EP2130950B1 - Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating - Google Patents

Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating Download PDF

Info

Publication number
EP2130950B1
EP2130950B1 EP08010120A EP08010120A EP2130950B1 EP 2130950 B1 EP2130950 B1 EP 2130950B1 EP 08010120 A EP08010120 A EP 08010120A EP 08010120 A EP08010120 A EP 08010120A EP 2130950 B1 EP2130950 B1 EP 2130950B1
Authority
EP
European Patent Office
Prior art keywords
zinc
acid
process according
substrate
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08010120A
Other languages
German (de)
French (fr)
Other versions
EP2130950A1 (en
Inventor
Manfred Dr. Jordan
Roland Dr. Pfiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing Max Schloetter GmbH and Co KG
Original Assignee
Dr Ing Max Schloetter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing Max Schloetter GmbH and Co KG filed Critical Dr Ing Max Schloetter GmbH and Co KG
Priority to DE502008001397T priority Critical patent/DE502008001397D1/en
Priority to EP08010120A priority patent/EP2130950B1/en
Priority to PT08010120T priority patent/PT2130950E/en
Priority to ES08010120T priority patent/ES2350873T3/en
Priority to AT08010120T priority patent/ATE482304T1/en
Priority to PL08010120T priority patent/PL2130950T3/en
Publication of EP2130950A1 publication Critical patent/EP2130950A1/en
Application granted granted Critical
Publication of EP2130950B1 publication Critical patent/EP2130950B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Definitions

  • the galvanic deposition of zinc or zinc alloy layers can be carried out from weakly acidic processes (pH 4.5-5.5) or strongly alkaline processes (pH 14). Both types of process initially differ in their cathodic efficiency. Weakly acidic processes have a cathodic efficiency of almost 100%, in alkaline processes, depending on the process type and applied cathodic current density, it is about 25-50%.
  • a minimum layer thickness is crucial.
  • Weakly acidic electrolytes have an approximately constant efficiency in the entire current density range. As a result, a large amount of metal is deposited on a workpiece in regions of high cathodic current density, but relatively little in regions of low cathodic current densities. Since the minimum layer thickness at the most unfavorable point of the workpiece is decisive for the required corrosion resistance, the deposition from a weakly acidic method causes significantly more metal to be deposited at points of high cathodic current density than is required for the corrosion protection, before the range defined in areas of low current density Minimum layer thickness is reached. The deposition of unnecessarily thick layers in areas of high current density is undesirable from an economic point of view. It may also be disadvantageous from a technical point of view, since thick layers are generally relatively brittle and can flake off even with slight mechanical stress.
  • the cathodic efficiency changes with the applied cathodic current density. In areas of high cathodic current density, the cathodic efficiency is low, but high at low cathodic current density. Overall, it results from this characteristic that in a complex-shaped component a much more uniform layer distribution is obtained than from a weakly acid zinc or zinc alloy electrolyte.
  • Alkaline zinc or zinc alloy electrolytes are the preferred systems for coating geometrically complex components from this point of view.
  • the hard-to-coat base iron-based materials include, for example, hardened steel, forged components, and cast iron.
  • hardened steel there may be various alloying components in the steel that degrade light-off performance.
  • iron oxide residues on the surface eg haematite
  • Cast iron is a material that contains precipitates of graphite.
  • the hydrogen overvoltage is very low on graphite. For a cast surface to be coated, this means that primarily hydrogen is deposited at the locations where such graphite precipitates are present. Because of the locally low hydrogen overvoltage, the more negative potential for zinc or zinc alloy deposition is not achieved there. This does not start.
  • residues of foundry sand and solidified metal oxides are often present on the surface of cast iron. These impurities are typically mechanically removed by blasting prior to the entire electrolytic coating process. Impurities in easily accessible area can be removed very reliable. At In contrast, the residues can not always be completely removed from depressions or other areas that are difficult to reach, or they can only be removed over a long period of time, which is no longer justifiable in the context of economic production. These areas, which are difficult to reach due to the blasting, often also represent the area of low current density in the case of the electrolytic coating. The problem of poor light-off behavior during metal deposition is therefore intensified by the insufficiently pretreated surface.
  • cathodic pickling in dilute hydrochloric acid has advantages over other acids.
  • the galvanizability of particular Forged parts or castings may be different due to the process despite the same material composition.
  • different thicknesses of haematite deposits can be present on forged parts.
  • For cast iron, depending on casting conditions and cooling of the mold, different forms of graphite precipitates may occur. It is therefore explainable that, despite supposedly identical material properties, the suitability for a defect-free coating can be different. In this regard, it has been found that these component-related differences can be compensated if dilute hydrochloric acid is used for cathodic activation.
  • hydrochloric acid also has disadvantages. While the cathodic reaction in electrolytic activation in dilute mineral acids and / or alkylsulfonic acids is always the same, namely the evolution of hydrogen, there are differences in the anode reaction.
  • mineral acids such as phosphoric acid, sulfuric acid, tetrafluoroboric acid or alkylsulfonic acids
  • insoluble anodes eg platinum-coated titanium or iridium-ruthenium mixed oxide anodes
  • the anodic reaction is an oxidation of water in accordance with equation [1]: 2 H 2 O - 4 e - -> 4 H + + 0 2 [1]
  • the chlorine partially dissolves in the hydrochloric acid. This may cause a chemical reaction with the pickling inhibitor, with which the hydrochloric acid is added to prevent hydrogen embrittlement.
  • pickling inhibitors are organic compounds, such as. e.g. Butindiol used. These compounds add chlorine very easily with the formation of organohalogen compounds. For discharging wastewater, there is a very low limit for such compounds.
  • the sum parameter AOX activated carbon adsorbable organic halogen compound
  • DE 4122543 A1 relates to a process for the electrochemical coating of metal strips, preferably galvanized steel strips, with metals or metal alloys, in which an electrolyte laden with salts of the coating metals is circulated between the cathodic metal strip to be coated and insoluble anodes.
  • a diaphragm is arranged between the anode and the metal strip to be coated to form separate electrolyte circuits, which at the anode forming gases, eg oxygen or chlorine, in the laden with the salts of the coating metals electrolyte circuit in the cathode compartment and the transfer of these salts prevents the cathode space in the not charged with the metal salts electrolyte circuit in the anode compartment.
  • the resulting at the anode oxygen gas or chlorine gas is sucked out of the anode circuit.
  • the object of the present invention is therefore to provide an improved process for the pretreatment of hardened steel, wrought iron or cast iron so that surfaces pretreated in this way can then be electrolytically coated with zinc and / or a zinc alloy without error.
  • This process is intended to have the above-described benefits of cathodic pickling with dilute hydrochloric acid, without, however, bringing about the disadvantages of chlorine evolution described above.
  • the above object is achieved by a pretreatment method by means of cathodic pickling, which is characterized in that the cathode and anode compartment are separated by a cation exchange membrane, wherein the cathode compartment contains hydrochloric acid (catholyte) and the anode compartment an aqueous mineral acid except hydrochloric acid and / or a Alkyl sulfonic acid contains (anolyte).
  • the cathode compartment contains hydrochloric acid (catholyte) and the anode compartment an aqueous mineral acid except hydrochloric acid and / or a Alkyl sulfonic acid contains (anolyte).
  • the ion exchange membrane is a cation exchange membrane, e.g. FTN-95017 of the company FUMA-Tech GmbH, St. Ingbert / Saar.
  • Dilute hydrochloric acid is used in the cathode compartment to achieve optimal activation of even critical material surfaces.
  • concentration of hydrochloric acid i.e., the content of HCl
  • the concentration of hydrochloric acid is preferably 5 to 36% by weight, more preferably 10 to 18% by weight, based on the weight of the catholyte.
  • any other mineral acid and / or alkylsulfonic acid can be used in the anode compartment, because in this case the anode reaction is in each case the harmless evolution of oxygen and not the formation of chlorine.
  • Preferred acids are sulfuric acid, phosphoric acid, tetrafluoroboric acid or alkylsulfonic acids, e.g. Methane sulfonic acid.
  • the anode material used is, for example, titanium or zirconium, which is coated with platinum or an iridium-ruthenium mixed oxide coating.
  • the substrate to be coated is preferably cleaned before the actual cathodic pickling.
  • conventional methods are suitable, for example, in DE 100 35 102 are described.
  • aqueous alkaline degreaser solutions can be used.
  • an electrolytic degreasing for example by anodic treatment in alkaline degreaser solution. All of these methods can also be used in combination.
  • the substrate may also be anodized after cathodic pickling and prior to electrolytic plating to remove possible pickle residues in an aqueous alkaline solution.
  • the substrate pretreated according to the invention can then be galvanically coated with zinc or a zinc alloy.
  • the zinc alloy may be, for example, a zinc nickel alloy or a zinc cobalt alloy.
  • the nickel content is usually 12 to 16% by weight.
  • the deposition of the zinc layer can be carried out, for example, from a weakly acidic zinc bath, while zinc nickel layers are usually deposited from an alkaline zinc nickel electrolyte. However, deposition from a weakly acidic electrolyte is also possible. Zinc cobalt alloys are typically deposited from weakly acidic electrolytes.
  • duplex layer of a zinc layer and a zinc nickel layer are also possible.
  • process steps 1, 2, 4 and 5 were carried out as described in Example 1.
  • process step 3 the same conditions with regard to time, temperature and current density as in example 1 were selected, but without separation of anode and cathode space through an ion exchange membrane was used.
  • electrolyte the same composition as used for the cathode compartment in Example 1 was used.
  • the component shows a uniform coating. Even in the critical areas (armpits of the brake carrier, low current density range) there is a closed metallization ( Figure 2). This results in an equally advantageous result in terms of the coating of the workpiece as in the example according to the invention. However, in contrast to the example according to the invention in Comparative Example 1, chlorine is formed in the anode reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Method for pretreating an electrolytic substrate, which is to be coated with zinc and/or zinc alloy, comprises cathodic etching in diluted acid, where: the substrate is hardened steel, wrought iron or cast iron; during the cathode etching, the cathode and anode are separated by an ion exchange membrane; the cathode comprises hydrochloric acid (catholyte); and the anode comprises an aqueous mineral acid, except hydrochloric acid, and/or alkyl sulfonic acid (anolyte). An independent claim is included for a method for electrolytic coating of the substrate with mono- or multi-layers of zinc and/or zinc alloy comprising pretreating the substrate by the above process, before coating.

Description

Werkstücke aus Eisen oder Stahl müssen durch geeignete Beschichtungen gegen Korrosion geschützt werden. Sehr gute Korrosionsschutzwerte können durch galvanische Abscheidung von Zink oder Zinklegierungsschichten erreicht werden. Diese Überzugssysteme besitzen gegenüber dem Grundwerkstoff ein stärker negatives Potential und schützen diese im Sinne eines anodischen Korrosionsschutzes. Bei der Ausbildung eines solchen Korrosionselementes bildet der unedlere Überzug dieo Anode und schützt dadurch das Grundmaterial. Reine Zinkschichten sind für solche Überzugssysteme sehr weit verbreitet. Neben der galvanischen Verzinkung wird hier auch die Feuerverzinkung angewendet.Workpieces made of iron or steel must be protected against corrosion by suitable coatings. Very good corrosion protection values can be achieved by galvanic deposition of zinc or zinc alloy layers. These coating systems have a greater negative potential compared to the base material and protect it in the sense of anodic corrosion protection. In the formation of such a corrosion element, the less noble coating forms the anode and thereby protects the base material. Pure zinc layers are very widespread for such coating systems. In addition to galvanic galvanizing, hot dip galvanizing is also used here.

Ein wesentlich verbesserter Korrosionsschutz wird durch die galvanische Abscheidung von Zinknickellegierungsschichten mit einem Legierungsanteil von 12 bis 16 Gew.-% Nickel erreicht. Diese Legierungsüberzüge weisen im Salzsprühtest nach DIN EN ISO 9227 Beständigkeiten bis zum Auftreten von Zinkkorrosion von mindestens 120 Stunden gegenüber von lediglich 16 Stunden bei Zinkschichten auf (jeweils mit einer Passivierung auf Basis dreiwertiger Chromverbindung).Significantly improved corrosion protection is achieved by the electrodeposition of zinc nickel alloy layers having an alloy content of 12 to 16 wt .-% nickel. In the salt spray test according to DIN EN ISO 9227, these alloy coatings have resistances up to the occurrence of zinc corrosion of at least 120 hours compared to only 16 hours for zinc coatings (each with a passivation based on trivalent chromium compound).

Die galvanische Abscheidung von Zink- oder Zinklegierungsschichten kann aus schwach sauren Verfahren (pH 4,5 - 5,5) oder stark alkalischen Verfahren (pH 14) erfolgen. Beide Verfahrenstypen unterscheiden sich zunächst durch ihren kathodischen Wirkungsgrad. Schwach saure Verfahren weisen einen kathodischen Wirkungsgrad von nahezu 100 % auf, bei alkalischen Verfahren liegt er, je nach Verfahrenstyp und angewandter kathodischer Stromdichte, bei ca. 25 - 50 %.The galvanic deposition of zinc or zinc alloy layers can be carried out from weakly acidic processes (pH 4.5-5.5) or strongly alkaline processes (pH 14). Both types of process initially differ in their cathodic efficiency. Weakly acidic processes have a cathodic efficiency of almost 100%, in alkaline processes, depending on the process type and applied cathodic current density, it is about 25-50%.

Für das Erreichen eines bestimmten Korrosionsschutzwertes ist eine Mindestschichtdicke entscheidend. Bei geometrisch komplex geformten Werkstücken liegen Bereiche wie beispielsweise Vertiefungen, Hinterschneidungen usw. vor, an denen bei der galvanischen Beschichtung nur niedrige kathodische Stromdichten anliegen. Dies resultiert in einem geringeren Schichtdickenwachstum an diesen Stellen.To achieve a certain corrosion protection value, a minimum layer thickness is crucial. In the case of geometrically complex shaped workpieces, there are areas such as recesses, undercuts, etc., where only low cathodic current densities are present during the galvanic coating. This results in less layer thickness growth at these sites.

Schwach saure Elektrolyte haben im gesamten Stromdichtebereich einen annähernd konstanten Wirkungsgrad. Dadurch wird auf einem Werkstück in Bereichen hoher kathodischer Stromdichte sehr viel Metall abgeschieden, in Bereichen niedriger kathodischer Stromdichten dagegen relativ wenig. Da für die geforderte Korrosionsbeständigkeit die Mindestschichtdicke an der ungünstigsten Stelle des Werkstückes entscheidend ist, bedingt die Abscheidung aus einem schwach sauren Verfahren, dass an Stellen hoher kathodischer Stromdichte wesentlich mehr Metall abgeschieden wird als für den Korrosionsschutz erforderlich ist, bevor in Bereichen niedriger Stromdichte die definierte Mindestschichtdicke erreicht ist. Die Abscheidung unnötig dicker Schichten in Bereichen hoher Stromdichte ist aus wirtschaftlicher Sicht unerwünscht. Nachteilig kann sie auch aus technischer Sicht sein, da dicke Schichten im Allgemeinen relativ spröde sind und bereits bei leichter mechanischer Belastung abplatzen können.Weakly acidic electrolytes have an approximately constant efficiency in the entire current density range. As a result, a large amount of metal is deposited on a workpiece in regions of high cathodic current density, but relatively little in regions of low cathodic current densities. Since the minimum layer thickness at the most unfavorable point of the workpiece is decisive for the required corrosion resistance, the deposition from a weakly acidic method causes significantly more metal to be deposited at points of high cathodic current density than is required for the corrosion protection, before the range defined in areas of low current density Minimum layer thickness is reached. The deposition of unnecessarily thick layers in areas of high current density is undesirable from an economic point of view. It may also be disadvantageous from a technical point of view, since thick layers are generally relatively brittle and can flake off even with slight mechanical stress.

Bei alkalischen Zink- oder Zinklegierungselektrolyten verändert sich der kathodische Wirkungsgrad mit der anliegenden kathodischen Stromdichte. In Bereichen hoher kathodischer Stromdichte ist der kathodische Wirkungsgrad gering, bei niedriger kathodischer Stromdichte dagegen hoch. Insgesamt resultiert aus dieser Charakteristik, dass bei einem komplex geformten Bauteil eine wesentlich gleichmäßigere Schichtverteilung erhalten wird als aus einem schwach sauren Zink- oder Zinklegierungselektrolyten. Alkalische Zink- oder Zinklegierungselektrolyte sind aus dieser Sicht die bevorzugten Systeme für die Beschichtung geometrisch komplexer Bauteile.In the case of alkaline zinc or zinc alloy electrolytes, the cathodic efficiency changes with the applied cathodic current density. In areas of high cathodic current density, the cathodic efficiency is low, but high at low cathodic current density. Overall, it results from this characteristic that in a complex-shaped component a much more uniform layer distribution is obtained than from a weakly acid zinc or zinc alloy electrolyte. Alkaline zinc or zinc alloy electrolytes are the preferred systems for coating geometrically complex components from this point of view.

Sie besitzen aber den Nachteil, dass verschiedene Basismaterialien nur unzureichend beschichtet werden können. Bei der Abscheidung aus einem alkalischen Zink- oder Zinklegierungselektrolyt erfolgt parallel zur Zink- oder Zinklegierungsabscheidung immer eine Wasserstoffabscheidung. Je nach Materialbeschaffenheit kann es dann dazu kommen, dass in Bereichen niedriger Stromdichten nur noch Wasserstoffabscheidung und keine Metallabscheidung mehr erfolgt. Der Fachmann spricht dann davon, dass die Metallabscheidung in diesen Bereichen nicht mehr anspringt.But they have the disadvantage that various base materials can only be coated insufficiently. When depositing from an alkaline zinc or zinc alloy electrolyte, hydrogen separation always occurs in parallel to the zinc or zinc alloy deposition. Depending on the nature of the material, it may then happen that in areas of low current densities only hydrogen separation and no more metal deposition takes place. The expert then speaks of the fact that the metal deposition in these areas does not start.

Zu den schwer beschichtbaren Basismaterialien auf Eisenbasis gehören zum Beispiel gehärteter Stahl, geschmiedete Bauteile und Eisenguss. Bei gehärtetem Stahl können es verschiedene Legierungskomponenten im Stahl sein, die das Anspringverhalten verschlechtern. Bei geschmiedeten Bauteilen sind es oftmals Eisenoxidrückstände auf der Oberfläche (z.B. Haematit), welche zu einem schlechten Anspringen führen. Bei Eisenguss handelt es sich um einen Werkstoff, der Ausscheidungen von Graphit enthält. Die Wasserstoffüberspannung ist an Graphit sehr niedrig. Für eine zu beschichtende Gussoberfläche bedeutet dies, dass an den Stellen, wo solche Graphitausscheidungen vorliegen, hauptsächlich Wasserstoff abgeschieden wird. Wegen der lokal niedrigen Wasserstoffüberspannung wird das negativere Potential für die Zink- oder Zinklegierungsabscheidung dort nicht erreicht. Diese springt daher nicht an. Neben Graphit liegen auf der Oberfläche von Gusseisen oft auch noch Reste von Formsand und aus der Schmelze erstarrter Metalloxide vor. Diese Verunreinigungen werden in der Regel vor dem gesamten Prozess der elektrolytischen Beschichtung mechanisch durch Strahlen entfernt. Verunreinigungen in leicht zugänglichen Bereich können dabei sehr zuverlässig entfernt werden. An Vertiefungen oder anderen schwer zugänglichen Bereichen können die Rückstände dagegen nicht immer vollständig entfernt werden oder gegebenenfalls nur unter hohem Zeitaufwand, was im Rahmen einer wirtschaftlichen Produktion aber nicht mehr vertretbar ist. Diese Bereiche, die durch das Strahlen nur schwer erreichbar sind, stellen bei der elektrolytischen Beschichtung oftmals auch den Bereich niedriger Stromdichte dar. Das Problem des schlechten Anspringverhaltens bei der Metallabscheidung wird daher durch die unzureichend vorbehandelte Oberfläche noch verstärkt.The hard-to-coat base iron-based materials include, for example, hardened steel, forged components, and cast iron. For hardened steel, there may be various alloying components in the steel that degrade light-off performance. In the case of forged components, iron oxide residues on the surface (eg haematite) often lead to poor start-up. Cast iron is a material that contains precipitates of graphite. The hydrogen overvoltage is very low on graphite. For a cast surface to be coated, this means that primarily hydrogen is deposited at the locations where such graphite precipitates are present. Because of the locally low hydrogen overvoltage, the more negative potential for zinc or zinc alloy deposition is not achieved there. This does not start. In addition to graphite, residues of foundry sand and solidified metal oxides are often present on the surface of cast iron. These impurities are typically mechanically removed by blasting prior to the entire electrolytic coating process. Impurities in easily accessible area can be removed very reliable. At In contrast, the residues can not always be completely removed from depressions or other areas that are difficult to reach, or they can only be removed over a long period of time, which is no longer justifiable in the context of economic production. These areas, which are difficult to reach due to the blasting, often also represent the area of low current density in the case of the electrolytic coating. The problem of poor light-off behavior during metal deposition is therefore intensified by the insufficiently pretreated surface.

Im Stand der Technik wurden daher Verfahren zur Vorbehandlung von gehärtetem Stahl, Schmiedeeisen oder Gusseisen entwickelt, damit derart vorbehandelte Oberflächen anschließend fehlerfrei beschichtet werden können.In the prior art, therefore, processes for the pretreatment of hardened steel, wrought iron or cast iron have been developed, so that surfaces pretreated in this way can subsequently be coated without defects.

So wird in DE 100 35 102 B4 ein Vorbehandlungsverfahren beschrieben, dass dadurch gekennzeichnet ist, dass das Substrat aus gehärtetem Stahl oder Eisenguss vor der elektrolytischen Beschichtung in einer Lösung, die eine oder mehrere Mineralsäuren und/oder eine oder mehrere Alkylsulfonsäuren umfasst, elektrolytisch aktiviert wird (kathodisches Beizen).So will in DE 100 35 102 B4 describes a pretreatment process, characterized in that the hardened steel or cast iron substrate is electrolytically activated prior to the electrolytic coating in a solution comprising one or more mineral acids and / or one or more alkylsulfonic acids (cathodic pickling).

Beim kathodischen Beizen wird die bereits beim chemischen Beizen (Säurebehandlung) vorhandene Wasserstoffentwicklung und die hiermit verbundene Wirkung der mechanischen Absprengung von Rost und Zunder kräftig unterstützt und um ein Vielfaches erhöht. Die Menge des entwickelten Wasserstoffes hängt bei der elektrolytischen Behandlung gemäß diesem Verfahren nur von der angelegten kathodischen Stromdichte ab und ist daher unabhängig von der Art der verwendeten Säure.In the case of cathodic pickling, the evolution of hydrogen already present during chemical pickling (acid treatment) and the associated effect of the mechanical detachment of rust and scale are vigorously supported and increased many times over. The amount of hydrogen evolved in the electrolytic treatment according to this method depends only on the applied cathodic current density and is therefore independent of the type of acid used.

In der Praxis hat sich jedoch gezeigt, dass das kathodische Beizen in verdünnter Salzsäure im Vergleich zu anderen Säuren Vorteile hat. Die Galvanisierbarkeit von insbesondere geschmiedeten Teilen oder Gussteilen kann verfahrensbedingt trotz gleicher Materialzusammensetzung unterschiedlich sein. So können z.B. auf geschmiedeten Teilen unterschiedlich starke Haematitablagerungen vorhanden sein. Bei Gusseisen kann es, je nach Gießbedingungen und Abkühlen der Gussform zu unterschiedlichen Formen von Graphitausscheidungen kommen. Es ist dadurch erklärlich, dass trotz vermeintlich gleicher Materialbeschaffenheit die Eignung zur fehlerfreien Beschichtung unterschiedlich sein kann. In diesem Zusammenhang wurde festgestellt, dass diese bauteilbedingten Unterschiede ausgeglichen werden können, wenn zur kathodischen Aktivierung verdünnte Salzsäure eingesetzt wird.In practice, however, it has been found that cathodic pickling in dilute hydrochloric acid has advantages over other acids. The galvanizability of particular Forged parts or castings may be different due to the process despite the same material composition. For example, different thicknesses of haematite deposits can be present on forged parts. For cast iron, depending on casting conditions and cooling of the mold, different forms of graphite precipitates may occur. It is therefore explainable that, despite supposedly identical material properties, the suitability for a defect-free coating can be different. In this regard, it has been found that these component-related differences can be compensated if dilute hydrochloric acid is used for cathodic activation.

Die Verwendung von Salzsäure bringt jedoch auch Nachteile mit sich. Während die kathodische Reaktion bei der elektrolytischen Aktivierung in verdünnten Mineralsäuren und/oder Alkylsulfonsäuren immer gleich ist, nämlich die Entwicklung von Wasserstoff, gibt es bezüglich der Anodenreaktion Unterschiede. Bei Mineralsäuren wie Phosphorsäure, Schwefelsäure, Tetrafluoroborsäure oder bei Alkylsulfonsäuren besteht bei Einsatz von unlöslichen Anoden (z.B. platinbeschichtetes Titan oder Iridium-Ruthenium-Mischoxidanoden) die Anodenreaktion in einer Oxidation von Wasser entsprechend Gleichung [1]:

        2 H2O - 4 e- -> 4 H+ + 02     [1]

However, the use of hydrochloric acid also has disadvantages. While the cathodic reaction in electrolytic activation in dilute mineral acids and / or alkylsulfonic acids is always the same, namely the evolution of hydrogen, there are differences in the anode reaction. In the case of mineral acids such as phosphoric acid, sulfuric acid, tetrafluoroboric acid or alkylsulfonic acids, when using insoluble anodes (eg platinum-coated titanium or iridium-ruthenium mixed oxide anodes), the anodic reaction is an oxidation of water in accordance with equation [1]:

2 H 2 O - 4 e - -> 4 H + + 0 2 [1]

Bei Verwendung von Salzsäure ist die Hauptreaktion an den Anoden dagegen die Bildung von Chlor entsprechend Reaktion [2]:

        2 Cl- - 2 e- -> Cl2     [2]

When using hydrochloric acid, however, the main reaction at the anodes is the formation of chlorine corresponding to reaction [2]:

2 Cl - - 2 e - -> Cl 2 [2]

Die Chlorentwicklung bringt verfahrenstechnisch wesentliche Nachteile mit sich: Erstens muss das an der Anode gebildete Chlorgas durch eine wirkungsvolle Absaugung abgetrennt und die Abluft durch einen geeigneten Wäscher gereinigt werden.The development of chlorine has procedural disadvantages: First, the chlorine gas formed at the anode must be separated by an effective suction and the exhaust air to be cleaned by a suitable scrubber.

Zweitens löst sich das Chlor teilweise in der Salzsäure auf. Dadurch kann es zu einer chemischen Reaktion mit dem Beizinhibitor kommen, mit dem die Salzsäure zur Verhinderung von Wasserstoffversprödung versetzt ist. Als Beizinhibitoren werden organische Verbindungen, wie. z.B. Butindiol eingesetzt. Diese Verbindungen addieren Chlor sehr leicht unter Bildung von halogenorganischen Verbindungen. Für das Ableiten von Abwasser gilt ein sehr niedriger Grenzwert für solche Verbindungen. Es wird hier der Summenparameter AOX (an Aktivkohle adsorbierbare organische Halogenverbindung) herangezogen.Second, the chlorine partially dissolves in the hydrochloric acid. This may cause a chemical reaction with the pickling inhibitor, with which the hydrochloric acid is added to prevent hydrogen embrittlement. As pickling inhibitors are organic compounds, such as. e.g. Butindiol used. These compounds add chlorine very easily with the formation of organohalogen compounds. For discharging wastewater, there is a very low limit for such compounds. Here, the sum parameter AOX (activated carbon adsorbable organic halogen compound) is used.

DE 4122543 A1 betrifft ein Verfahren zur elektrochemischen Beschichtung von Metallbändern, vorzugsweise verzinkten Stahlbändern, mit Metallen oder Metalllegierungen, bei dem zwischen dem zu beschichtenden kathodischen Metallband und unlöslichen Anoden ein mit Salzen der Beschichtungsmetalle beladener Elektrolyt in Umlauf geführt ist. Hierbei ist zwischen Anode und dem zu beschichtenden Metallband zur Bildung getrennter Elektrolytkreisläufe ein Diaphragma angeordnet, welches den Übertritt sich an der Anode bildender Gase, z.B. Sauerstoff oder Chlor, in den mit den Salzen der Beschichtungsmetalle beladenen Elektrolytkreislauf im Kathodenraum und den Übertritt von diesen Salzen aus dem Kathodenraum in den nicht mit den Metallsalzen beladenen Elektrolytkreislauf im Anodenraum verhindert. Das an der Anode entstehende Sauerstoffgas oder Chlorgas wird aus dem Anodenkreislauf abgesaugt. DE 4122543 A1 relates to a process for the electrochemical coating of metal strips, preferably galvanized steel strips, with metals or metal alloys, in which an electrolyte laden with salts of the coating metals is circulated between the cathodic metal strip to be coated and insoluble anodes. In this case, a diaphragm is arranged between the anode and the metal strip to be coated to form separate electrolyte circuits, which at the anode forming gases, eg oxygen or chlorine, in the laden with the salts of the coating metals electrolyte circuit in the cathode compartment and the transfer of these salts prevents the cathode space in the not charged with the metal salts electrolyte circuit in the anode compartment. The resulting at the anode oxygen gas or chlorine gas is sucked out of the anode circuit.

Aufgabenstellungtask

Aufgabe der vorliegenden Erfindung ist es daher, ein verbessertes Verfahren zur Vorbehandlung von gehärtetem Stahl, Schmiedeeisen oder Gusseisen zur Verfügung zu stellen, damit derart vorbehandelte Oberflächen anschließend fehlerfrei mit Zink und/oder einer Zinklegierung elektrolytisch beschichtet werden können. Dieses Verfahren soll die oben beschriebenen Vorteile des kathodischen Beizens mit verdünnter Salzsäure aufweisen, ohne jedoch die oben beschriebenen Nachteile der Chlorentwicklung mit sich zu bringen.The object of the present invention is therefore to provide an improved process for the pretreatment of hardened steel, wrought iron or cast iron so that surfaces pretreated in this way can then be electrolytically coated with zinc and / or a zinc alloy without error. This process is intended to have the above-described benefits of cathodic pickling with dilute hydrochloric acid, without, however, bringing about the disadvantages of chlorine evolution described above.

Beschreibung der ErfindungDescription of the invention

Erfindungsgemäß wird die obige Aufgabe durch ein Vorbehandlungsverfahren mittels kathodischem Beizen gelöst, das dadurch gekennzeichnet ist, dass der Kathoden- und Anodenraum durch eine Kationenaustauschermembran abgetrennt sind, wobei der Kathodenraum Salzsäure enthält (Katholyt) und der Anodenraum eine wässrige Mineralsäure außer Salzsäure und/oder eine Alkylsulfonsäure enthält (Anolyt).According to the invention the above object is achieved by a pretreatment method by means of cathodic pickling, which is characterized in that the cathode and anode compartment are separated by a cation exchange membrane, wherein the cathode compartment contains hydrochloric acid (catholyte) and the anode compartment an aqueous mineral acid except hydrochloric acid and / or a Alkyl sulfonic acid contains (anolyte).

Bei der Ionenaustauschermembran handelt es sich um eine Kationenaustauschermembran, z.B. FTN-95017 der Firma FUMA-Tech GmbH, St. Ingbert/Saar.The ion exchange membrane is a cation exchange membrane, e.g. FTN-95017 of the company FUMA-Tech GmbH, St. Ingbert / Saar.

Im Kathodenraum wird verdünnte Salzsäure eingesetzt, um eine optimale Aktivierung auch kritischer Werkstoffoberflächen zu erreichen. Dabei ist die Konzentration der Salzsäure (d.h. der Gehalt an HCl) vorzugsweise 5 bis 36 Gew.-%, insbesondere 10 bis 18 Gew.-%, bezogen auf das Gewicht des Katholyten.Dilute hydrochloric acid is used in the cathode compartment to achieve optimal activation of even critical material surfaces. Incidentally, the concentration of hydrochloric acid (i.e., the content of HCl) is preferably 5 to 36% by weight, more preferably 10 to 18% by weight, based on the weight of the catholyte.

Im Anodenraum kann dagegen jede andere Mineralsäure und/oder Alkylsulfonsäure eingesetzt werden, weil dabei die Anodenreaktion jeweils die ungefährliche Sauerstoffentwicklung und nicht die Chlorentstehung ist. Bevorzugte Säuren sind Schwefelsäure, Phosphorsäure, Tetrafluoroborsäure oder Alkylsulfonsäuren wie z.B. Methansulfonsäure. Als Anodenmaterial dient beispielsweise Titan oder Zirkon, das mit Platin oder einer Iridium-Ruthenium-Mischoxidbeschichtung überzogen ist ist.In contrast, any other mineral acid and / or alkylsulfonic acid can be used in the anode compartment, because in this case the anode reaction is in each case the harmless evolution of oxygen and not the formation of chlorine. Preferred acids are sulfuric acid, phosphoric acid, tetrafluoroboric acid or alkylsulfonic acids, e.g. Methane sulfonic acid. The anode material used is, for example, titanium or zirconium, which is coated with platinum or an iridium-ruthenium mixed oxide coating.

Es ist überraschend, dass bei dieser Abtrennung des Kathodenraums das gleiche Ergebnis erzielt wird wie bei der Verwendung von Salzsäure in einer ungeteilten Zelle. Wie weiter oben ausgeführt, ist die Kathodenreaktion bei Einsatz von Salzsäure oder anderen Mineralsäuren und/oder Alkylsulfonsäuren immer die Gleiche. Da beim Einsatz von Salzsäure in einer ungeteilten Zelle trotzdem ein besseres Ergebnis hinsichtlich des Ausgleichs bauteilbedingter Unterschiede erzielt wird als bei Einsatz der anderen Mineralsäuren, ist somit zu vermuten, dass dieser Effekt auf die unterschiedliche Anodenreaktion und folglich das Vorhandensein von gelöstem Chlor zurückzuführen sei, welches in der anodischen Reaktion gebildet wurde.It is surprising that in this separation of the cathode space, the same result is achieved as in the use of hydrochloric acid in an undivided cell. As stated above, when using hydrochloric acid or other mineral acids and / or alkylsulfonic acids, the cathode reaction is always the same. Since the use of hydrochloric acid in an undivided cell nevertheless a better result in terms of compensation component-related differences is achieved than with the use of other mineral acids, it can be assumed that this effect is due to the different anode reaction and consequently the presence of dissolved chlorine, which was formed in the anodic reaction.

Überraschenderweise hat sich jedoch gezeigt, dass auch bei einer Abtrennung von Anoden- und Kathodenraum durch eine Kationenaustauschermembran, wo also die Bildung von Chlor nicht möglich ist, die verbesserte Wirkung von verdünnter Salzsäure bei der kathodischen Aktivierung gegeben ist.Surprisingly, however, it has been found that even with a separation of anode and cathode space through a cation exchange membrane, ie where the formation of chlorine is not is possible given the improved effect of dilute hydrochloric acid in the cathodic activation.

Beim erfindungsgemäßen Vorbehandlungsverfahren wird das zu beschichtende Substrat vorzugsweise vor dem eigentlichen kathodischen Beizen gereinigt. Hierzu eignen sich im Stand der Technik übliche Verfahren, die beispielsweise in DE 100 35 102 beschrieben sind. So können zum Beispiel wässrige alkalische Entfetterlösungen verwendet werden. Ebenfalls geeignet ist ein elektrolytisches Entfetten, z.B. durch anodische Behandlung in alkalischer Entfetterlösung. All diese Methoden können auch in Kombination eingesetzt werden.In the pretreatment method according to the invention, the substrate to be coated is preferably cleaned before the actual cathodic pickling. For this purpose, in the prior art, conventional methods are suitable, for example, in DE 100 35 102 are described. For example, aqueous alkaline degreaser solutions can be used. Also suitable is an electrolytic degreasing, for example by anodic treatment in alkaline degreaser solution. All of these methods can also be used in combination.

Des Weiteren kann das Substrat auch nach dem kathodischen Beizen und vor dem elektrolytischen Beschichten zur Entfernung möglicher Beizrückstände in einer wässrigen alkalischen Lösung anodisch behandelt werden.Furthermore, the substrate may also be anodized after cathodic pickling and prior to electrolytic plating to remove possible pickle residues in an aqueous alkaline solution.

Das erfindungsgemäß vorbehandelte Substrat kann dann galvanisch mit Zink oder einer Zinklegierung beschichtet werden. Die Zinklegierung kann beispielsweise eine Zinknickellegierung oder eine Zinkkobaltlegierung sein. Bei einer Zinknickellegierung liegt der Nickelanteil üblicherweise bei 12 bis 16 Gew.-%.The substrate pretreated according to the invention can then be galvanically coated with zinc or a zinc alloy. The zinc alloy may be, for example, a zinc nickel alloy or a zinc cobalt alloy. In a zinc nickel alloy, the nickel content is usually 12 to 16% by weight.

Die Abscheidung der Zinkschicht kann beispielsweise aus einem schwach sauren Zinkbad erfolgen, während Zinknickelschichten üblicherweise aus einem alkalischen Zinknickelelektrolyten abgeschieden werden. Abscheidung aus einem schwach sauren Elektrolyten ist jedoch ebenfalls möglich. Zinkkobaltlegierungen werden typischerweise aus schwach sauren Elektrolyten abgeschieden.The deposition of the zinc layer can be carried out, for example, from a weakly acidic zinc bath, while zinc nickel layers are usually deposited from an alkaline zinc nickel electrolyte. However, deposition from a weakly acidic electrolyte is also possible. Zinc cobalt alloys are typically deposited from weakly acidic electrolytes.

Ebenfalls möglich sind Mehrfachschichten wie zum Beispiel eine Duplexschicht aus einer Zinkschicht und einer Zinknickelschicht.Also possible are multiple layers such as a duplex layer of a zinc layer and a zinc nickel layer.

BeispieleExamples

Die vorliegende Erfindung wird durch das folgende erfindungsgemäße Beispiel und die Vergleichsbeispiele näher erläutert.The present invention will be further illustrated by the following Example of the present invention and Comparative Examples.

Beispiel:Example:

Ein Substrat aus Eisenguss (Bremsträger) wurde den folgenden Verfahrensschritten unterzogen:

  • Schritt 1:
    Alkalische Reinigung in einem wässrig alkalischen Reiniger mit 3 Gew.-% Entfettersalz SLOTOCLEAN AK 161 (Mischung aus Natriumhydroxid, Natriumsilikat, Natriumpolyphosphat)
    Behandlungszeit: 4 Minuten
    Temperatur: 60 °C
  • Schritt 2:
    Anodische elektrolytische Entfettung
    10 Gew.-% Entfettersalz SLOTOCLEAN EL-DCG (Mischung aus Natriumhydroxid und Natriumsilikat)
    Stromdichte: 8 A/dm2
    Behandlungszeit: 4 Minuten
    Temperatur: 35 °C
  • Schritt 3:
    Beizen mit elektrolytischer Unterstützung.
    Behandlungsdauer: 5 Minuten
    Temperatur: 40 °C
    Kathodische Stromdichte ca. 5 A/dm2
    Dabei wurden Anoden- und Kathodenraum durch eine Kationenaustauschermembran vom Typ FTN-95017 der Fa. FUMA-Tech GmbH, St. Ingbert/Saar abgetrennt.
  • Im Kathodenraum:
    • 18 Gew.-% Salzsäure
    • 1 Gew.-% Beizinhibitor 0066 (Alkinol) und
    • 0,05 Gew.-% Beizentfetter SLOTOCLEAN BEF 30 (Mischung von Alkinol und aliphatischen nichtionogenen Tensiden)
  • Im Anodenraum:
    • 10 Gew.-% Schwefelsäure
    • Anodenmaterial: platiniertes Titan
  • Schritt 4:
    • Elektrolytische Beschichtung in schwach saurem Zinkbad SLOTANIT OT 120
    • Kathodische Stromdichte: ca. 3 A/dm2
    • Beschichtungsdauer: 12 Minuten
    • Temperatur: 25 °C
  • Schritt 5:
    • Elektrolytische Beschichtung im alkalischen
    • Zinknickelelektrolyten SLOTOLOY ZN 80
    • Kathodische Stromdichte: ca. 3 A/dm2
    • Beschichtungsdauer: 35 Minuten
    • Temperatur: 35 °C
  • Ergebnis:
    Das Bauteil zeigt eine gleichmäßige Beschichtung. Auch in den kritischen Stellen (Achseln des Bremsträgers, niedriger Stromdichtebereich) liegt eine geschlossene Metallisierung vor (Bild 1).
A substrate made of cast iron (brake carrier) was subjected to the following process steps:
  • Step 1:
    Alkaline cleaning in an aqueous alkaline cleaner with 3% by weight degreaser salt SLOTOCLEAN AK 161 (mixture of sodium hydroxide, sodium silicate, sodium polyphosphate)
    Treatment time: 4 minutes
    Temperature: 60 ° C
  • Step 2:
    Anodic electrolytic degreasing
    10% by weight of defatting salt SLOTOCLEAN EL-DCG (mixture of sodium hydroxide and sodium silicate)
    Current density: 8 A / dm 2
    Treatment time: 4 minutes
    Temperature: 35 ° C
  • Step 3:
    Pickling with electrolytic support.
    Duration of treatment: 5 minutes
    Temperature: 40 ° C
    Cathodic current density approx. 5 A / dm 2
    Anode and cathode compartment were separated by a FTN-95017 cation exchange membrane from FUMA-Tech GmbH, St. Ingbert / Saar.
  • In the cathode compartment:
    • 18% by weight of hydrochloric acid
    • 1 wt .-% Beizinhibitor 0066 (alkynol) and
    • 0.05% by weight of pickling degreaser SLOTOCLEAN BEF 30 (mixture of alkynol and aliphatic nonionic surfactants)
  • In the anode compartment:
    • 10% by weight of sulfuric acid
    • Anode material: platinized titanium
  • Step 4:
    • Electrolytic coating in weakly acidic zinc bath SLOTANIT OT 120
    • Cathodic current density: approx. 3 A / dm 2
    • Coating time: 12 minutes
    • Temperature: 25 ° C
  • Step 5:
    • Electrolytic coating in alkaline
    • Zinc nickel electrolyte SLOTOLOY ZN 80
    • Cathodic current density: approx. 3 A / dm 2
    • Coating time: 35 minutes
    • Temperature: 35 ° C
  • Result:
    The component shows a uniform coating. Even in the critical areas (armpits of the brake carrier, low current density range) there is a closed metallization (Figure 1).

Vergleichsbeispiel 1 (Salzsäure, ohne Abtrennung)Comparative Example 1 (hydrochloric acid, without separation)

Die Verfahrensschritte 1, 2, 4 und 5 wurden wie in Beispiel 1 beschrieben durchgeführt. In Verfahrensschritt 3 wurden die gleichen Bedingungen hinsichtlich Zeit, Temperatur und Stromdichte wie in Beispiel 1 gewählt, allerdings wurde ohne Abtrennung von Anoden- und Kathodenraum durch eine Ionenaustauschermembran gearbeitet. Als Elektrolyt wurde die gleiche Zusammensetzung wie für den Kathodenraum in Beispiel 1 verwendet.The process steps 1, 2, 4 and 5 were carried out as described in Example 1. In process step 3, the same conditions with regard to time, temperature and current density as in example 1 were selected, but without separation of anode and cathode space through an ion exchange membrane was used. As the electrolyte, the same composition as used for the cathode compartment in Example 1 was used.

Ergebnis:Result:

Das Bauteil zeigt eine gleichmäßige Beschichtung. Auch in den kritischen Stellen (Achseln des Bremsträgers, niedriger Stromdichtebereich) liegt eine geschlossene Metallisierung vor (Bild 2). Damit wird hinsichtlich der Beschichtung des Werkstücks ein ebenso vorteilhaftes Ergebnis erzielt wie im erfindungsgemäßen Beispiel. Allerdings entsteht im Gegensatz zum erfindungsgemäßen Beispiel in Vergleichsbeispiel 1 bei der Anodenreaktion Chlor.The component shows a uniform coating. Even in the critical areas (armpits of the brake carrier, low current density range) there is a closed metallization (Figure 2). This results in an equally advantageous result in terms of the coating of the workpiece as in the example according to the invention. However, in contrast to the example according to the invention in Comparative Example 1, chlorine is formed in the anode reaction.

Vergleichsbeispiel 2 (Schwefelsäure, ohne Abtrennung)Comparative Example 2 (sulfuric acid, without separation)

Die Verfahrensschritte 1, 2, 4 und 5 wurden wie in Beispiel 1 beschrieben durchgeführt. In Verfahrensschritt 3 wurden die gleichen Bedingungen hinsichtlich Zeit, Temperatur und Stromdichte wie in Beispiel 1 gewählt, allerdings wurde ohne Abtrennung von Anoden- und Kathodenraum durch eine Ionenaustauschermembran gearbeitet. Als Elektrolyt wurde eingesetzt:

  • 10 Gew.-% Schwefelsäure
  • 1 Gew.-% Beizinhibitor 0066 (Akinol)
  • 0,05 Gew.-% Beizentfetter SLOTOCLEAN BEF 30 (Mischung von Alkinol und aliphatischen nichtionogenen Tensiden)
The process steps 1, 2, 4 and 5 were carried out as described in Example 1. In process step 3, the same conditions with regard to time, temperature and current density as in example 1 were selected, but without separation of anode and cathode space through an ion exchange membrane was used. The electrolyte used was:
  • 10% by weight of sulfuric acid
  • 1% by weight pickling inhibitor 0066 (Akinol)
  • 0.05% by weight of pickling degreaser SLOTOCLEAN BEF 30 (mixture of alkynol and aliphatic nonionic surfactants)

Ergebnis:Result:

Die Beschichtung war nicht vollständig. In den Bereichen niedriger Stromdichte war das Grundmaterial nicht vollständig bedeckt (Bild 3, Pfeile).The coating was not complete. In areas of low current density, the base material was not completely covered (Figure 3, arrows).

Claims (12)

  1. Process for the pre-treatment of a substrate to be coated electrolytically with zinc and/or a zinc alloy and made from hardened steel, wrought iron or cast iron by means of cathodic pickling in dilute acid, characterised in that during cathodic pickling, the cathode area and anode area are separated by a cation-exchange membrane, wherein the cathode area contains hydrochloric acid (catholyte) and the anode area contains an aqueous mineral acid apart from hydrochloric acid and/or an alkyl sulphonic acid (anolyte).
  2. Process according to claim 1, characterised in that the catholyte contains hydrochloric acid in a quantity of 5 to 36 wt.% of HCl relative to the weight of the catholyte.
  3. Process according to claim 2, characterised in that the catholyte contains hydrochloric acid in a quantity of 10 to 18 wt.% of HCl relative to the weight of the catholyte.
  4. Process according to one or more of claims 1 to 3, characterised in that the anolyte contains as the mineral acid, sulphuric acid, phosphoric acid or tetrafluoroboric acid.
  5. Process according to one or more of claims 1 to 4, characterised in that titanium or zirconium, which is coated in each case with platinum or iridium-ruthenium mixed oxide coating, is used as the anode material.
  6. Process according to one or more of claims 1 to 5, characterised in that the substrate is cleaned before cathodic pickling in an aqueous-alkaline degreasing solution.
  7. Process according to one or more of claims 1 to 6, characterised in that the substrate is treated anodically in an aqueous-alkaline solution after cathodic pickling and before electrolytic coating.
  8. Process for the electrolytic coating of a substrate made from hardened steel, wrought iron or cast iron with one or more layers made from zinc and/or a zinc alloy, characterised in that the substrate is pre-treated before coating by a process according to one of claims 1 to 7.
  9. Process according to claim 8, characterised in that a zinc layer is deposited from a weakly acid zinc bath.
  10. Process according to claim 8 or 9, characterised in that a zinc-nickel alloy layer is deposited from an alkaline zinc-nickel electrolyte.
  11. Process according to claim 10, characterised in that the deposited zinc-nickel layer has a nickel proportion of 12 - 16 wt.%.
  12. Process according to one or more of claims 8 to 11, characterised in that a zinc-cobalt alloy is deposited from a weakly acid zinc-cobalt electrolyte.
EP08010120A 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating Not-in-force EP2130950B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502008001397T DE502008001397D1 (en) 2008-06-03 2008-06-03 Process for the pretreatment of hardened steel, wrought iron or cast iron before a galvanic coating
EP08010120A EP2130950B1 (en) 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating
PT08010120T PT2130950E (en) 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating
ES08010120T ES2350873T3 (en) 2008-06-03 2008-06-03 PROCEDURE FOR THE PRE-TREATMENT OF TEMPERED STEEL, WROUGHT IRON OR CAST IRON BEFORE A GALVANIC COATING.
AT08010120T ATE482304T1 (en) 2008-06-03 2008-06-03 METHOD FOR PRETREATING HARDENED STEEL, WROUGHT IRON OR CASTING IRON BEFORE GALVANIC COATING
PL08010120T PL2130950T3 (en) 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08010120A EP2130950B1 (en) 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating

Publications (2)

Publication Number Publication Date
EP2130950A1 EP2130950A1 (en) 2009-12-09
EP2130950B1 true EP2130950B1 (en) 2010-09-22

Family

ID=39737173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08010120A Not-in-force EP2130950B1 (en) 2008-06-03 2008-06-03 Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating

Country Status (6)

Country Link
EP (1) EP2130950B1 (en)
AT (1) ATE482304T1 (en)
DE (1) DE502008001397D1 (en)
ES (1) ES2350873T3 (en)
PL (1) PL2130950T3 (en)
PT (1) PT2130950E (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1898765A (en) * 1932-06-20 1933-02-21 Bullard Co Electrocleaning process
DE4122543A1 (en) * 1991-03-18 1992-10-08 Hans Josef May Zinc@ metal strip electrochemical coating - using ionic exchange membrane preventing oxygen@ and chlorine@ gases at anode contaminating cathodic area for metal salt redn.
JPH11106985A (en) * 1997-10-07 1999-04-20 Kawasaki Steel Corp Electric plating method of hot-rolled steel sheet with scale
DE10035102B4 (en) 2000-07-19 2005-05-04 Dr.-Ing. Max Schlötter GmbH & Co KG Process for coating hardened steel or cast iron components with zinc-nickel alloys and coated substrates obtainable by this process

Also Published As

Publication number Publication date
EP2130950A1 (en) 2009-12-09
ATE482304T1 (en) 2010-10-15
DE502008001397D1 (en) 2010-11-04
PT2130950E (en) 2010-11-22
ES2350873T3 (en) 2011-01-27
PL2130950T3 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
DE102006035871B3 (en) Process for the deposition of chromium layers as hard chrome plating, plating bath and hard chrome plated surfaces and their use
EP2606162A1 (en) Process for the electroless copper plating of metallic substrates
DE102011105207A1 (en) Electrolyte and its use for the deposition of black ruthenium coatings and coatings thus obtained
EP1913181B1 (en) Electropolishing method
EP2635724B1 (en) Process for electroplating hard chromium from a cr(vi) free electrolyte
EP2180088B2 (en) Method for electroplating hard chrome layers
EP3067444B1 (en) Deposition of decorative palladium iron alloy coatings on metallic substances
EP2130950B1 (en) Method for pretreating reinforced steel, wrought iron or cast iron before galvanic coating
US5820741A (en) Passification of zinc surfaces
DE2137551A1 (en) PRE-TREATMENT OF STEEL SHEETS THAT ARE COATED AFTER A SHAPING
DE10035102B4 (en) Process for coating hardened steel or cast iron components with zinc-nickel alloys and coated substrates obtainable by this process
DE3530223A1 (en) GALVANIZING BATHROOM FOR CHROME ALLOYS
EP2770088A1 (en) Extremely corrosion-resistant steel parts and method for their production
DE1048755B (en)
JPH0663113B2 (en) Method for producing Zn-based electroplated steel sheet having excellent chemical conversion treatability
DE69900538T2 (en) ELECTROPLATING FORMULATION AND PROCESS FOR PLATING IRON DIRECTLY ON ALUMINUM OR ALUMINUM ALLOYS
WO2007140850A1 (en) Use of phosphinic acids and/or phosphonic acids in redox processes
DE202013001731U1 (en) High corrosion resistant steel parts
WO1992022686A1 (en) Method of pretreating the surfaces of non-ferrous metals prior to galvanic deposition of a coat of metal
WO2000011244A2 (en) Coating for components made of hardened steel or cast iron and method for applying same
EP0305704A2 (en) Process for electroplating a metal, particularly zinc or a zinc alloy, on a steel strip
DE19926102B4 (en) Process and plant for producing an electrolytically coated hot strip
DE102009017702A1 (en) Forming corrosion-protection layers on surfaces made of zinc, aluminum or magnesium and alloys of metals, comprises contacting surface of metals/metal alloys with solutions comprising chromium (III) ions, metal ions and complexing agent
DE4023466C1 (en) Electrical coating of steel strip - using zinc on zinc-nickel alloy then treating strip as anode in electrolyte soln.
EP0215381B1 (en) Process for manufacturing electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008001397

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20101115

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100922

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 8415

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20110601

Year of fee payment: 4

Ref country code: ES

Payment date: 20110603

Year of fee payment: 4

Ref country code: SE

Payment date: 20110616

Year of fee payment: 4

Ref country code: TR

Payment date: 20110523

Year of fee payment: 4

Ref country code: PT

Payment date: 20110527

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20110530

Year of fee payment: 4

Ref country code: SK

Payment date: 20110603

Year of fee payment: 4

Ref country code: PL

Payment date: 20110505

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001397

Country of ref document: DE

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110630

Year of fee payment: 4

BERE Be: lapsed

Owner name: DR.ING. MAX SCHLOTTER G.M.B.H. & CO. KG

Effective date: 20110630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008001397

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20121203

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120604

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 8415

Country of ref document: SK

Effective date: 20120603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100922

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120604

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120603

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 482304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130603