EP2180088B1 - Method for electroplating hard chrome layers - Google Patents

Method for electroplating hard chrome layers Download PDF

Info

Publication number
EP2180088B1
EP2180088B1 EP08018462A EP08018462A EP2180088B1 EP 2180088 B1 EP2180088 B1 EP 2180088B1 EP 08018462 A EP08018462 A EP 08018462A EP 08018462 A EP08018462 A EP 08018462A EP 2180088 B1 EP2180088 B1 EP 2180088B1
Authority
EP
European Patent Office
Prior art keywords
substrate surface
electrolyte
chromium layer
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08018462A
Other languages
German (de)
French (fr)
Other versions
EP2180088B2 (en
EP2180088A1 (en
Inventor
Helmut Horsthemke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Enthone Inc
Original Assignee
Enthone Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40427109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2180088(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Enthone Inc filed Critical Enthone Inc
Priority to PL08018462T priority Critical patent/PL2180088T5/en
Priority to EP08018462.5A priority patent/EP2180088B2/en
Priority to ES08018462T priority patent/ES2363566T5/en
Priority to KR1020117011605A priority patent/KR101658254B1/en
Priority to PCT/US2009/061683 priority patent/WO2010048404A1/en
Priority to CN200980151479.6A priority patent/CN102257184B/en
Priority to US13/125,622 priority patent/US20110198226A1/en
Priority to BRPI0920600-0A priority patent/BRPI0920600B1/en
Priority to JP2011533333A priority patent/JP5739341B2/en
Publication of EP2180088A1 publication Critical patent/EP2180088A1/en
Publication of EP2180088B1 publication Critical patent/EP2180088B1/en
Application granted granted Critical
Publication of EP2180088B2 publication Critical patent/EP2180088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings

Definitions

  • the present invention relates to a method for depositing a hard chromium layer on a substrate surface.
  • the present invention relates to a method for depositing hard chromium layers at high deposition rates.
  • Hard chrome layers are widely used as coatings of engineering components. For example, it is known to provide valve bodies, liners, brake pistons or axle hubs with hard chrome layers.
  • the deposited chromium layer serves on the one hand as a corrosion protection layer for the underlying substrate surface, on the other hand, as a tribological wear protection layer, since the deposited hard chrome layers have a high hardness.
  • the substrate surfaces to be coated are brought into contact with an electrolyte having at least the metal (chromium) to be deposited, after suitable pretreatment for the treatment of the surface, whereby a deposition voltage is applied between the cathodically contacted substrate surface and an anode.
  • a deposition voltage is applied between the cathodically contacted substrate surface and an anode.
  • the layers thus deposited may have tensile or compressive residual stresses. Compressive stresses can cause the deposited layers to be microcracked, which means that the layers are not continuous, but have a network of microcracks.
  • Residual stresses can cause deep cracks in the deposited ones Layers lead into which moisture or aggressive substances migrate and thus can lead to corrosion phenomena of the substrate surface located below the chromium layer, as a result of which damage to the chromium layer up to its flaking can occur.
  • the coated substrate surfaces in the prior art are mechanically reworked, for example by grinding or honing, in order to break down the inherent tensile stresses occurring in the layers.
  • the processing can also lead to a violation of the deposited chromium layers, which ultimately drastically reduces their property as a corrosion protection layer.
  • chromium is itself a chemically relatively non-noble metal
  • chromium layers have a corrosion-protective effect due to the formation of a thin oxide layer on the surface and the associated very positive potential.
  • Corrosion and tarnish protection with precious metals such as gold, silver or platinum shows comparable corrosion protection properties.
  • the crack network occurring in the electrodeposited chromium layers due to residual compressive stresses not only has a negative influence on the anticorrosion property of the deposited layer, but also positively leads to improved mechanical properties of the so coated running parts, since any lubricants to reduce the tribological resistance between moving components in the Microcracks can store the so have a depot effect for the lubricant.
  • This ability of the layers is termed oil carrying capacity and is consistently desired for corresponding mechanical components. This is important, for example, in the case of piston rings to maintain the fire stability.
  • GB 1 551 340 A discloses the deposition of a hard chromium layer on a substrate surface at a temperature of 60 ° C and a set current density of 80 A / dm 2 in a vacuum chamber through which a chromium deposition electrolyte flows.
  • US 2,706,175 A discloses a device for internal coating of hollow cylinders, wherein a chromium layer is deposited under negative pressure.
  • EP 1 191 129 A discloses a method for depositing a hard chromium layer under reduced pressure, wherein the electrolyte and substrate are moved relative to each other at a relative speed of 0.4 m / sec.
  • US 2001/054557 A1 discloses a process for the electrodeposition of hard chromium layers, in which the chromium layer is also deposited under reduced pressure at a current density of 30 to 40 A / dm 2 and a pulse frequency of 5 to 700 Hz.
  • EP 0 024 946 A discloses a method for depositing hard chromium layers in negative pressure at a current density in the range of 200 A / dm 2 and the generation of a relative movement between the electrolyte and substrate to be coated.
  • US 5,277,785 discloses a method and apparatus for depositing hard chromium layers by brush deposition.
  • the pressure difference to be set is in a range of 10 mbar to 800 mbar, preferably 20 mbar to 200 mbar.
  • a second hard chromium layer is deposited on a first deposited hard chrome layer, a pulse current being applied between the substrate surface and counterelectrode for depositing the first hard chrome layer and a direct current being applied to deposit the second hard chrome layer on the first hard chrome layer.
  • a first hard chrome layer is deposited, which has no residual stresses due to the applied pulse current and is free of microcracks.
  • a second hard chromium layer is deposited on the already deposited intrinsic and crack-free first hard chrome layer, which has inherent tensile stress and the mechanically desired microcracking.
  • the layer composite obtained in this way exhibits excellent corrosion resistance and moreover has excellent mechanical properties due to the microcracks occurring in the upper chromium layer as running or sliding surfaces.
  • the pulse current can be applied at a pulse frequency of 5 Hz to 5000 Hz, preferably 50 Hz to 1000 Hz.
  • a current density between 25 A / dm 2 and 1000 A / dm 2 , preferably 50 A / dm to 500 A / dm 2 can be set.
  • a direct current with a current density in the range between 25 A / dm 2 and 1000 A / dm 2 , also with a preferred range between 50 A / dm 2 and 500 A / dm 2 can be set.
  • the substrate surface to be coated can be contacted with the chromium-containing electrolyte at a temperature between 30.degree. C. and 85.degree. C., wherein the electrolyte can have a pH in the range .ltoreq.3, preferably .ltoreq.
  • the chromium-containing electrolyte can have a conductivity K of from 200 mS / cm to 550 mS / cm (at 20 ° C.).
  • the process can be carried out with only one electrolyte in a single coating cell.
  • the relative speed can be in the range between 0.1 m / s and 5.0 m / s.
  • the substrate surfaces can be moved or the electrolyte can be conveyed accordingly.
  • agitators or pumps are suitable for conveying the electrolyte.
  • the substrate surface to be coated is contacted with the electrolyte in a cell in which the chromium-containing electrolyte from below flows in and can flow over an overflow, with a sufficient flow rate is adjusted to assist the detachment of the resulting hydrogen bubbles.
  • a coating reactor is particularly suitable, which is cylindrical and is equipped with a cylindrical inner anode made of platinized metal such as platinum-plated titanium, niobium or tantalum. At the top and bottom of the coating reactor can be recordings for the component to be chromed.
  • a coating reactor designed in this way is particularly suitable for coating cylindrical components. At least one of the two receptacles serves to supply power to the component to be coated and is accordingly designed as an electrical contact.
  • an electrolyte is sucked from a reservoir through the reactor to the upper part of the reactor by means of a suitable pump and conveyed by this back into the reservoir.
  • the electrolyte can be degassed by means of suitable facilities.
  • the gas mixture to be separated off is discharged to the outside via a mist eliminator.
  • a separate degassing container may be provided.
  • means for controlling the temperature of the electrolyte ie heaters and / or cooling can be provided.
  • the reservoir can be connected via metering with other reservoirs, which receive compositions for supplementing the electrolyte contained in the reservoir, if a re-dosing of the electrolyte is necessary.
  • electrolyte can be passed through an evaporator unit, wherein the electrolyte is deprived of water and this is cooled simultaneously.
  • such a reactor designed according to the invention is equipped with at least one movable end face, which facilitates the supply and removal of the component to be coated.
  • conventional handling systems and seals may be provided to automate the process.
  • the coated component can be rinsed in the reactor with rinsing water or steam or at least pre-rinsed.
  • the electrolyte supply to the reactor can be interrupted and be replaced by rinse water or steam.
  • the final rinse can take place in a second reactor, which is essentially identical in construction to the first reactor, but has no anode and power supply.
  • a work piece to be chromium plated (CK 45 steel piston rods) was contacted in a reactor constructed in accordance with the invention with an electrolyte for depositing a hard chromium layer comprising 370 g / l chromic acid and 5.3 g / l sulfuric acid, the electrolyte from below into the corresponding reactor and was discharged via an overflow at the top of the reactor.
  • the relative velocity set here between the substrate surface of the workpiece to be coated and the electrolyte was 4 m / s.
  • the electrolyte had a temperature of 70 ° C.
  • a pressure of 50 mbar was set within the reactor.
  • a hard chromium layer was then deposited by setting a current density of 235 A / dm 2 within 300 seconds. Subsequently, the substrate was rinsed.
  • the chromium layer obtained had a layer thickness of 11 microns, showed about 40 cracks / cm and had a corrosion resistance in the neutral salt spray test of less than 100 h.
  • a workpiece to be chrome plated was contacted with an electrolyte as in Example 1 in a reactor constructed according to the invention, which had 370 g / l chromic acid, 5.3 g / l sulfuric acid and 6 g / l methanesulfonic acid.
  • the deposition conditions corresponded to Example 1.
  • a shiny chromium layer was obtained with a layer thickness of 11 microns, which showed about 250 cracks / cm and a corrosion resistance in the neutral salt spray test less than 100 h.
  • a workpiece to be chromium plated was contacted with the electrolyte according to Example 2 under the conditions mentioned in Example 2, wherein a pulse current with a current density during the pulse of 235 A / dm 2 , a frequency of 1000 Hz and a duty cycle of 50% for 400 seconds was created.
  • a bright, crack-free chromium layer with a layer thickness of 11 ⁇ m was obtained which showed 0 cracks / cm and a corrosion resistance in the neutral salt spray test of large 500 h.
  • a workpiece to be chrome plated was coated under the deposition conditions of Example 3, but first applying a pulse current with a current density of 235 A / dm 2 during the pulse, a frequency of 1000 Hz and a duty cycle of 50% for 400 seconds and then in the same electrolyte under otherwise identical conditions, a direct current with a current density of 235 A / dm 2 was applied for 100 seconds.
  • the obtained shiny chromium layer showed a layer thickness of 17 ⁇ m and had about 25 cracks / cm, the layer having a corrosion resistance in the neutral salt spray test of greater than 500 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Abscheidung einer Hartchromschicht auf einer Substratoberfläche. Insbesondere betrifft die vorliegende Erfindung ein Verfahren zur Abscheidung von Hartchromschichten bei hohen Abscheidegeschwindigkeiten.The present invention relates to a method for depositing a hard chromium layer on a substrate surface. In particular, the present invention relates to a method for depositing hard chromium layers at high deposition rates.

Hartchromschichten sind als Beschichtungen von technischen Bauteilen weit verbreitet. So ist es beispielsweise bekannt, Ventilkörper, Laufbuchsen, Bremskolben oder Achsnaben mit Hartchromschichten zu versehen. Hierbei dient die abgeschiedene Chromschicht einerseits als Korrosionsschutzschicht für die darunter befindliche Substratoberfläche, andererseits auch als tribologische Verschleißschutzschicht, da die abgeschiedenen Hartchromschichten eine hohe Härte besitzen.Hard chrome layers are widely used as coatings of engineering components. For example, it is known to provide valve bodies, liners, brake pistons or axle hubs with hard chrome layers. Here, the deposited chromium layer serves on the one hand as a corrosion protection layer for the underlying substrate surface, on the other hand, as a tribological wear protection layer, since the deposited hard chrome layers have a high hardness.

Zur galvanischen Abscheidung von Chromschichten werden die zu beschichtenden Substratoberflächen nach einer geeigneten Vorbehandlung zur Aufbereitung der Oberfläche mit einem zumindest das abzuscheidende Metall (Chrom) aufweisenden Elektrolyten in Kontakt gebracht, wobei eine Abscheidungsspannung zwischen der katodisch kontaktierten Substratoberfläche und einer Anode angelegt wird. Hierdurch scheidet sich das im Elektrolyten gelöste Chrom als Schicht auf der Substratoberfläche ab.For the electrodeposition of chromium layers, the substrate surfaces to be coated are brought into contact with an electrolyte having at least the metal (chromium) to be deposited, after suitable pretreatment for the treatment of the surface, whereby a deposition voltage is applied between the cathodically contacted substrate surface and an anode. As a result, the chromium dissolved in the electrolyte is deposited as a layer on the substrate surface.

Die so abgeschiedenen Schichten können Zug- oder Druckeigenspannungen aufweisen. Druckeigenspannungen können dazu führen, daß die abgeschiedenen Schichten mikrorissig sind, was bedeutet, daß die Schichten nicht durchgängig geschlossen sind, sondern ein Netzwerk von Mikrorissen aufweisen.The layers thus deposited may have tensile or compressive residual stresses. Compressive stresses can cause the deposited layers to be microcracked, which means that the layers are not continuous, but have a network of microcracks.

Zugeigenspannungen hingegen können zu tiefen Rissen in den abgeschiedenen Schichten führen in welche Feuchtigkeit oder aggressive Substanzen migrieren und so zu Korrosionserscheinungen der unter der Chromschicht befindlichen Substratoberfläche führen können, wodurch letztendlich eine Beschädigung der Chromschicht bis hin zu deren Abplatzen auftreten kann.Residual stresses, on the other hand, can cause deep cracks in the deposited ones Layers lead into which moisture or aggressive substances migrate and thus can lead to corrosion phenomena of the substrate surface located below the chromium layer, as a result of which damage to the chromium layer up to its flaking can occur.

Darüber hinaus ist die von solchen Schichten aufgewiesene Zugeigenspannung für viele Anwendungen, wie beispielsweise der Verchromung von Achsnaben, nachteilig, da sich diese negativ auf die Biegewechselfestigkeit des Substrates bzw. Bauteils auswirkt. Darüber hinaus wird vermutet, dass der bei der Abscheidung von Chromschichten unvermeidbare Auftritt von gasförmigen H2 zu einem Einbau von Wasserstoff in die Schicht und das Substrat führt, was wiederum zur Ausbildung von Rissen in der Schicht und zu einer Schädigung des Substrates führen kann.Moreover, the inherent tensile stress exhibited by such layers is detrimental to many applications, such as the chrome-plating of axle hubs, as this has a negative effect on the bending fatigue strength of the substrate or component. In addition, it is believed that the advent of gaseous H 2 , which is unavoidable in the deposition of chromium layers, leads to the incorporation of hydrogen into the layer and the substrate, which in turn can lead to the formation of cracks in the layer and damage to the substrate.

Um die abgeschiedenen Chromschichten hinsichtlich ihrer auftretenden Zugeigenspannungen zu entlasten, werden die beschichteten Substratoberflächen im Stand der Technik mechanisch beispielsweise durch Schleifen oder Hohnen nachbearbeitet, um die in den Schichten auftretenden Zugeigenspannungen abzubauen. Neben dem damit verbundenen Fertigungsaufwand kann die Bearbeitung auch zu einer Verletzung der abgeschiedenen Chromschichten führen, wodurch letztendlich deren Eigenschaft als Korrosionsschutzschicht drastisch reduziert wird.In order to relieve the deposited chromium layers with regard to their inherent tensile stresses, the coated substrate surfaces in the prior art are mechanically reworked, for example by grinding or honing, in order to break down the inherent tensile stresses occurring in the layers. In addition to the associated production costs, the processing can also lead to a violation of the deposited chromium layers, which ultimately drastically reduces their property as a corrosion protection layer.

Obwohl Chrom an sich ein chemisch relativ unedles Metall ist, wirken Chromschichten durch die Ausbildung einer dünnen Oxidschicht auf der Oberfläche und dem damit einhergehenden sehr positiven Potential korrosionsschützend und zeigen hinsichtlich Ihres Korrosions- und Anlaufschutzes mit Edelmetallen wie Gold, Silber oder Platin vergleichbare Korrosionsschutzeigenschaften.Although chromium is itself a chemically relatively non-noble metal, chromium layers have a corrosion-protective effect due to the formation of a thin oxide layer on the surface and the associated very positive potential. Corrosion and tarnish protection with precious metals such as gold, silver or platinum shows comparable corrosion protection properties.

In der industriellen Fertigung von galvanisch beschichteten Massenartikeln wie beispielsweise Ventilen für Viertaktverbrennungsmotoren, Stoßdämpfer, Achsnaben oder ähnlichen mechanischen Bauteilen ist es notwendig, Chromschichten mit einer hinreichend hohen Abscheidegeschwindigkeit auf Substratoberflächen abzuscheiden, um eine wirtschaftlich sinnvolle Fertigung gewährleisten zu können. Höhere Abscheidegeschwindigkeiten werden in der Regel durch das Einstellen höherer Stromdichten beim galvanischen Abscheideprozess erreicht. Als eine Nebenreaktion bei der galvanischen Abscheidung von Chromschichten tritt jedoch die Bildung von Wasserstoff an der Kathode auf. Da als Kathode in den galvanischen Beschichtungsprozessen die zu beschichtenden Substratoberflächen dienen, kann es durch den entstehenden Wasserstoff zu einer Blasenbildung auf den Substratoberflächen kommen, wodurch das Abscheideergebnis der galvanischen Chromabscheidung stark beeinflußt wird. So können sich bedingt durch die entstandenen Wasserstoffblasen Poren oder Fehlstellen ausbilden, welche die Korrosionsschutzeigenschaften der abgeschiedenen Chromschichten deutlich negativ beeinflussen.In the industrial production of electroplated mass-produced articles, such as valves for four-stroke internal combustion engines, shock absorbers, axle hubs or similar mechanical components, it is necessary to deposit chromium layers on substrate surfaces at a sufficiently high deposition rate, in order to be able to ensure economically viable manufacturing. Higher deposition rates are usually achieved by setting higher current densities in the electrodeposition process. However, as a side reaction in the electrodeposition of chromium layers, the formation of hydrogen at the cathode occurs. Since the substrate surfaces to be coated serve as the cathode in the galvanic coating processes, it can cause bubbles to form due to the hydrogen formed come the substrate surfaces, whereby the deposition result of the galvanic chromium deposition is greatly affected. Thus, due to the resulting hydrogen bubbles pores or defects may form, which significantly adversely affect the anti-corrosion properties of the deposited chromium layers.

Durch Erhöhung der Stromdichte, um hinreichend hohe Abscheidegeschwindigkeiten zu erreichen, kommt es ebenfalls zu einer deutlich verstärkten Wasserstoffbildung an den Substratoberflächen.Increasing the current density in order to achieve sufficiently high deposition rates also leads to significantly increased hydrogen formation at the substrate surfaces.

Das in den galvanisch abgeschiedenen Chromschichten durch Druckeigenspannungen auftretende Rißnetzwerk hat jedoch nicht nur negativen Einfluß auf die Korrosionsschutzeigenschaft der abgeschiedenen Schicht, sondern führt positiverweise zu verbesserten mechanischen Eigenschaften der so beschichteten Laufteile, da sich etwaige Schmierstoffe zur Verringerung des tribologischen Widerstandes zwischen sich bewegenden Bauteilen in den Mikrorissen einlagern können die so eine Depotwirkung für die Schmiermittel besitzen. Diese Fähigkeit der Schichten wird als Öltragevermögen bezeichnet und ist durchweg für entsprechende mechanische Bauteile erwünscht. Wichtig ist dies beispielsweise im Fall von Kolbenringen zur Aufrechterhaltung der Brandstabilität.However, the crack network occurring in the electrodeposited chromium layers due to residual compressive stresses not only has a negative influence on the anticorrosion property of the deposited layer, but also positively leads to improved mechanical properties of the so coated running parts, since any lubricants to reduce the tribological resistance between moving components in the Microcracks can store the so have a depot effect for the lubricant. This ability of the layers is termed oil carrying capacity and is consistently desired for corresponding mechanical components. This is important, for example, in the case of piston rings to maintain the fire stability.

GB 1 551 340 A offenbart die Abscheidung einer Hartchromschicht auf einer Substratoberfläche bei einer Temperatur von 60° C und einer eingestellten Stromdichte von 80 A/dm2 in einer mit einem Chromabscheideelektrolyten durchströmten Unterdruckkammer. GB 1 551 340 A discloses the deposition of a hard chromium layer on a substrate surface at a temperature of 60 ° C and a set current density of 80 A / dm 2 in a vacuum chamber through which a chromium deposition electrolyte flows.

US 2,706,175 A offenbart eine Vorrichtung zum Innenbeschichten von Hohlzylindern, wobei eine Chromschicht unter Unterdruck abgeschieden wird. US 2,706,175 A discloses a device for internal coating of hollow cylinders, wherein a chromium layer is deposited under negative pressure.

EP 1 191 129 A offenbart ein Verfahren zur Abscheidung einer Hartchromschicht unter Unterdruck, wobei Elektrolyt und Substrat mit einer Relativgeschwindigkeit von 0,4 m/sec zueinander bewegt werden. EP 1 191 129 A discloses a method for depositing a hard chromium layer under reduced pressure, wherein the electrolyte and substrate are moved relative to each other at a relative speed of 0.4 m / sec.

US 2001/054557 A1 offenbart ein Verfahren zur galvanischen Abscheidung von Hartchromschichten, bei welchem die Chromschicht ebenfalls unter Unterdruck bei einer Stromdichte von 30 bis 40 A/dm2 und einer Pulsfrequenz von 5 bis 700 Hz abgeschieden wird. US 2001/054557 A1 discloses a process for the electrodeposition of hard chromium layers, in which the chromium layer is also deposited under reduced pressure at a current density of 30 to 40 A / dm 2 and a pulse frequency of 5 to 700 Hz.

EP 0 024 946 A offenbart ein Verfahren zur Abscheidung von Hartchromschichten im Unterdruck bei einer Stromdichte im Bereich von 200 A/dm2 und der Erzeugung einer Relativbewegung zwischen Elektrolyt und zu beschichtendem Substrat. EP 0 024 946 A discloses a method for depositing hard chromium layers in negative pressure at a current density in the range of 200 A / dm 2 and the generation of a relative movement between the electrolyte and substrate to be coated.

US 5,277,785 offenbart ein Verfahren und eine Vorrichtung zur Abscheidung von Hartchromschichten mittels Bürstenabscheidung. US 5,277,785 discloses a method and apparatus for depositing hard chromium layers by brush deposition.

Unter Berücksichtigung des zuvor Ausgeführten ist es daher die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Abscheidung von Hartchromschichten anzugeben, mit welchem sich bei hoher Abscheidegeschwindigkeit Hartchromschichten mit hoher Korrosionsbeständigkeit und guten mechanischen Eigenschaften abscheiden lassen.In view of the above, it is therefore an object of the present invention to provide a method for the deposition of hard chrome layers, with which can be deposited at high deposition rate hard chrome layers with high corrosion resistance and good mechanical properties.

Gelöst wir diese Aufgabe durch ein Verfahren zur galvanischen Abscheidung einer Hartchromschicht auf einer Substratoberfläche, aufweisend die Verfahrensschritte:

  • Kontaktieren der zu beschichtenden Substratoberfläche mit einem zur galvanischen Abscheidung geeigneten chromhaltigen Elektrolyten;
  • Anlegen einer Spannung zwischen der zu beschichtenden Substratoberfläche und einer Gegenelektrode zur galvanischen Abscheidung einer Hartchromschicht auf der Substratoberfläche,
    wobei die Abscheidung in einem gegenüber der Umgebung im Wesentlichen gasdichten Behälter erfolgt, wobei zumindest während des Anlegens der Spannung in dem im Wesentlichen gegenüber der Umgebung gasdichten Behälter ein Unterdruck eingestellt wird und wobei Substratoberfläche und chromhaltiger Elektrolyt mit einer Relativgeschwindigkeit von 0,1 m/s bis 5 m/s, bevorzugt > 1 m/s bis 5 m/s zueinander bewegt werden, dadurch gekennzeichnet, dass auf eine erste abgeschiedene Hartchromschicht eine zweite Hartchromschicht abgeschieden wird, wobei zur Abscheidung der ersten Hartchromschicht ein Pulsstrom zwischen Substratoberfläche und Gegenelektrode angelegt wird und zur Abscheidung der zweiten Hartchromschicht auf der ersten Hartchromschicht ein Gleichstrom angelegt wird.
We solve this problem by a process for the galvanic deposition of a hard chrome layer on a substrate surface, comprising the process steps:
  • Contacting the substrate surface to be coated with a chromium-containing electrolyte suitable for electrodeposition;
  • Applying a voltage between the substrate surface to be coated and a counter electrode for electrodepositing a hard chrome layer on the substrate surface,
    wherein the deposition takes place in a relative to the environment substantially gas-tight container, wherein at least during the application of the voltage in the substantially gas-tight environment a negative pressure is set and wherein the substrate surface and chromium-containing electrolyte with a relative speed of 0.1 m / s to 5 m / s, preferably> 1 m / s to 5 m / s to each other, characterized in that on a first deposited hard chrome layer, a second hard chrome layer is deposited, wherein a pulse current between the substrate surface and the counter electrode is applied to deposit the first hard chrome layer and applying a DC current to deposit the second hard chrome layer on the first hard chrome layer.

Die Reduzierung des Drucks gegenüber dem Umgebungsdruck während der galvanischen Abscheidung führt zu einer verbesserten Ablösung der während des galvanischen Abscheideprozesses entstehenden Wasserstoffblasen auf der Substratoberfläche. Unterstützt wird diese Ablösung durch die Relativbewegung von Substratoberfläche und Elektrolyt zueinander. Gemeinsam führt dies zur Abscheidung einer Hartchromschicht, welche auch bei hohen Abscheidestromdichten im Wesentlichen frei von Poren oder Fehlstellen ist.Reducing the pressure relative to the ambient pressure during the electrodeposition leads to an improved detachment during the galvanic deposition hydrogen bubbles formed on the substrate surface. This detachment is supported by the relative movement of substrate surface and electrolyte to each other. Together, this leads to the deposition of a hard chrome layer, which is essentially free of pores or defects even at high separation flow densities.

Durch geeignete Maßnahmen wie beispielsweise Pumpen kann ein entsprechender Unterdruck erzeugt werden. Vorteilhafterweise liegt der einzustellende Druckunterschied in einem Bereich von 10 mbar bis 800 mbar, bevorzugt 20 mbar bis 200 mbar.By appropriate measures such as pumps, a corresponding negative pressure can be generated. Advantageously, the pressure difference to be set is in a range of 10 mbar to 800 mbar, preferably 20 mbar to 200 mbar.

Im erfindungsgemäßen Verfahren wird auf eine erste abgeschiedene Hartchromschicht eine zweite Hartchromschicht abgeschieden, wobei zur Abscheidung der ersten Hartchromschicht ein Pulsstrom zwischen Substratoberfläche und Gegenelektrode angelegt wird und zur Abscheidung der zweiten Hartchromschicht auf der ersten Hartchromschicht ein Gleichstrom angelegt wird.In the method according to the invention, a second hard chromium layer is deposited on a first deposited hard chrome layer, a pulse current being applied between the substrate surface and counterelectrode for depositing the first hard chrome layer and a direct current being applied to deposit the second hard chrome layer on the first hard chrome layer.

In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird eine erste Hartchromschicht abgeschieden, welche aufgrund des angelegten Pulsstroms keinerlei Eigenspannungen aufweist und frei von Mikrorissen ist. Durch das anschließende Anlegen eines Gleichstroms zwischen der zu beschichtenden Substratoberfläche und der Gegenelektrode wird auf der bereits abgeschiedenen eigenspannungs- und rissfreien ersten Hartchromschicht eine zweite Hartchromschicht abgeschieden, welche Zugeigenspannung und die mechanisch gewünschte Mikrorissigkeit aufweist.In one embodiment of the method according to the invention, a first hard chrome layer is deposited, which has no residual stresses due to the applied pulse current and is free of microcracks. By the subsequent application of a direct current between the substrate surface to be coated and the counter electrode, a second hard chromium layer is deposited on the already deposited intrinsic and crack-free first hard chrome layer, which has inherent tensile stress and the mechanically desired microcracking.

Der hierdurch erhaltene Schichtverbund zeigt eine hervorragende Korrosionsbeständigkeit und weist darüber hinaus aufgrund der in der oberen Chromschicht auftretenden Mikrorisse hervorragende mechanische Eigenschaften als Lauf- oder Gleitflächen auf.The layer composite obtained in this way exhibits excellent corrosion resistance and moreover has excellent mechanical properties due to the microcracks occurring in the upper chromium layer as running or sliding surfaces.

Zur Abscheidung der ersten Chromschicht kann der Pulsstrom mit einer Pulsfrequenz von 5 Hz bis 5000 Hz, bevorzugt 50 Hz bis 1000 Hz angelegt werden. Hierbei kann eine Stromdichte zwischen 25 A/dm2 und 1000 A/dm2, bevorzugt 50 A/dm bis 500 A/dm2 eingestellt werden.For depositing the first chromium layer, the pulse current can be applied at a pulse frequency of 5 Hz to 5000 Hz, preferably 50 Hz to 1000 Hz. In this case, a current density between 25 A / dm 2 and 1000 A / dm 2 , preferably 50 A / dm to 500 A / dm 2 can be set.

Zur Abscheidung der zweiten Chromschicht kann ein Gleichstrom mit einer Stromdichte im Bereich zwischen 25 A/dm2 und 1000 A/dm2, ebenfalls mit einem bevorzugten Bereich zwischen 50 A/dm2 und 500 A/dm2 eingestellt werden.For the deposition of the second chromium layer, a direct current with a current density in the range between 25 A / dm 2 and 1000 A / dm 2 , also with a preferred range between 50 A / dm 2 and 500 A / dm 2 can be set.

Die zu beschichtende Substratoberfläche kann mit dem chromhaltigen Elektrolyten erfindungsgemäß bei einer Temperatur zwischen 30°C und 85°C kontaktiert werden, wobei der Elektrolyt einen pH-Wert im Bereich ≤ pH 3, bevorzugt ≤ pH 1 aufweisen kann.According to the invention, the substrate surface to be coated can be contacted with the chromium-containing electrolyte at a temperature between 30.degree. C. and 85.degree. C., wherein the electrolyte can have a pH in the range .ltoreq.3, preferably .ltoreq.

Der chromhaltige Elektrolyt kann erfindungsgemäß eine Leitfähigkeit K von 200 mS/cm bis 550 mS/cm (bei 20°C) aufweisen.According to the invention, the chromium-containing electrolyte can have a conductivity K of from 200 mS / cm to 550 mS / cm (at 20 ° C.).

Vorteilhafterweise kann das Verfahren mit lediglich einem Elektrolyten in einer einzigen Beschichtungszelle durchgeführt werden.Advantageously, the process can be carried out with only one electrolyte in a single coating cell.

Hierbei kann es erfindungsgemäß vorgesehen sein, zumindest zeitweise zwischen dem Elektrolyten und der zu beschichtenden Substratoberfläche eine Relativbewegung zu erzeugen. Erfindungsgemäß kann die Relativgeschwindigkeit hierbei einen Bereich zwischen 0,1 m/s und 5,0 m/s liegen.In this case, it may be provided according to the invention to generate a relative movement at least temporarily between the electrolyte and the substrate surface to be coated. According to the invention, the relative speed can be in the range between 0.1 m / s and 5.0 m / s.

Zur Erzeugung der Relativbewegung zwischen Elektrolyten und Substratoberfläche können die Substratoberflächen bewegt oder der Elektrolyt entsprechend gefördert werden. Zu Förderung des Elektrolyten sind unter anderem Rühreinrichtungen oder Pumpen geeignet.To generate the relative movement between the electrolyte and the substrate surface, the substrate surfaces can be moved or the electrolyte can be conveyed accordingly. Among others, agitators or pumps are suitable for conveying the electrolyte.

Durch die so erzeugte Relativbewegung zwischen Substratoberfläche und Elektrolyten wird eine Ablösung der entstehenden Wasserstoffblasen zusätzlich zum angelegten Unterdruck gefördert.Due to the relative movement between substrate surface and electrolyte thus generated, a detachment of the resulting hydrogen bubbles is promoted in addition to the applied negative pressure.

In einer besonders vorteilhaften Ausführung des erfindungsgemäßen Verfahrens ist vorgesehen, daß die zu beschichtende Substratoberfläche mit dem Elektrolyten in einer Zelle kontaktiert wird, in welcher der chromhaltige Elektrolyt von unten einströmt und über einen Überlauf abfließen kann, wobei eine hinreichende Strömungsgeschwindigkeit eingestellt wird, um das Ablösen der entstehenden Wasserstoffblasen zu unterstützen.In a particularly advantageous embodiment of the method according to the invention it is provided that the substrate surface to be coated is contacted with the electrolyte in a cell in which the chromium-containing electrolyte from below flows in and can flow over an overflow, with a sufficient flow rate is adjusted to assist the detachment of the resulting hydrogen bubbles.

Zur Durchführung des erfindungsgemäßen Verfahrens ist insbesondere ein Beschichtungsreaktor geeignet, welcher zylinderförmig ausgebildet ist und mit einer zylindrischen Innenanode aus platiniertem Metall wie beispielsweise platiniertes Titan, Niob oder Tantal ausgerüstet ist. An der Ober- und Unterseite des Beschichtungsreaktors können sich Aufnahmen für das zu verchromende Bauteil befinden. Ein so ausgebildeter Beschichtungsreaktor eignet sich in besonderer Weise zur Beschichtung zylindrischer Bauteile. Mindestens eine der beiden Aufnahmen dient der Stromzufuhr zu dem zu beschichtenden Bauteil und ist entsprechend als elektrischer Kontakt ausgebildet.To carry out the process according to the invention, a coating reactor is particularly suitable, which is cylindrical and is equipped with a cylindrical inner anode made of platinized metal such as platinum-plated titanium, niobium or tantalum. At the top and bottom of the coating reactor can be recordings for the component to be chromed. A coating reactor designed in this way is particularly suitable for coating cylindrical components. At least one of the two receptacles serves to supply power to the component to be coated and is accordingly designed as an electrical contact.

Von der Unterseite wird ein Elektrolyt aus einem Vorratsbehälter durch den Reaktor zum oberen Teil des Reaktors mittels einer geeigneten Pumpe gesaugt und von dieser zurück in den Vorratsbehälter gefördert. Im Vorratsbehälter kann der Elektrolyt mittels geeigneter Einrichtungen entgast werden. Das dabei abzuscheidende Gasgemisch wird nach außen über einen Tropfenabscheider abgeführt. Alternativ kann ein separater Entgasungsbehälter vorgesehen sein.From the bottom, an electrolyte is sucked from a reservoir through the reactor to the upper part of the reactor by means of a suitable pump and conveyed by this back into the reservoir. In the reservoir, the electrolyte can be degassed by means of suitable facilities. The gas mixture to be separated off is discharged to the outside via a mist eliminator. Alternatively, a separate degassing container may be provided.

Im Vorratsbehälter können Einrichtungen zur Temperierung des Elektrolyten, also Heizungen und/oder Kühlungen vorgesehen sein. Der Vorratsbehälter kann über Dosierpumpen mit weiteren Vorratsbehältern verbunden sein, welche Zusammensetzungen zur Ergänzung des im Vorratsbehälter befindlichen Elektrolyten aufnehmen, sofern eine Nachdosierung des Elektrolyten notwendig ist. Zur Reduktion des Volumens kann der durch die angelegte Abscheidespannung erhitzte Elektrolyt über eine Verdampfereinheit geführt werden, wobei dem Elektrolyten Wasser entzogen wird und dieser gleichzeitig gekühlt wird.In the reservoir, means for controlling the temperature of the electrolyte, ie heaters and / or cooling can be provided. The reservoir can be connected via metering with other reservoirs, which receive compositions for supplementing the electrolyte contained in the reservoir, if a re-dosing of the electrolyte is necessary. To reduce the volume of the heated by the applied deposition voltage electrolyte can be passed through an evaporator unit, wherein the electrolyte is deprived of water and this is cooled simultaneously.

Vorteilhafterweise ist ein solcher erfindungsgemäß ausgebildeter Reaktor mit mindestens einer beweglichen Stirnseite ausgestattet, welche die Zuführung und Entnahme des zu beschichtenden Bauteils erleichtert. Darüber hinaus können übliche Handlingsysteme und Dichtungen zur Automatisierung des Prozesses vorgesehen sein.Advantageously, such a reactor designed according to the invention is equipped with at least one movable end face, which facilitates the supply and removal of the component to be coated. In addition, conventional handling systems and seals may be provided to automate the process.

In einer Ausgestaltung eines solchen Beschichtungsreaktors kann das beschichtete Bauteil im Reaktor mit Spülwasser oder Wasserdampf gespült oder zumindest vorgespült werden. Hierzu kann die Elektrolytzufuhr zum Reaktor unterbrochen und durch Spülwasser oder Wasserdampf ersetzt werden. Im Fall einer lediglichen Vorspülung des beschichteten Bauteils im Reaktor kann die endgültige Spüle in einem zweiten Reaktor erfolgen, welcher im Wesentlichen baugleich mit dem ersten Reaktor ist, jedoch keine Anode und Stromzuführung aufweist.In one embodiment of such a coating reactor, the coated component can be rinsed in the reactor with rinsing water or steam or at least pre-rinsed. For this purpose, the electrolyte supply to the reactor can be interrupted and be replaced by rinse water or steam. In the case of a mere pre-rinsing of the coated component in the reactor, the final rinse can take place in a second reactor, which is essentially identical in construction to the first reactor, but has no anode and power supply.

Das erfindungsgemäße Verfahren wird nachfolgend im Rahmen von Ausführungsbeispielen dargestellt, wobei sich die erfindungsgemäße Idee nicht auf die Ausführungsbeispiele beschränken läßt.The inventive method is shown below in the context of embodiments, wherein the inventive idea can not be limited to the embodiments.

Ausführungsbeispieleembodiments Vergleichsbeispiel 1:Comparative Example 1

Ein zu verchromendes Werkstück (Kolbenstangen aus Stahl Typ CK 45) wurde in einem gemäß der Erfindung ausgebildeten Reaktor mit einem Elektrolyten zur Abscheidung einer Hartchromschicht kontaktiert, welcher 370 g/l Chromsäure und 5,3 g/l Schwefelsäure aufwies, wobei der Elektrolyt von unten in den entsprechenden Reaktor einströmte und über einen Überlauf an der Oberseite des Reaktors abgeführt wurde. Die hierbei zwischen der Substratoberfläche des zu beschichtenden Werkstücks und dem Elektrolyten eingestellte Relativgeschwindigkeit betrug 4 m/s. Der Elektrolyt wies eine Temperatur von 70°C auf. Mittels geeigneter Einrichtungen wurde innerhalb des Reaktors ein Druck von 50 mbar eingestellt. Nach einer entsprechenden Konditionierung und Aktivierung des Werkstücks durch Anlegen einer geeigneten Stromrampe wurde anschließend durch Einstellen einer Stromdichte von 235 A/dm2 innerhalb von 300 Sekunden eine Hartchromschicht abgeschieden. Anschließend wurde das Substrat gespült.A work piece to be chromium plated (CK 45 steel piston rods) was contacted in a reactor constructed in accordance with the invention with an electrolyte for depositing a hard chromium layer comprising 370 g / l chromic acid and 5.3 g / l sulfuric acid, the electrolyte from below into the corresponding reactor and was discharged via an overflow at the top of the reactor. The relative velocity set here between the substrate surface of the workpiece to be coated and the electrolyte was 4 m / s. The electrolyte had a temperature of 70 ° C. By means of suitable devices, a pressure of 50 mbar was set within the reactor. After appropriate conditioning and activation of the workpiece by applying a suitable current ramp, a hard chromium layer was then deposited by setting a current density of 235 A / dm 2 within 300 seconds. Subsequently, the substrate was rinsed.

Die erhaltene Chromschicht wies eine Schichtdicke von 11 µm, zeigte ca. 40 Risse/cm und besaß eine Korrosionsfestigkeit im neutralen Salzsprühtest von kleiner 100 h auf.The chromium layer obtained had a layer thickness of 11 microns, showed about 40 cracks / cm and had a corrosion resistance in the neutral salt spray test of less than 100 h.

Vergleichsbeispiel 2:Comparative Example 2

Ein zu verchromendes Werkstück wurde wie in Beispiel 1 in einem gemäß der Erfindung ausgebildeten Reaktor mit einem Elektrolyten kontaktiert, welcher 370 g/l Chromsäure, 5,3 g/l Schwefelsäure und 6 g/l Methansulfonsäure aufwies. Die Abscheidebedingungen entsprachen dem Beispiel 1. Es wurde eine glänzende Chromschicht mit einer Schichtdicke von 11 µm erhalten, welche ca. 250 Risse/cm und eine Korrosionsbeständigkeit im neutralen Salzsprühtest kleiner 100 h zeigte.A workpiece to be chrome plated was contacted with an electrolyte as in Example 1 in a reactor constructed according to the invention, which had 370 g / l chromic acid, 5.3 g / l sulfuric acid and 6 g / l methanesulfonic acid. The deposition conditions corresponded to Example 1. A shiny chromium layer was obtained with a layer thickness of 11 microns, which showed about 250 cracks / cm and a corrosion resistance in the neutral salt spray test less than 100 h.

Beispiel 1:Example 1:

Ein zu verchromendes Werkstück wurde mit dem Elektrolyten gemäß Beispiel 2 unter den in Beispiel 2 genannten Bedingungen kontaktiert, wobei ein Pulsstrom mit einer Stromdichte während des Pulses von 235 A/dm2, einer Frequenz von 1000 Hz und einer Einschaltdauer von 50% für 400 Sekunden angelegt wurde.A workpiece to be chromium plated was contacted with the electrolyte according to Example 2 under the conditions mentioned in Example 2, wherein a pulse current with a current density during the pulse of 235 A / dm 2 , a frequency of 1000 Hz and a duty cycle of 50% for 400 seconds was created.

Es wurde eine glänzende, rissfreie Chromschicht mit einer Schichtdicke von 11 µm erhalten, welche 0 Risse/cm und eine Korrosionsbeständigkeit im neutralen Salzsprühtest von großer 500 h zeigte.A bright, crack-free chromium layer with a layer thickness of 11 μm was obtained which showed 0 cracks / cm and a corrosion resistance in the neutral salt spray test of large 500 h.

Beispiel 2:Example 2:

Ein zu verchromendes Werkstücke wurde unter den Abscheidebedingungen gemäß Beispiel 3 beschichtet, wobei jedoch zuerst ein Pulsstrom mit einer Stromdichte von 235 A/dm2 während des Pulses, einer Frequenz von 1000 Hz und einer Einschaltdauer von 50% für 400 Sekunden angelegt wurde und anschließend im gleichen Elektrolyten unter ansonsten gleichen Bedingungen ein Gleichstrom mit einer Stromdichte von 235 A/dm2 für 100 Sekunden angelegt wurde.A workpiece to be chrome plated was coated under the deposition conditions of Example 3, but first applying a pulse current with a current density of 235 A / dm 2 during the pulse, a frequency of 1000 Hz and a duty cycle of 50% for 400 seconds and then in the same electrolyte under otherwise identical conditions, a direct current with a current density of 235 A / dm 2 was applied for 100 seconds.

Die erhaltene glänzende Chromschicht zeigte eine Schichtdicke von 17 µm und wies ca. 25 Risse/cm auf, wobei die Schicht eine Korrosionsbeständigkeit im neutralen Salzsprühtest von größer 500 h besaß.The obtained shiny chromium layer showed a layer thickness of 17 μm and had about 25 cracks / cm, the layer having a corrosion resistance in the neutral salt spray test of greater than 500 h.

Claims (7)

  1. A method for the galvanic deposition of a hard chromium layer on a substrate surface incorporating the following process stages:
    - bringing the substrate surface being coated into contact with a chromium-bearing electrolyte suitable for galvanic deposition;
    - applying a voltage between the substrate surface being coated and a counter-electrode for the galvanic deposition of a hard chromium layer on the substrate surface,
    wherein the deposition takes place in an essentially gas-tight vessel relative to the environment, wherein a negative pressure is set at least while the voltage is being applied in the vessel that is essentially gas-tight relative to the environment and wherein the substrate surface and chromium-bearing electrolyte are moved towards each other at a relative speed of 0.1 m/s to 5 m/s, preferably > 1 m/s to 5 m/s, characterised in that a second hard chromium layer is deposited on a first deposited hard chromium layer, wherein a pulsed current is applied between the substrate surface and counter electrode to deposit the first hard chromium layer and a direct current is applied to the first hard chromium layer to deposit the second hard chromium layer.
  2. The method according to claim 1, wherein a pressure differential of 10 mbar and 800 mbar, preferably between 20 mbar and 200 mbar, is set relative to the ambient pressure,
  3. The method according to claim 1, wherein a pulsed voltage with a frequency of 5 Hz to 5000 Hz, preferably between 50 Hz and 1000 Hz, is applied for the deposition of the first hard chromium layer.
  4. The method according to claims 2 and 3, wherein a current density of between 25 A/dm2 and 1000 A/dm2, preferably between 50 A/dm2 and 500 A/dm2, is set for the deposition of the hard chromium layer.
  5. The method according to one of the preceding claims, wherein the substrate surface being coated is brought into contact with the chromium-bearing electrolyte at a temperature of between 30 °C and 85 °C.
  6. The method according to one of the preceding claims, wherein a pH value in the electrolyte is set in the range = pH 3, preferably = pH 1.
  7. The method according to one of the preceding claims, wherein the substrate surface being coated is brought into contact with the electrolyte in a cell in which the chromium-bearing electrolyte flows in from beneath and flows out through an overflow.
EP08018462.5A 2008-10-22 2008-10-22 Method for electroplating hard chrome layers Active EP2180088B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL08018462T PL2180088T5 (en) 2008-10-22 2008-10-22 Method for electroplating hard chrome layers
EP08018462.5A EP2180088B2 (en) 2008-10-22 2008-10-22 Method for electroplating hard chrome layers
ES08018462T ES2363566T5 (en) 2008-10-22 2008-10-22 Procedure for the galvanic deposition of hard chromium layers
US13/125,622 US20110198226A1 (en) 2008-10-22 2009-10-22 Method for deposition of hard chrome layers
PCT/US2009/061683 WO2010048404A1 (en) 2008-10-22 2009-10-22 Method for galvanic deposition of hard chrome layers
CN200980151479.6A CN102257184B (en) 2008-10-22 2009-10-22 Method for galvanic deposition of hard chrome layers
KR1020117011605A KR101658254B1 (en) 2008-10-22 2009-10-22 Method for galvanic deposition of hard chrome layers
BRPI0920600-0A BRPI0920600B1 (en) 2008-10-22 2009-10-22 Method for galvanic deposition of a resistant chromium layer on a substrate surface
JP2011533333A JP5739341B2 (en) 2008-10-22 2009-10-22 Method for depositing hard chrome layer on substrate surface and substrate having hard chrome layer on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08018462.5A EP2180088B2 (en) 2008-10-22 2008-10-22 Method for electroplating hard chrome layers

Publications (3)

Publication Number Publication Date
EP2180088A1 EP2180088A1 (en) 2010-04-28
EP2180088B1 true EP2180088B1 (en) 2011-05-11
EP2180088B2 EP2180088B2 (en) 2019-06-12

Family

ID=40427109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018462.5A Active EP2180088B2 (en) 2008-10-22 2008-10-22 Method for electroplating hard chrome layers

Country Status (9)

Country Link
US (1) US20110198226A1 (en)
EP (1) EP2180088B2 (en)
JP (1) JP5739341B2 (en)
KR (1) KR101658254B1 (en)
CN (1) CN102257184B (en)
BR (1) BRPI0920600B1 (en)
ES (1) ES2363566T5 (en)
PL (1) PL2180088T5 (en)
WO (1) WO2010048404A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2845928B1 (en) * 2013-09-05 2019-11-06 MacDermid Enthone Inc. Aqueous electrolyte composition having a reduced airborne emission
HUE043557T2 (en) * 2014-12-19 2019-08-28 Weber Hydraulik Gmbh Method for optically inscribing and/or marking round stock
US11566679B2 (en) * 2020-11-03 2023-01-31 DRiV Automotive Inc. Bumper cap for damper
CN114703516A (en) * 2021-12-14 2022-07-05 西安昆仑工业(集团)有限责任公司 Rapid chromium plating process method for artillery barrel

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE494578A (en) 1949-03-18
FI53841C (en) 1975-05-07 1978-08-10 Teuvo Tapio Korpi ELEKTROLYTISK YTBELAEGGNINGSANORDNING
FR2462490A1 (en) * 1979-08-03 1981-02-13 Centre Techn Ind Mecanique ELECTROLYTIC COATING DEVICE
US4261086A (en) 1979-09-04 1981-04-14 Ford Motor Company Method for manufacturing variable capacitance pressure transducers
JPS62263991A (en) * 1986-05-07 1987-11-16 Adachi Shin Sangyo Kk Manufacture of plated material
JPH02217429A (en) * 1989-02-17 1990-08-30 Fujitsu Ltd Plating method and apparatus
US5277785A (en) 1992-07-16 1994-01-11 Anglen Erik S Van Method and apparatus for depositing hard chrome coatings by brush plating
US20010054557A1 (en) 1997-06-09 2001-12-27 E. Jennings Taylor Electroplating of metals using pulsed reverse current for control of hydrogen evolution
USRE40386E1 (en) * 1998-11-06 2008-06-17 Hitachi Ltd. Chrome plated parts and chrome plating method
JP3918142B2 (en) * 1998-11-06 2007-05-23 株式会社日立製作所 Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts
JP2002047595A (en) * 2000-07-31 2002-02-15 Tokico Ltd Chromium plating method and chromium plating apparatus
JP3423702B2 (en) * 2000-08-29 2003-07-07 創輝株式会社 Metal plating method
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Also Published As

Publication number Publication date
PL2180088T5 (en) 2020-11-16
ES2363566T3 (en) 2011-08-09
WO2010048404A1 (en) 2010-04-29
CN102257184A (en) 2011-11-23
BRPI0920600A2 (en) 2015-12-22
BRPI0920600B1 (en) 2019-05-28
KR101658254B1 (en) 2016-09-20
JP2012506496A (en) 2012-03-15
PL2180088T3 (en) 2011-09-30
ES2363566T5 (en) 2020-04-16
KR20110075028A (en) 2011-07-05
JP5739341B2 (en) 2015-06-24
CN102257184B (en) 2014-01-15
EP2180088B2 (en) 2019-06-12
US20110198226A1 (en) 2011-08-18
EP2180088A1 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
DE102008017270B3 (en) Structured chromium solid particle layer and method for its production and coated machine element
DE102016209505B4 (en) METHODS OF COATING THE SURFACE OF AN ENGINE CYLINDER BORE AND METHODS OF INTERFACING BETWEEN A PISTON AND A SURFACE OF AN ENGINE CYLINDER BORE
DE202006013555U1 (en) Zinc-plated cast iron pivot bearing for automobile front suspensions has a crystalline zinc coating
EP2180088B1 (en) Method for electroplating hard chrome layers
EP1565596B1 (en) Production of structured hard chrome layers
DE10159890B4 (en) Process for coating aluminum materials with functional layers of iron
DE102009019601B3 (en) Layer composite material for sliding elements and for plain bearings, particularly crankshaft bearing, camshaft bearings or connecting rod bearings, comprises primary layer made from copper alloy or aluminum alloy
EP1738000A2 (en) Production of a structured hard chromium layer and production of a coating
EP1743053B1 (en) Method for production of a coating
EP1264009B1 (en) Method for applying a metal layer to a light metal surface
EP0761844B1 (en) Process for chrome plating
EP1543180B1 (en) Method for electrolytic coating of materials with aluminium, magnesium or aluminium and magnesium alloys
EP1997939B1 (en) Hydraulic cylinders and manufacturing method
DE19751256C2 (en) Die-cast aluminum part with an aluminum oxide conversion layer and process for its production
DE102010031539A1 (en) Depositing a layer system with enhanced unlubricated operation properties on a substrate surface, useful for coating gas valve components, comprises e.g. electrodepositing a layer of hard chrome on a substrate surface
EP2130950B1 (en) Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating
DE10060127B4 (en) Electrolytic iron deposition bath and method for electrodepositing iron and applications of the method
DD218637A1 (en) COMPOSITE OXIDIC INTERMEDIATE LAYER / METAL LAYER ON ALUMINUM AND ALLOYS
WO2006122895A1 (en) Method for producing coated surfaces and use thereof
DE102020131371A1 (en) Ruthenium alloy layer and their layer combinations
EP1507026A1 (en) Process for selective or complete inertisation of workpieces and system parts by means of non-reactive platings
DE102005042494A1 (en) Electrode for working metals electrochemically, comprises an insulating layer in the form of a lacquer
DE102008049790A1 (en) Hydraulic cylinder and its manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100420

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 21/00 20060101ALI20100525BHEP

Ipc: C25D 21/04 20060101ALI20100525BHEP

Ipc: C25D 5/04 20060101ALI20100525BHEP

Ipc: C25D 5/00 20060101AFI20100525BHEP

Ipc: C25D 5/18 20060101ALI20100525BHEP

Ipc: C25D 5/08 20060101ALI20100525BHEP

Ipc: C25D 5/12 20060101ALI20100525BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): DE ES FR IT PL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003514

Country of ref document: DE

Effective date: 20110622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2363566

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110809

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20120206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008003514

Country of ref document: DE

Effective date: 20120206

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008003514

Country of ref document: DE

Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20120206

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MACDERMID ENTHONE INC.

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

RIC2 Information provided on ipc code assigned after grant

Ipc: C25D 21/04 20060101ALI20180828BHEP

Ipc: C25D 7/10 20060101ALN20180828BHEP

Ipc: C25D 21/00 20060101ALI20180828BHEP

Ipc: C25D 5/12 20060101ALI20180828BHEP

Ipc: C25D 5/04 20060101ALI20180828BHEP

Ipc: C25D 5/00 20060101AFI20180828BHEP

Ipc: C25D 5/18 20060101ALI20180828BHEP

Ipc: C25D 5/08 20060101ALI20180828BHEP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

RIC2 Information provided on ipc code assigned after grant

Ipc: C25D 5/04 20060101ALI20181008BHEP

Ipc: C25D 5/18 20060101ALI20181008BHEP

Ipc: C25D 7/10 20060101ALN20181008BHEP

Ipc: C25D 5/00 20060101AFI20181008BHEP

Ipc: C25D 5/12 20060101ALI20181008BHEP

Ipc: C25D 21/04 20060101ALI20181008BHEP

Ipc: C25D 21/00 20060101ALI20181008BHEP

Ipc: C25D 5/08 20060101ALI20181008BHEP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20190612

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR IT PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502008003514

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008003514

Country of ref document: DE

Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2363566

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20200416

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240919

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240925

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240919

Year of fee payment: 17