EP1543180B1 - Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys - Google Patents
Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys Download PDFInfo
- Publication number
- EP1543180B1 EP1543180B1 EP03807748A EP03807748A EP1543180B1 EP 1543180 B1 EP1543180 B1 EP 1543180B1 EP 03807748 A EP03807748 A EP 03807748A EP 03807748 A EP03807748 A EP 03807748A EP 1543180 B1 EP1543180 B1 EP 1543180B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alet
- electrolyte
- magnesium
- aluminum
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 71
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 48
- 239000011777 magnesium Substances 0.000 title claims abstract description 43
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 42
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000011248 coating agent Substances 0.000 title claims abstract description 23
- 238000000576 coating method Methods 0.000 title claims abstract description 23
- 229910000838 Al alloy Inorganic materials 0.000 title abstract description 9
- 229910000861 Mg alloy Inorganic materials 0.000 title abstract description 9
- 239000004411 aluminium Substances 0.000 title abstract 4
- 239000003792 electrolyte Substances 0.000 claims description 55
- 239000011734 sodium Substances 0.000 claims description 26
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000000010 aprotic solvent Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052700 potassium Chemical group 0.000 claims description 2
- 239000011591 potassium Chemical group 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 39
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000000151 deposition Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 7
- 238000011109 contamination Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- -1 aluminum halides Chemical class 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005269 aluminizing Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/42—Electroplating: Baths therefor from solutions of light metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/42—Pretreatment of metallic surfaces to be electroplated of light metals
Definitions
- the present invention relates to a process for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, wherein the material is dipped into an electrolyte for pretreatment and is switched there anodically and immediately thereafter the electrolytic coating takes place in the same electrolyte.
- the quality of the deposited aluminum, magnesium or aluminum / magnesium coating is improved.
- the deposition of aluminum, magnesium or aluminum / magnesium alloys on materials that are made of base metals is a tried and tested means to protect these materials from corrosion. You will be provided at the same time with a decorative coating.
- the protective metal layer is deposited here predominantly galvanically on the material. In this case, it is advantageous if the aluminum, magnesium or aluminum / magnesium layer takes place on the material without the application of metallic intermediate layers between said metal layer and the material. If intermediate layers between the material and the surface layer of aluminum, magnesium or aluminum / magnesium alloy are applied, there is a risk of contact corrosion due to the applied intermediate layer. In addition, thermal problems may occur due to the different expansion coefficients of the surface layer and the intermediate layer.
- Electrolytes which have been well-known in the art include melt flow electrolytes such as electrolytes containing aluminum halides or aluminum alkyl complexes. All these electrolyte systems have in common that the material must be cleaned on its surface before coating. This is especially true for materials made of base metals which form an oxide layer, the problem that this oxide layer must be completely removed before the coating. If the surface of the materials is not completely cleaned, contaminants or residues of the oxide layer of the metal of which the material is made adversely affect the adhesion of the subsequently electrolytically applied metal layer. Furthermore, it is possible that at the points where impurities on the surface are present, no metal layer is applied, since the impurities are usually not electrically conductive and thus an electrolytic deposition is prevented at this point. This then inevitably leads to corrosion problems of the finished coated material at the point where the metal layer was not completely applied.
- DE-C3-22 60 191 describes a method for the preparation of materials made of electrically conductive materials.
- the last method step used for shaping the materials, in which a new blank surface is formed on the material is carried out in the absence of atmospheric oxygen and moisture in a suitable inert gas or inert liquid medium.
- a disadvantage of this method is that, in particular when using inert liquid medium, which covers the surface of the material and thus can be brought into the coating electrolyte, this subsequently contaminates or hydrolyzes the electrolyte.
- inert gas media shows in the industrial application the problem that an absolutely oxygen-free inert gas atmosphere is practically impossible to realize.
- the pretreatment of a material in a protective gas atmosphere is described.
- the oxide layer on the surface of the material may be removed by anodizing the material prior to depositing the aluminum layer in the electrolyte made from sodium fluoride and aluminum triethyl. Subsequently, a reversal of the current takes place, as well as a deposition of aluminum on the material.
- the disadvantage is that the electrolyte can only be used to deposit aluminum on materials.
- the deposition of magnesium or aluminum / magnesium layers is not possible because the presence of halide ions in the electrolyte in the anodic polarization would produce directly insoluble magnesium halide compounds which prevent deposition of magnesium or aluminum / magnesium on the material. The resulting magnesium halides would immediately prevent the flow of current in the electrolyte by blocking the electrodes.
- DE-AS-21 22 610 describes a process for the anodic pretreatment of light metals for the electrodeposition of aluminum.
- the components are cleaned by treating the light metal materials in a molten electrolyte, the materials being subjected to anodic loading.
- the light metal materials cleaned in this way are humidified, so that they are still contaminated with the molten electrolyte, and immersed in an aluminizing cell. In this case, it can not be ruled out that atmospheric oxygen still reaches the pretreated material and oxidizes it again on the surface. Further, contamination of the aluminizing electrolyte by the surface-treating electrolyte, which is a molten electrolyte, takes place.
- the material in the molten electrolyte which serves for the surface treatment by anodic oxidation of the material, also for the electrodeposition of aluminum on the Beryllium or aluminum material is used.
- the melt electrolyte described in DE-AS-21 22 610 is only suitable for pretreating beryllium or aluminum materials in order subsequently to coat them with aluminum in the same melt electrolyte.
- the molten electrolyte is not suitable for electroplating aluminum, magnesium or aluminum / magnesium layers on other materials.
- DE-A1-198 55 666 describes an electrolyte suitable for depositing aluminum / magnesium alloy layers.
- the disclosed aluminum-organic electrolyte contains K [AlEt 4 ] or Na [Et 3 Al-H-AlEt 3 ], as well as Na [AlEt 4 ], as well as trialkylaluminum.
- the electrolyte can be present as a toluene solution.
- the electrolytic deposition of aluminum / magnesium alloy layers from the described electrolyte is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an aluminum / magnesium alloy anode. In the described method, the electrolyte composition is adjusted by pre-electrolysis so that the deposited layer has the desired aluminum / magnesium ratio.
- Mg [AlEt 4 ] 2 can also be added to the electrolyte.
- DE-A1-198 55 666 thus teaches that the ratio of aluminum and magnesium in the deposited aluminum / magnesium layer is very much dependent on the concentration ratio of magnesium and aluminum in the electrolyte.
- great care must be taken in the pretreatment of the materials to be coated, as contamination of the surface of the material by oxidation or other influences leads to reduced quality of the electrodeposited metal layer.
- the technical object of the present invention is to provide a method in which aluminum, magnesium or aluminum / magnesium layers can be applied to materials, wherein the quality of the metal coating is increased by an improved pretreatment of the material.
- a method is provided be, in which the materials to be coated are reliably and inexpensively freed from adhering oxide layers or other impurities, after the pretreatment of the materials, a renewed contamination or oxidation of the materials to be prevented.
- the technical object of the present invention is achieved by a process for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, wherein the material is immersed in the electrolyte for pretreatment, is anodically switched there and immediately thereafter the electrolytic coating in the same Electrolytes takes place, wherein the electrolyte bath organoaluminum compounds of the general formula M [(R 1 ) 3 Al- (H-Al (R 2 ) 2 ) n -R 3 ] (I) and Al (R 4 ) 3 (II) as the electrolyte and n is 0 or 1, M is sodium or potassium and R 1 , R 2 , R 3 , R 4 may be the same or different, wherein R 1 , R 2 , R 3 , R 4 are C 1 - to C 4 alkyl group and is used as a solvent for the electrolyte, a halogen-free, aprotic solvent.
- an electrolyte is used as a mixture of the complexes K [AlEt 4 ], Na [AlEt 4 ] and AlEt 3 are used.
- the molar ratio of the complexes to AlEt 3 is 1: 0.5 to 1: 3, with the ratio of 1: 2 being preferred.
- a mixture of 0.8 mol of K [AlEt 4 ], 0.2 mol of Na [AlEt 4 ], 2.0 mol of AlEt 3 in 3.3 mol of toluene can be used as the electrolyte.
- a mixture of Na [Et 3 Al-H-AlEt 3 ] and Na [AlEt 4 ] and AlEt 3 can be used as the electrolyte in the process according to the invention.
- the molar ratio of Na [Et 3 Al-H-AlEt 3 ] to Na [AlEt 4 ] is 4: 1 to 1: 1, with a ratio of 2: 1 being preferred. It is further preferred that the molar ratio of Na [AlEt 4 ] to AlEt 3 is 1: 2.
- the electrolyte used is a mixture of 1 mol of Na [Et 3 Al-H-AlEt 3 ], 0.5 mol of Na [AlEt 4 ] and 1 mol of AlEt 3 in 3 mol of toluene.
- the electrolytic coating of materials with magnesium, aluminum or aluminum / magnesium alloys is preferably carried out at a temperature of 80 to 105 ° C. A temperature of the plating bath of 91 to 100 ° C is preferred.
- the electrolytic deposition of aluminum, magnesium, or aluminum / magnesium layers on the materials is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an aluminum / magnesium alloy anode. However, it is also possible to use only one aluminum or one magnesium anode.
- the anodic switching of the material for pretreatment can be carried out for a period of 1 to 20 minutes, with 5 to 15 minutes being preferred.
- the anodic loading of the materials necessary for the pretreatment is carried out with a current density of 0.2 to 2 A / dm 2 , preferably 0.5 to 1.5 A / dm 2 .
- any material can be used which is suitable for electrodeposition. It is preferred that the material consists of a metal and / or of a metal alloy and / or is a metallized, electrolyte-resistant material, which can be dissolved in the electrolyte by anodic circuit.
- the materials to be coated are preferably rack goods, bulk goods or endless products such as wire, square plates, screws or nuts.
- the method according to the invention is characterized in that impurities or oxide layers which adhere to the materials are safely removed. Surprisingly, no disadvantageous change of the electrolyte composition occurs here, which would prevent a high-quality deposition of aluminum, magnesium or aluminum / magnesium layers on the materials. Furthermore, the electrodeposited metal layers are firmly adhering and homogeneously applied to the material, since after cleaning a renewed contamination of the material is prevented. In addition to the quality advantages mentioned, cost optimization of the coating of molded parts with metal layers is additionally achieved by the above-mentioned method steps.
- Phase b) The dry part was introduced into an argon or nitrogen-flooded coating cell and immediately introduced into the coating electrolyte after a pre-rinse in toluene.
- the electrolyte used was a mixture of the complexes K [AlEt 4] , K [AlEt 4 ] and AlEt 3 dissolved in toluene.
- the counterelectrode used was an AlMg25 alloy plate.
- the product to be coated was first anodically poled and treated at a current density of 1 A / dm 2 for 5 minutes at an electrolyte temperature of 95 ° C. Then reversed without removing the part from the electrolyte and immediately for 45 minutes at a current density of 1 5 A / dm 2 coated.
- An AlMg alloy layer of about 14 ⁇ m thickness was deposited.
- the adhesion of the layer was tested by cross hatch test and heat shock test (1 h at 220 ° C and quenching in cold water). It was found that excellent adhesion of the deposited layer to the base material was present. No peeling or bubbles could be detected.
- a treated as a comparative sample was pretreated and coated as in Example 1, but without anodic polarity in advance.
- the layer could be peeled off in the crosshatch test as a film. In heat shock test, the layer showed bubbles.
- a magnesium die-cast part made of an AZ-91 alloy was blasted with corundum (grain size 0-50 ⁇ m) at 2 bar pressure. The part was then immediately placed in the inert gas atmosphere of the coating cell, pre-rinsed in toluene and immersed in the electrolyte bath as described in Example 1.
- the product to be coated was anodized for 10 minutes at a current density of 1 A / dm 2 . In this case, a layer of about 2 microns was removed on the product surface. It was then reversed and the part switched cathodically for 1 hour at 1.5 A / dm 2 .
- An AlMg layer with 23-25% Mg content and a layer thickness of approximately 18 ⁇ m was deposited.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur elektrolytischen Beschichtung von Werkstoffen mit Aluminium, Magnesium oder Legierungen von Aluminium und Magnesium, wobei der Werkstoff zur Vorbehandlung in einen Elektrolyten getaucht wird und dort anodisch geschaltet wird und unmittelbar danach die elektrolytische Beschichtung in demselben Elektrolyten erfolgt. Durch das erfindungsgemäße Verfahren wird die Qualität der abgeschiedenen Aluminium-, Magnesium- oder Aluminium/Magnesium-Beschichtung verbessert.The present invention relates to a process for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, wherein the material is dipped into an electrolyte for pretreatment and is switched there anodically and immediately thereafter the electrolytic coating takes place in the same electrolyte. By the method according to the invention, the quality of the deposited aluminum, magnesium or aluminum / magnesium coating is improved.
Die Abscheidung von Aluminium, Magnesium oder Aluminium/Magnesium-Legierungen auf Werkstoffen, die aus unedlen Metallen bestehen ist ein probates Mittel um diese Werkstoffe vor Korrosion zu schützen. Sie werden dabei gleichzeitig mit einer dekorativen Beschichtung versehen. Die schützende Metallschicht wird hierbei vorwiegend galvanisch auf dem Werkstoff abgeschieden. Hierbei ist es vorteilhaft, wenn die Aluminium-, Magnesium- oder Aluminium/Magnesium-Schicht auf dem Werkstoff ohne die Aufbringung von metallischen Zwischenschichten zwischen besagter Metallschicht und dem Werkstoff erfolgt. Falls Zwischenschichten zwischen dem Werkstoff und der Oberflächenschicht aus Aluminium, Magnesium oder Aluminium/Magnesium-Legierung aufgebracht sind, besteht die Gefahr der Kontaktkorrosion bedingt durch die aufgebrachte Zwischenschicht. Zusätzlich können thermische Probleme bedingt durch die unterschiedlichen Ausdehnungskoeffizienten der Oberflächenschicht und der Zwischenschicht auftreten.The deposition of aluminum, magnesium or aluminum / magnesium alloys on materials that are made of base metals is a tried and tested means to protect these materials from corrosion. You will be provided at the same time with a decorative coating. The protective metal layer is deposited here predominantly galvanically on the material. In this case, it is advantageous if the aluminum, magnesium or aluminum / magnesium layer takes place on the material without the application of metallic intermediate layers between said metal layer and the material. If intermediate layers between the material and the surface layer of aluminum, magnesium or aluminum / magnesium alloy are applied, there is a risk of contact corrosion due to the applied intermediate layer. In addition, thermal problems may occur due to the different expansion coefficients of the surface layer and the intermediate layer.
Zu den Elektrolyten, die sich im Stand der Technik bewährt haben, gehören Schmelzflusselektrolyte, wie Elektrolyte, die Aluminiumhalogenide oder Aluminiumalkylkomplexe enthalten. Allen diesen Elektrolytsystemen ist gemeinsam, dass der Werkstoff vor der Beschichtung an seiner Oberfläche gereinigt werden muss. So stellt sich vor allem bei Werkstoffen, die aus unedlen Metallen bestehen welche eine Oxidschicht bilden, das Problem, dass diese Oxidschicht vor der Beschichtung vollständig entfernt werden muss. Falls die Oberfläche der Werkstoffe nicht vollständig gereinigt ist, führen auf der Oberfläche anhaftende Verunreinigungen oder Reste der Oxidschicht des Metalls, aus dem der Werkstoff besteht, zu einer Beeinträchtigung der Haftung der nachfolgend elektrolytisch aufgebrachten Metallschicht. Weiterhin ist es möglich, dass an den Stellen, an denen Verunreinigungen auf der Oberfläche vorhanden sind, gar keine Metallschicht aufgebracht wird, da die Verunreinigungen in der Regel nicht elektrisch leitend sind und somit eine elektrolytische Abscheidung an dieser Stelle verhindert wird. Dies führt dann zwangsläufig zu Korrosionsproblemen des fertig beschichteten Werkstoffs an der Stelle, an der die Metallschicht nicht vollständig aufgebracht wurde.Electrolytes which have been well-known in the art include melt flow electrolytes such as electrolytes containing aluminum halides or aluminum alkyl complexes. All these electrolyte systems have in common that the material must be cleaned on its surface before coating. This is especially true for materials made of base metals which form an oxide layer, the problem that this oxide layer must be completely removed before the coating. If the surface of the materials is not completely cleaned, contaminants or residues of the oxide layer of the metal of which the material is made adversely affect the adhesion of the subsequently electrolytically applied metal layer. Furthermore, it is possible that at the points where impurities on the surface are present, no metal layer is applied, since the impurities are usually not electrically conductive and thus an electrolytic deposition is prevented at this point. This then inevitably leads to corrosion problems of the finished coated material at the point where the metal layer was not completely applied.
DE-C3-22 60 191 beschreibt ein Verfahren zur Vorbereitung von Werkstoffen aus elektrisch leitfähigen Materialien. Hierbei wird der letzte zur Formgebung der Werkstoffe dienende Verfahrensschritt, bei dem eine neue blanke Oberfläche auf dem Werkstoff entsteht, unter Ausschluss von Luftsauerstoff und Feuchtigkeit in einem geeigneten Inertgas oder Inertflüssigkeitsmedium durchgeführt. Nachteilig stellt sich bei diesem Verfahren heraus, dass insbesondere bei der Verwendung von Inertflüssigkeitsmedium, welches die Oberfläche des Werkstoffes bedeckt und somit in den Beschichtungselektrolyten verbracht werden kann, dieses nachfolgend den Elektrolyten verunreinigt oder hydrolysiert. Bei der Verwendung von Inertgasmedien zeigt sich bei der großtechnischen Anwendung das Problem, dass eine absolut sauerstofffreie Inertgasatmosphäre praktisch nicht zu realisieren ist. Spuren von Sauerstoff, die in der Inertgasatmosphäre vorhanden sind, oxidieren sofort die blanke Metalloberfläche des Werkstoffes und führen so zu den bereits beschriebenen Qualitätseinbußen der nachfolgend galvanisch aufgebrachten Metallschicht. Wenn, wie in DE-C3-22 60 191 beschrieben, die blanke Oberfläche durch ein mechanisches Verfahren, wie z. B. Fräsen, Spanen, Sägen oder Bohren, oder durch starkes Verformen des Werkstoffes mit z. B. Walzen oder durch Drahtziehen, Extrudieren oder anderen Verfahren durchgeführt wird, bedingen diese Verfahren eine Zunahme der Fertigungstoleranz des fertigen Werkstoffes. Dies macht Werkstoffe, die nach diesem Verfahren hergestellt werden, nicht geeignet für Anwendungen, bei denen eine hohe Qualitäts- und Fertigungskonstanz notwendig ist.DE-C3-22 60 191 describes a method for the preparation of materials made of electrically conductive materials. In this case, the last method step used for shaping the materials, in which a new blank surface is formed on the material, is carried out in the absence of atmospheric oxygen and moisture in a suitable inert gas or inert liquid medium. A disadvantage of this method is that, in particular when using inert liquid medium, which covers the surface of the material and thus can be brought into the coating electrolyte, this subsequently contaminates or hydrolyzes the electrolyte. The use of inert gas media shows in the industrial application the problem that an absolutely oxygen-free inert gas atmosphere is practically impossible to realize. Traces of oxygen that are present in the inert gas atmosphere immediately oxidize the bare metal surface of the material and thus lead to the already described loss of quality of the subsequently galvanically applied metal layer. If, as described in DE-C3-22 60 191, the bare surface by a mechanical method, such as. As milling, cutting, sawing or drilling, or by strong deformation of the material with z. Rolling or by wire drawing, extrusion or other methods is performed, these methods cause an increase in the manufacturing tolerance of finished material. This makes materials that are produced by this process, not suitable for applications where a high quality and manufacturing consistency is necessary.
In der DE-AS-12 12 213 wird die Vorbehandlung eines Werkstoffes in einer Schutzgasatmosphäre beschrieben. Alternativ kann die Oxidschicht an der Oberfläche des Werkstoffes dadurch entfernt werden, dass der Werkstoff vor Abscheidung der Aluminiumschicht im Elektrolyten, der aus Natriumfluorid und Aluminiumtriethyl hergestellt wird, anodisch geschaltet wird. Anschließend findet eine Umpolung des Stromes statt, sowie eine Abscheidung von Aluminium auf dem Werkstoff. Nachteilig stellt sich heraus, dass der Elektrolyt nur zur Abscheidung von Aluminium auf Werkstoffen verwendet werden kann. Die Abscheidung von Magnesium oder Aluminium/Magnesium-Schichten ist nicht möglich, da durch die Anwesenheit von Halogenidionen in dem Elektrolyten bei der anodischen Polung unmittelbar unlösliche Magnesiumhalogenid-Verbindungen entstehen würden, die eine Abscheidung von Magnesium oder Aluminium/Magnesium auf dem Werkstoff verhindern. Die entstehenden Magnesiumhalogenide würden sofort den Stromfluss im Elektrolyten durch Blockierung der Elektroden unterbinden.In DE-AS-12 12 213, the pretreatment of a material in a protective gas atmosphere is described. Alternatively, the oxide layer on the surface of the material may be removed by anodizing the material prior to depositing the aluminum layer in the electrolyte made from sodium fluoride and aluminum triethyl. Subsequently, a reversal of the current takes place, as well as a deposition of aluminum on the material. The disadvantage is that the electrolyte can only be used to deposit aluminum on materials. The deposition of magnesium or aluminum / magnesium layers is not possible because the presence of halide ions in the electrolyte in the anodic polarization would produce directly insoluble magnesium halide compounds which prevent deposition of magnesium or aluminum / magnesium on the material. The resulting magnesium halides would immediately prevent the flow of current in the electrolyte by blocking the electrodes.
DE-AS-21 22 610 beschreibt ein Verfahren zur anodischen Vorbehandlung von Leichtmetallen für die galvanische Abscheidung von Aluminium. Die Reinigung der Bauteile erfolgt durch Behandlung der Leichtmetallwerkstoffe in einem Schmelzelektrolyten, wobei die Stoffe anodisch belastet werden. Die so gereinigten Leichtmetallwerkstoffe werden elektrolytfeucht, also noch mit dem Schmelzelektrolyten belastet, in eine Aluminierzelle eingesenkt. Hierbei ist nicht auszuschließen, dass noch Luftsauerstoff an den vorbehandelten Werkstoff gelangt und diesen an der Oberfläche wieder oxidiert. Weiterhin findet eine Verunreinigung des Aluminierelektrolyten durch den Oberflächenbehandlungselektrolyten, der ein Schmelzelektrolyt ist, statt. Nur dann, wenn der Werkstoff aus Beryllium oder Aluminium besteht, ist es möglich, dass der Werkstoff in dem Schmelzelektrolyten, der zur Oberflächenbehandlung durch anodische Oxidation des Werkstoffes dient, auch zur galvanischen Abscheidung von Aluminium auf dem Beryllium- oder Aluminiumwerkstoff benutzt wird. Der in DE-AS- 21 22 610 beschriebene Schmelzelektrolyt ist nur geeignet Beryllium- oder Aluminiumwerkstoffe vorzubehandeln, um diese nachfolgend in demselben Schmelzelektrolyten mit Aluminium zu beschichten. Der Schmelzelektrolyt ist nicht geeignet um Aluminium-, Magnesium- oder Aluminium/Magnesium-Schichten auf anderen Werkstoffen galvanisch aufzubringen.DE-AS-21 22 610 describes a process for the anodic pretreatment of light metals for the electrodeposition of aluminum. The components are cleaned by treating the light metal materials in a molten electrolyte, the materials being subjected to anodic loading. The light metal materials cleaned in this way are humidified, so that they are still contaminated with the molten electrolyte, and immersed in an aluminizing cell. In this case, it can not be ruled out that atmospheric oxygen still reaches the pretreated material and oxidizes it again on the surface. Further, contamination of the aluminizing electrolyte by the surface-treating electrolyte, which is a molten electrolyte, takes place. Only if the material consists of beryllium or aluminum, it is possible that the material in the molten electrolyte, which serves for the surface treatment by anodic oxidation of the material, also for the electrodeposition of aluminum on the Beryllium or aluminum material is used. The melt electrolyte described in DE-AS-21 22 610 is only suitable for pretreating beryllium or aluminum materials in order subsequently to coat them with aluminum in the same melt electrolyte. The molten electrolyte is not suitable for electroplating aluminum, magnesium or aluminum / magnesium layers on other materials.
DE-A1-198 55 666 beschreibt einen Elektrolyten, der zur Abscheidung von Aluminium/Magnesium-Legierungsschichten geeignet ist. Der offenbarte aluminium-organische Elektrolyt enthält K[AlEt4] oder Na[Et3Al-H-AlEt3], sowie Na[AlEt4], sowie Trialkylaluminium. Der Elektrolyt kann als toluolische Lösung vorliegen. Die elektrolytische Abscheidung von Aluminium/Magnesium-Legierungsschichten aus dem beschriebenen Elektrolyten wird unter Verwendung einer löslichen Aluminium- und einer ebenfalls löslichen Magnesiumanode oder unter Verwendung einer Anode aus Aluminium/Magnesium-Legierung durchgeführt. Bei dem beschriebenen Verfahren wird durch eine Vorelektrolyse die Elektrolytzusammensetzung so eingestellt, dass die abgeschiedene Schicht das gewünschte Aluminium/Magnesium-Verhältnis aufweist. Alternativ kann auch Mg[AlEt4]2 zum Elektrolyten zugegeben werden. DE-A1-198 55 666 lehrt somit, dass das Verhältnis von Aluminium und Magnesium in der abgeschiedenen Aluminium/Magnesium-Schicht sehr stark von dem Konzentrationsverhältnis von Magnesium und Aluminium in dem Elektrolyten abhängt. Wie bei allen Verfahren des Standes der Technik ist eine große Sorgfalt bei der Vorbehandlung der zu beschichtenden Werkstoffe notwendig, da Verunreinigungen der Werkstoffoberfläche durch Oxidation oder durch andere Einflüsse zu einer verminderten Qualität der galvanisch abgeschiedenen Metallschicht führen.DE-A1-198 55 666 describes an electrolyte suitable for depositing aluminum / magnesium alloy layers. The disclosed aluminum-organic electrolyte contains K [AlEt 4 ] or Na [Et 3 Al-H-AlEt 3 ], as well as Na [AlEt 4 ], as well as trialkylaluminum. The electrolyte can be present as a toluene solution. The electrolytic deposition of aluminum / magnesium alloy layers from the described electrolyte is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an aluminum / magnesium alloy anode. In the described method, the electrolyte composition is adjusted by pre-electrolysis so that the deposited layer has the desired aluminum / magnesium ratio. Alternatively, Mg [AlEt 4 ] 2 can also be added to the electrolyte. DE-A1-198 55 666 thus teaches that the ratio of aluminum and magnesium in the deposited aluminum / magnesium layer is very much dependent on the concentration ratio of magnesium and aluminum in the electrolyte. As with all prior art processes, great care must be taken in the pretreatment of the materials to be coated, as contamination of the surface of the material by oxidation or other influences leads to reduced quality of the electrodeposited metal layer.
Die technische Aufgabe der vorliegenden Erfindung ist es ein Verfahren bereitzustellen, bei dem Aluminium-, Magnesium- oder Aluminium/Magnesium-Schichten auf Werkstoffen aufgebracht werden können, wobei die Qualität der Metallbeschichtung durch eine verbesserte Vorbehandlung des Werkstoffes erhöht wird. So soll insbesondere ein Verfahren zur Verfügung gestellt werden, bei dem die zu beschichtenden Werkstoffe zuverlässig und kostengünstig von anhaftenden Oxidschichten oder anderen Verunreinigungen befreit werden, wobei nach der Vorbehandlung der Werkstoffe eine erneute Verunreinigung oder Oxidation der Werkstoffe verhindert werden soll.The technical object of the present invention is to provide a method in which aluminum, magnesium or aluminum / magnesium layers can be applied to materials, wherein the quality of the metal coating is increased by an improved pretreatment of the material. In particular, a method is provided be, in which the materials to be coated are reliably and inexpensively freed from adhering oxide layers or other impurities, after the pretreatment of the materials, a renewed contamination or oxidation of the materials to be prevented.
Die technische Aufgabe der vorliegenden Erfindung wird durch ein Verfahren zur elektrolytischen Beschichtung von Werkstoffen mit Aluminium, Magnesium oder Legierungen von Aluminium und Magnesium gelöst, wobei der Werkstoff zur Vorbehandlung in den Elektrolyten getaucht wird, dort anodisch geschaltet wird und unmittelbar danach die elektrolytische Beschichtung in demselben Elektrolyten erfolgt, wobei das Elektrolytbad aluminiumorganische Verbindungen der allgemeinen Formel M[(R1)3Al-(H-Al(R2)2)n-R3] (I) und Al(R4)3 (II) als Elektrolyt enthält und n gleich 0 oder 1 ist, M gleich Natrium oder Kalium ist und R1, R2, R3, R4 gleich oder verschieden sein können, wobei R1, R2, R3, R4 eine C1- bis C4-Alkylgruppe ist und als Lösungsmittel für den Elektrolyten ein halogenfreies, aprotisches Lösungsmittel verwendet wird. Durch das erfindungsgemäße Verfahren ist es möglich den Werkstoff in dem Bad, in dem später die elektrolytische Beschichtung stattfindet, vorzubehandeln. Überraschenderweise werden Verunreinigungen, die dem nicht vorbehandelten Werkstoff anhaften, sowie vorhandene Oxidschichten auf dem Werkstoff abgelöst. Die Verunreinigungen, die somit in das Elektrolytbad eingebracht werden behindern überraschenderweise die Abscheidung von Magnesium, Aluminium oder Legierungen von Aluminium und Magnesium auf dem Werkstoff nicht. Unlösliche Verunreinigungen können mittels geeigneter Filtrationssysteme kontinuierlich aus dem Elektrolytbad entfernt werden.The technical object of the present invention is achieved by a process for the electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, wherein the material is immersed in the electrolyte for pretreatment, is anodically switched there and immediately thereafter the electrolytic coating in the same Electrolytes takes place, wherein the electrolyte bath organoaluminum compounds of the general formula M [(R 1 ) 3 Al- (H-Al (R 2 ) 2 ) n -R 3 ] (I) and Al (R 4 ) 3 (II) as the electrolyte and n is 0 or 1, M is sodium or potassium and R 1 , R 2 , R 3 , R 4 may be the same or different, wherein R 1 , R 2 , R 3 , R 4 are C 1 - to C 4 alkyl group and is used as a solvent for the electrolyte, a halogen-free, aprotic solvent. By means of the method according to the invention, it is possible to pretreat the material in the bath in which the electrolytic coating takes place later. Surprisingly, impurities which adhere to the non-pretreated material, as well as existing oxide layers on the material are replaced. The impurities thus introduced into the electrolyte bath surprisingly do not impede the deposition of magnesium, aluminum or alloys of aluminum and magnesium on the material. Insoluble impurities can be continuously removed from the electrolyte bath by means of suitable filtration systems.
Es ist daher nicht mehr notwendig, die Werkstoffe nach der Vorbehandlung aus dem Vorbehandlungsbad in das Elektrolytbad zu überführen. Dieser Schritt, der immer die Gefahr einer erneuten Verunreinigung der Oberfläche des Werkstoffes birgt, kann so vermieden werden.It is therefore no longer necessary to transfer the materials after pretreatment from the pre-treatment bath in the electrolyte bath. This step, which always carries the risk of re-contamination of the surface of the material, can be avoided.
In einer bevorzugten Ausführungsform wird in dem erfindungsgemäßen Verfahren ein Elektrolyt als ein Gemisch aus den Komplexen K[AlEt4], Na[AlEt4] und AlEt3 eingesetzt. Das molare Verhältnis der Komplexe zu AlEt3 beträgt 1 : 0,5 bis 1 : 3, wobei das Verhältnis von 1 : 2 bevorzugt ist.In a preferred embodiment, in the process according to the invention, an electrolyte is used as a mixture of the complexes K [AlEt 4 ], Na [AlEt 4 ] and AlEt 3 are used. The molar ratio of the complexes to AlEt 3 is 1: 0.5 to 1: 3, with the ratio of 1: 2 being preferred.
In einer bevorzugten Ausführungsform werden 0 bis 25 Mol-%, vorzugsweise 5 bis 20 Mol-% Na[AlEt4], bezogen auf das Gemisch aus den Komplexen K[AlEt4] und Na[AlEt4] eingesetzt.In a preferred embodiment, 0 to 25 mol%, preferably 5 to 20 mol% Na [AlEt 4 ], based on the mixture of the complexes K [AlEt 4 ] and Na [AlEt 4 ] used.
Vorzugsweise kann als Elektrolyt ein Gemisch aus 0,8 Mol K[AlEt4], 0,2 Mol Na[AlEt4], 2,0 Mol AlEt3 in 3,3 Mol Toluol eingesetzt werden.Preferably, a mixture of 0.8 mol of K [AlEt 4 ], 0.2 mol of Na [AlEt 4 ], 2.0 mol of AlEt 3 in 3.3 mol of toluene can be used as the electrolyte.
Alternativ kann in dem erfindungsgemäßen Verfahren als Elektrolyt ein Gemisch aus Na[Et3Al-H-AlEt3] und Na[AlEt4] und AlEt3 eingesetzt werden. Vorzugsweise ist das molare Verhältnis von Na[Et3Al-H-AlEt3] zu Na[AlEt4] 4 : 1 bis 1 : 1, wobei ein Verhältnis von 2 : 1 bevorzugt ist. Weiterhin ist bevorzugt, dass das molare Verhältnis von Na[AlEt4] zu AlEt3 1 : 2 ist.Alternatively, a mixture of Na [Et 3 Al-H-AlEt 3 ] and Na [AlEt 4 ] and AlEt 3 can be used as the electrolyte in the process according to the invention. Preferably, the molar ratio of Na [Et 3 Al-H-AlEt 3 ] to Na [AlEt 4 ] is 4: 1 to 1: 1, with a ratio of 2: 1 being preferred. It is further preferred that the molar ratio of Na [AlEt 4 ] to AlEt 3 is 1: 2.
In einer weiteren bevorzugten Ausführungsform wird als Elektrolyt ein Gemisch aus 1 Mol Na[Et3Al-H-AlEt3], 0,5 Mol Na[AlEt4] und 1 Mol AlEt3 in 3 Mol Toluol eingesetzt.In a further preferred embodiment, the electrolyte used is a mixture of 1 mol of Na [Et 3 Al-H-AlEt 3 ], 0.5 mol of Na [AlEt 4 ] and 1 mol of AlEt 3 in 3 mol of toluene.
Die elektrolytische Beschichtung von Werkstoffen mit Magnesium, Aluminium oder Aluminium/Magnesium-Legierungen wird vorzugsweise bei einer Temperatur von 80 bis 105°C durchgeführt. Bevorzugt ist eine Temperatur des Galvanisierungsbades von 91 bis 100°C.The electrolytic coating of materials with magnesium, aluminum or aluminum / magnesium alloys is preferably carried out at a temperature of 80 to 105 ° C. A temperature of the plating bath of 91 to 100 ° C is preferred.
Die elektrolytische Abscheidung von Aluminium-, Magnesium-, oder Aluminium/Magnesium-Schichten auf den Werkstoffen wird unter Verwendung einer löslichen Aluminium- und einer ebenfalls löslichen Magnesiumanode oder unter Verwendung einer Anode aus einer Aluminium/Magnesium-Legierung durchgeführt. Es ist allerdings auch möglich, nur eine Aluminium- oder eine Magnesiumanode zu verwenden.The electrolytic deposition of aluminum, magnesium, or aluminum / magnesium layers on the materials is carried out using a soluble aluminum and a likewise soluble magnesium anode or using an aluminum / magnesium alloy anode. However, it is also possible to use only one aluminum or one magnesium anode.
In dem erfindungsgemäßen Verfahren kann die anodische Schaltung des Werkstoffes zur Vorbehandlung für eine Zeitdauer von 1 bis 20 min, wobei 5 bis 15 min bevorzugt sind, durchgeführt werden.In the method according to the invention, the anodic switching of the material for pretreatment can be carried out for a period of 1 to 20 minutes, with 5 to 15 minutes being preferred.
Die für die Vorbehandlung notwendige anodische Belastung der Werkstoffe wird mit einer Stromdichte von 0,2 bis 2 A/dm2, vorzugsweise 0,5 bis 1,5 A/dm2 durchgeführt.The anodic loading of the materials necessary for the pretreatment is carried out with a current density of 0.2 to 2 A / dm 2 , preferably 0.5 to 1.5 A / dm 2 .
Als Werkstoff kann jeder Werkstoff verwendet werden, der zum galvanischen Abscheiden geeignet ist. Es ist bevorzugt, dass der Werkstoff aus einem Metall und/oder aus einer Metallegierung besteht und/oder ein metallisierter, elektrolytbeständiger Werkstoff ist, der im Elektrolyt durch anodische Schaltung aufgelöst werden kann. Die zu beschichtenden Materialien sind vorzugsweise Gestellwaren, Schüttgutwaren oder Endlosprodukte wie Draht, Vierkantbleche, Schrauben oder Muttern.As a material, any material can be used which is suitable for electrodeposition. It is preferred that the material consists of a metal and / or of a metal alloy and / or is a metallized, electrolyte-resistant material, which can be dissolved in the electrolyte by anodic circuit. The materials to be coated are preferably rack goods, bulk goods or endless products such as wire, square plates, screws or nuts.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass Verunreinigungen oder Oxidschichten, die auf den Werkstoffen anhaften, sicher entfernt werden. Hierbei tritt überraschenderweise keine nachteilige Veränderung der Elektrolytzusammensetzung auf, die eine hochqualitative Abscheidung von Aluminium-, Magnesium- oder Aluminium/Magnesium-Schichten auf den Werkstoffen unterbinden würde. Weiterhin sind die galvanisch aufgebrachten Metallschichten fest anhaftend und homogen auf dem Werkstoff aufgebracht, da nach der Reinigung eine erneute Verunreinigung des Werkstoffes unterbunden wird. Neben den genannten Qualitätsvorteilen wird durch die genannten Verfahrensschritte zusätzlich eine Kostenoptimierung des Beschichtens von Formteilen mit Metallschichten erreicht.The method according to the invention is characterized in that impurities or oxide layers which adhere to the materials are safely removed. Surprisingly, no disadvantageous change of the electrolyte composition occurs here, which would prevent a high-quality deposition of aluminum, magnesium or aluminum / magnesium layers on the materials. Furthermore, the electrodeposited metal layers are firmly adhering and homogeneously applied to the material, since after cleaning a renewed contamination of the material is prevented. In addition to the quality advantages mentioned, cost optimization of the coating of molded parts with metal layers is additionally achieved by the above-mentioned method steps.
Das erfindungsgemäße Verfahren zur elektrolytischen Beschichtung von Werkstoffen mit Magnesium, Aluminium oder Legierungen von Aluminium und Magnesium wird an den folgenden Beispielen erläutert, ohne jedoch auf diese beschränkt zu sein.The process according to the invention for the electrolytic coating of materials comprising magnesium, aluminum or alloys of aluminum and magnesium is illustrated by, but not limited to, the following examples.
Phase a) Ein Stanzteil aus einer AlMg3-Legierung wurde zuerst 2 Minuten alkalisch gebeizt in einer Lösung von 100 g/l NaOH bei einer Temperatur von 60° C. Nach anschließendem Spülen in Wasser wurde das Teil in 10 % Salpetersäure dekapiert, anschließend gespült in destilliertem Wasser und getrocknet.Phase a) A stamped part of an AlMg 3 alloy was first pickled alkaline for 2 minutes in a solution of 100 g / l NaOH at a temperature of 60 ° C. After subsequent rinsing in water, the part was decanted in 10% nitric acid, then rinsed in distilled water and dried.
Phase b) Das trockene Teil wurde in einer mit Argon bzw. Stickstoff geflutete Beschichtungszelle eingebracht und nach einer Vorspülung in Toluol sofort im Beschichtungselektrolyt eingebracht. Als Elektrolyt wurde ein Gemisch aus den Komplexen K[AlEt4], K[AlEt4] und AlEt3 eingesetzt gelöst in Toluol. Als Gegenelektrode diente eine AlMg25-Legierungsplatte. Das zu beschichtende Produkt wurde zuerst anodisch gepolt und bei einer Stromdichte von 1 A/dm2 5 Minuten lang behandelt bei einer Elektrolytentemperatur von 95 C. Anschließend wurde umgepolt ohne das Teil aus dem Elektrolyten zu entfernen und sofort 45 Minuten lang bei einer Stromdichte von 1,5 A/dm2 beschichtet. Es wurde eine AlMg-Legierungsschicht von ca. 14 µm Dicke abgeschieden.Phase b) The dry part was introduced into an argon or nitrogen-flooded coating cell and immediately introduced into the coating electrolyte after a pre-rinse in toluene. The electrolyte used was a mixture of the complexes K [AlEt 4] , K [AlEt 4 ] and AlEt 3 dissolved in toluene. The counterelectrode used was an AlMg25 alloy plate. The product to be coated was first anodically poled and treated at a current density of 1 A / dm 2 for 5 minutes at an electrolyte temperature of 95 ° C. Then reversed without removing the part from the electrolyte and immediately for 45 minutes at a current density of 1 5 A / dm 2 coated. An AlMg alloy layer of about 14 μm thickness was deposited.
Die Haftfestigkeit der Schicht wurde mittels Gitterschnitttest und Hitzeschocktest (1 h bei 220° C und Abschrecken in kaltem Wasser) geprüft. Es zeigte sich, dass eine ausgezeichnete Haftung der abgeschiedenen Schicht auf dem Grundmaterial vorhanden war. Es konnten keine Ablösungen oder Blasen festgestellt werden.The adhesion of the layer was tested by cross hatch test and heat shock test (1 h at 220 ° C and quenching in cold water). It was found that excellent adhesion of the deposited layer to the base material was present. No peeling or bubbles could be detected.
Ein als Vergleichsprobe behandeltes Teil wurde wie in Beispiel 1 vorbehandelt und beschichtet, jedoch ohne anodischer Polung vorab. Die Schicht konnte beim Gitterschnitttest als Folie abgezogen werden. Beim Hitzeschocktest zeigte die Schicht Blasen.A treated as a comparative sample was pretreated and coated as in Example 1, but without anodic polarity in advance. The layer could be peeled off in the crosshatch test as a film. In heat shock test, the layer showed bubbles.
Ein Magnesiumdruckgussteil aus einer AZ-91-Legierung wurde mit Korund (Körnung 0-50 µm) bei 2 bar Druck gestrahlt. Das Teil wurde danach sofort in die Inertgasatmosphäre der Beschichtungszelle eingebracht, in Toluol vorgespült und im Elektrolytbad eingetaucht wie in Beispiel 1 beschrieben. Zuerst wurde das zu beschichtende Produkt 10 Minuten lang bei einer Stromdichte von 1 A/dm2 anodisch geschaltet. Dabei wurde an der Produktoberfläche eine Schicht von ca. 2 µm abgetragen. Danach wurde umgepolt und das Teil 1 Stunde bei 1,5 A/dm2 kathodisch geschaltet. Es wurde eine AlMg-Schicht mit 23-25% Mg-Anteil und einer Schichtstärke von ca. 18 µm abgeschieden.A magnesium die-cast part made of an AZ-91 alloy was blasted with corundum (grain size 0-50 μm) at 2 bar pressure. The part was then immediately placed in the inert gas atmosphere of the coating cell, pre-rinsed in toluene and immersed in the electrolyte bath as described in Example 1. First, the product to be coated was anodized for 10 minutes at a current density of 1 A / dm 2 . In this case, a layer of about 2 microns was removed on the product surface. It was then reversed and the part switched cathodically for 1 hour at 1.5 A / dm 2 . An AlMg layer with 23-25% Mg content and a layer thickness of approximately 18 μm was deposited.
Anschließende Haftfestigkeitstests zeigten sowohl beim Gitterschnitttest als auch beim Wärmeschocktest keine Schichtablösungen.Subsequent adhesion tests showed no delamination in both the crosshatch test and the thermal shock test.
Claims (12)
- A method for electrolytic coating of materials with aluminum, magnesium or alloys of aluminum and magnesium, in which method the material is immersed in an electrolyte for pretreatment, being connected as anode therein, and electrolytic coating is performed in the same electrolyte immediately thereafter, the electrolytic bath including organoaluminum compounds of general formulas (I) and (II)
M[(R1)3Al-(H-Al(R2)2)n-R3] (I)
Al(R4)3 (II)
as electrolyte, wherein n is equal to 0 or 1, M is sodium or potassium, and R1, R2, R3, R4 can be the same or different, R1, R2, R3, R4 being a C1-C4 alkyl group, and a halogen-free, aprotic solvent being used as solvent for the electrolyte. - The method according to claim 1, characterized in that a mixture of the complexes K[AlEt4], Na[AlEt4], and AlEt3 is employed as electrolyte.
- The method according to claim 2, characterized in that the molar ratio of said complexes to AlEt3 is from 1:0.5 to 1:3, preferably 1:2.
- The method according to claim 2 or 3, characterized in that 0 to 25 mole-%, preferably 5 to 20 mole-% Na[AlEt4] is employed, relative to the mixture of the complexes K[AlEt4] and Na[AlEt4].
- The method according to one or more of claims 1 to 4, characterized in that a mixture of 0.8 mol of K[AlEt4], 0.2 mol of Na[AlEt4], 2.0 mol of AlEt3 in 3.3 mol of toluene is used as electrolyte.
- The method according to claim 1, characterized in that a mixture of Na[Et3Al-H-AlEt3] and Na[AlEt4] and AlEt3 is used as electrolyte.
- The method according to claim 6, characterized in that the molar ratio of Na[Et3Al-H-AlEt3] to Na[AlEt4] is from 4:1 to 1:1, preferably 2:1.
- The method according to claim 6 or 7, characterized in that the molar ratio of Na[AlEt4] to AlEt3 is 1:2.
- The method according to one or more of claims 6 to 8, characterized in that a mixture of 1 mol of Na[Et3Al-H-AlEt3], 0.5 mol of Na[AlEt4] and 1 mol of AlEt3 in 3 mol of toluene is used as electrolyte.
- The method according to one or more of claims 1 to 9, characterized in that electrolytic coating is effected at temperatures of from 80 to 105°C, preferably from 91 to 100°C.
- The method according to one or more of claims 1 to 10, characterized in that pretreatment is performed for a period of from 1 to 20 minutes, preferably from 5 to 15 minutes.
- The method according to one or more of claims 1 to 11, characterized in that pretreatment is performed at an anodic load of the materials with a current density of from 0.2 to 2 A/dm2, preferably from 0.5 to 1.5 A/dm2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03807748A EP1543180B1 (en) | 2002-09-25 | 2003-07-15 | Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02021402 | 2002-09-25 | ||
EP02021402A EP1403402A1 (en) | 2002-09-25 | 2002-09-25 | Process for the electrolytic deposition of materials with aluminium, magnesium or alloys of aluminium and magnesium |
EP03807748A EP1543180B1 (en) | 2002-09-25 | 2003-07-15 | Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys |
PCT/EP2003/007632 WO2004033762A1 (en) | 2002-09-25 | 2003-07-15 | Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1543180A1 EP1543180A1 (en) | 2005-06-22 |
EP1543180B1 true EP1543180B1 (en) | 2006-05-31 |
Family
ID=31970302
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02021402A Withdrawn EP1403402A1 (en) | 2002-09-25 | 2002-09-25 | Process for the electrolytic deposition of materials with aluminium, magnesium or alloys of aluminium and magnesium |
EP03807748A Expired - Lifetime EP1543180B1 (en) | 2002-09-25 | 2003-07-15 | Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02021402A Withdrawn EP1403402A1 (en) | 2002-09-25 | 2002-09-25 | Process for the electrolytic deposition of materials with aluminium, magnesium or alloys of aluminium and magnesium |
Country Status (7)
Country | Link |
---|---|
US (1) | US7468123B2 (en) |
EP (2) | EP1403402A1 (en) |
JP (1) | JP2006500476A (en) |
CN (1) | CN1685087B (en) |
AU (1) | AU2003250061A1 (en) |
DE (1) | DE50303610D1 (en) |
WO (1) | WO2004033762A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1524336A1 (en) * | 2003-10-18 | 2005-04-20 | Aluminal Oberflächtentechnik GmbH & Co. KG | Workpieces coated with an aluminum magnesium alloy |
JP2016000838A (en) * | 2012-10-15 | 2016-01-07 | 住友電気工業株式会社 | Aluminum film, aluminum film formed body and production method of aluminum film |
JP6062066B2 (en) | 2012-12-26 | 2017-01-18 | ポスコPosco | Aluminum-magnesium coated steel sheet and method for producing the same |
TWI464276B (en) * | 2013-06-19 | 2014-12-11 | China Steel Corp | Aluminum-magnesium alloy sheet for anode and method of making the same |
CN104674219A (en) * | 2015-03-25 | 2015-06-03 | 东莞仁海科技股份有限公司 | Novel technology for surface treatment of pressure casting |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1212213B (en) * | 1964-02-29 | 1966-03-10 | Aluminium Walzwerke Singen | Process for the production of rod-shaped or wire-shaped electrodes for electrolytic capacitors |
US4148204A (en) * | 1971-05-07 | 1979-04-10 | Siemens Aktiengesellschaft | Process of mechanically shaping metal articles |
US3969195A (en) * | 1971-05-07 | 1976-07-13 | Siemens Aktiengesellschaft | Methods of coating and surface finishing articles made of metals and their alloys |
DE19855666A1 (en) * | 1998-12-01 | 2000-06-08 | Studiengesellschaft Kohle Mbh | Organoaluminum electrolytes and processes for electrolytic coating with aluminum or aluminum-magnesium alloys |
-
2002
- 2002-09-25 EP EP02021402A patent/EP1403402A1/en not_active Withdrawn
-
2003
- 2003-07-15 AU AU2003250061A patent/AU2003250061A1/en not_active Abandoned
- 2003-07-15 US US10/528,125 patent/US7468123B2/en not_active Expired - Fee Related
- 2003-07-15 WO PCT/EP2003/007632 patent/WO2004033762A1/en active IP Right Grant
- 2003-07-15 DE DE50303610T patent/DE50303610D1/en not_active Expired - Lifetime
- 2003-07-15 CN CN038230569A patent/CN1685087B/en not_active Expired - Fee Related
- 2003-07-15 JP JP2004542263A patent/JP2006500476A/en active Pending
- 2003-07-15 EP EP03807748A patent/EP1543180B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7468123B2 (en) | 2008-12-23 |
US20060137990A1 (en) | 2006-06-29 |
CN1685087B (en) | 2010-12-29 |
JP2006500476A (en) | 2006-01-05 |
EP1403402A1 (en) | 2004-03-31 |
WO2004033762A1 (en) | 2004-04-22 |
EP1543180A1 (en) | 2005-06-22 |
CN1685087A (en) | 2005-10-19 |
DE50303610D1 (en) | 2006-07-06 |
AU2003250061A1 (en) | 2004-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3048083C2 (en) | Process for the chemical removal of oxide layers from objects made of titanium or titanium alloys | |
DE102007057777B4 (en) | Method for producing a component from aluminum and / or an aluminum alloy and use of the method | |
DE102005039614B4 (en) | Anodization process and anodic oxide layer produced thereby, and an aluminum or aluminum alloy element | |
US6379523B1 (en) | Method of treating surface of aluminum blank | |
EP0050216B1 (en) | Process for the anodic oxidation of aluminium and its use as a bearer of printing plates | |
DE1496937B2 (en) | PROCESS FOR ELECTROGAL DEPOSITION OF ALUMINUM FROM ALUMINUM HALOGENIDE CONTAINING SALT BATHS ON METAL SURFACES | |
EP0090268B1 (en) | Process for anodising aluminium products and aluminised parts | |
DE2845736C2 (en) | ||
DE3706711A1 (en) | METHOD FOR CLEANING SURFACES OF AN ALUMINUM OBJECT | |
EP1543180B1 (en) | Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys | |
DE10297114B4 (en) | Method for anodizing magnesium and electrolytic solution | |
DE1671426A1 (en) | Electrode and process for its manufacture | |
DE3211782A1 (en) | BATH AND METHOD FOR ANODIZING ALUMINATED PARTS | |
EP2180088B1 (en) | Method for electroplating hard chrome layers | |
DE2512339A1 (en) | PROCESS FOR CREATING AN ADHESIVE METAL LAYER ON AN OBJECT MADE OF ALUMINUM, MAGNESUM OR AN ALUMINUM AND / OR MAGNESIUM BASED ALLOY | |
EP2045364A2 (en) | Galvanic deposition of metal layers on magnesium or magnesium alloy surfaces | |
DE4211642C1 (en) | ||
DE19751256C2 (en) | Die-cast aluminum part with an aluminum oxide conversion layer and process for its production | |
DE19533748A1 (en) | Metal activating soln. of acid and ether-type solvent | |
US3075894A (en) | Method of electroplating on aluminum surfaces | |
DE1496937C (en) | Process for the galvanic deposition of aluminum from aluminum halide ent containing molten salt baths on flat metal surfaces | |
DE642876C (en) | Process for electro-metal plating of aluminum | |
DE3111369A1 (en) | Bath and process for the electrolytic aluminising of polytetrafluoroethylene components | |
DD218637A1 (en) | COMPOSITE OXIDIC INTERMEDIATE LAYER / METAL LAYER ON ALUMINUM AND ALLOYS | |
JPH0369996B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 25D 5/34 A Ipc: 7C 25D 5/42 B Ipc: 7C 25D 3/42 B |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50303610 Country of ref document: DE Date of ref document: 20060706 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060914 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50303610 Country of ref document: DE Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190724 Year of fee payment: 17 Ref country code: DE Payment date: 20190723 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190725 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50303610 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210202 |