en) * 2011-09-15 2017-11-22 General Electric Company Method of rejuvenating a multilayer structure
CN102560514A (en) * 2012-01-16 2012-07-11 南昌航空大学 Faintly acid suspension liquid for removing anodic oxide film of titanium and titanium alloy
CN104947162A (en) * 2015-07-22 2015-09-30 四川华丰企业集团有限公司 Titanium alloy surface electroplating method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828193A (en) * 1954-08-09 1958-03-25 Turco Products Inc Method for rejuvenation of aluminum treating solutions
GB922507A (en) * 1961-09-28 1963-04-03 Continental Titanium Metals Co Improvements in and relating to the conditioning of titanium or titanium base alloys
US3468774A (en) * 1966-12-09 1969-09-23 Rohr Corp Electrolytic descaling of titanium and its alloys
DE1621595A1 (en) * 1967-01-09 1971-04-29 Hilvolin Gmbh Process for removing rust, scale, mill skin and deposits containing silica from iron and steel surfaces by means of a pickling liquid
US3562013A (en) * 1967-10-23 1971-02-09 Diversey Corp Process of deoxidizing titanium and its alloys
DE1621177B2 (en) * 1967-12-08 1976-09-30 Siemens AG, 1000 Berlin und 8000 München PROCESS FOR THE GALVANIC PRODUCTION OF NICKEL, COPPER, ZINC, INDIUM, TIN AND GOLD COATINGS ON NIOB AND NIOB-ZIRCONIUM ALLOYS
BR7506737A (en) * 1974-10-18 1976-08-17 Philips Nv PROCESS FOR TREATING BODIES WITH AN ATTACK AGENT TO REMOVE ALUMINUM OXIDE AND PROCESS FOR MANUFACTURING SEMICONDUCTOR DEVICES
FR2288392A1 (en) * 1974-10-18 1976-05-14 Radiotechnique Compelec PROCESS FOR THE EMBODIMENT OF SEMICONDUCTOR DEVICES
US4126523A (en) * 1976-10-21 1978-11-21 Alumatec, Inc. Method and means for electrolytic precleaning of substrates and the electrodeposition of aluminum on said substrates
DD149086A1 (en) * 1979-07-04 1981-06-24 Hans H Daut METHOD FOR MINIMIZING THE TRANSITION RESISTANCE OF ALUMINUM IN ELECTRICAL CONNECTIONS
US4314876A (en) * 1980-03-17 1982-02-09 The Diversey Corporation Titanium etching solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0267534A1 (en) * 1986-11-11 1988-05-18 INTERATOM Gesellschaft mit beschränkter Haftung Process and apparatus for the electrolytic deposition of metals on a substrate
NL8602856A (en) * 1986-11-11 1988-06-01 Hga Galvano Aluminium B V METHOD AND APPARATUS FOR GALVANIC SEPARATION OF METALS ON A SUBSTRATE
EP0504705A1 (en) * 1991-03-20 1992-09-23 Siemens Aktiengesellschaft Pretreatment of metallic material for the electrodeposition coating with metal
EP0504704A1 (en) * 1991-03-20 1992-09-23 Siemens Aktiengesellschaft Pretreatment of metallic material for the electrodeposition coating with metal
DE19533748A1 (en) * 1995-09-12 1997-03-13 Alcotec Beschichtungsanlagen G Metal activating soln. of acid and ether-type solvent
DE19533748C2 (en) * 1995-09-12 2000-09-14 Rasant Alcotec Beschichtungste Activation solution for the pretreatment of metallic materials for galvanic metal coating from non-aqueous electrolytes, use and method
DE10057560A1 (en) * 2000-11-21 2002-05-23 Volkswagen Ag Increasing corrosion resistance of workpiece made from titanium (alloy) and contaminated with metallic iron comprises treating the workpiece with pickling solution

Also Published As

Publication number Publication date
US4525250A (en) 1985-06-25
DE3048083C2 (en) 1983-09-29
DE3048083A1 (en) 1982-07-01
EP0054743A1 (en) 1982-06-30

Similar Documents

Publication Publication Date Title
EP0054743B1 (en) Process for the chemical removal of oxidic layers from titanium or titanium alloys
EP0416099A1 (en) Method for electrochemically treating articles made of conductive materials
DE2907875C2 (en) Process for the electrolytic removal of tungsten carbide coatings on workpieces made of titanium or titanium alloys
DE19748926A1 (en) Adherent electroplating of silicon@-containing aluminium@ alloy
DE19523307A1 (en) Chrome plating process using trivalent chromium
DE3821073A1 (en) Method for electroplating objects made of aluminium or aluminium alloys with a preferably solderable metal coating
DE2615515A1 (en) METAL-COVERED METAL OBJECTS AND METHOD FOR MANUFACTURING THEREOF
DE2845736C2 (en)
DE2263013A1 (en) METHOD OF JOINING TITANIUM OR TANTALUM WITH COPPER OR IRON
DE10159890A1 (en) Pretreatment process for coating aluminum materials
EP1543180B1 (en) Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys
EP0975823B1 (en) Electrolytic high-speed deposition of aluminium on continuous products
DE2260191C3 (en) Process for preparing workpieces made of electrically conductive materials, in particular metal for electroplating
EP1682697A2 (en) Coating of substrates
EP0328128B1 (en) Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein
DE19533748C2 (en) Activation solution for the pretreatment of metallic materials for galvanic metal coating from non-aqueous electrolytes, use and method
DE4211642C1 (en)
DE3400139C2 (en)
WO1992022686A1 (en) Method of pretreating the surfaces of non-ferrous metals prior to galvanic deposition of a coat of metal
DE4101296C2 (en)
EP0139039B1 (en) Stripping bath and process for the electrolytical stripping of metals from titanium as a base metal
DE3107384A1 (en) Component
EP0504704A1 (en) Pretreatment of metallic material for the electrodeposition coating with metal
CN1072623A (en) Solid-state welding surface treatment method of aluminum or aluminum alloy and inorganic agent thereof
JPH07188971A (en) Method for galvanizing aluminum and aluminum alloy sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT NL SE

17P Request for examination filed

Effective date: 19820715

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT NL SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121

EUG Se: european patent has lapsed

Ref document number: 81109537.1

Effective date: 19880913