JP2012506496A - Method for galvanic electrodeposition of hard chrome layers - Google Patents

Method for galvanic electrodeposition of hard chrome layers Download PDF

Info

Publication number
JP2012506496A
JP2012506496A JP2011533333A JP2011533333A JP2012506496A JP 2012506496 A JP2012506496 A JP 2012506496A JP 2011533333 A JP2011533333 A JP 2011533333A JP 2011533333 A JP2011533333 A JP 2011533333A JP 2012506496 A JP2012506496 A JP 2012506496A
Authority
JP
Japan
Prior art keywords
substrate surface
layer
chromium layer
hard
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011533333A
Other languages
Japanese (ja)
Other versions
JP2012506496A5 (en
JP5739341B2 (en
Inventor
ホルストヘムケ,ヘルムート
Original Assignee
エントン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40427109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012506496(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エントン インコーポレイテッド filed Critical エントン インコーポレイテッド
Publication of JP2012506496A publication Critical patent/JP2012506496A/en
Publication of JP2012506496A5 publication Critical patent/JP2012506496A5/ja
Application granted granted Critical
Publication of JP5739341B2 publication Critical patent/JP5739341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】本発明は、基板表面上に高速で硬質クロム層の沈着をするための方法に関する。
【解決手段】本発明に係る方法は、被覆される基板表面が、周囲圧力に対して減圧下でガルバニー電気沈着に適するクロム含有電解質と接触され、クロム層の基板表面上への沈着中に、基板表面と電解質の相対的運動が行なわれる。
【選択図】なし
The present invention relates to a method for depositing a hard chromium layer on a substrate surface at high speed.
The method according to the invention is such that the substrate surface to be coated is contacted with a chromium-containing electrolyte suitable for galvanic electrodeposition under reduced pressure relative to ambient pressure, and during deposition of the chromium layer on the substrate surface, A relative movement of the substrate surface and the electrolyte takes place.
[Selection figure] None

Description

本発明は、基板表面に硬質クロム層を沈着するための方法に関する。特に、本発明は、硬質クロム層を高沈着速度で沈着するための方法に関する。   The present invention relates to a method for depositing a hard chromium layer on a substrate surface. In particular, the present invention relates to a method for depositing a hard chromium layer at a high deposition rate.

硬質クロム層は、技術用部品の被覆として広く普及している。このように、例えば、バルブ本体、ブッシング、ブレーキ・ピストン或いはアクセル・ハブに硬質クロム層を如何に施すかが知られている。沈着クロム層は、一方で、下層にある基板表面の腐食防止のために、また一方では沈着硬質クロム層が高硬度を有する故に、摩擦や摩耗に対する保護層としても使用される。   Hard chrome layers are widely used as coatings for technical parts. Thus, for example, it is known how to apply a hard chrome layer to a valve body, bushing, brake piston, or accelerator hub. The deposited chrome layer is used on the one hand for preventing corrosion of the underlying substrate surface and on the other hand because the deposited hard chrome layer has a high hardness, and is also used as a protective layer against friction and wear.

クロム層のガルバニー電気沈着のために、表面を整えるために適当な予備処理をした後に被覆された基板表面は、沈着される金属(クロム)を少なくとも有する電解質に接触させて、その間、沈着電圧がカソード(陰極)接触基板表面とアノード(陽極)との間に印加される。その結果、電解質中に溶解したクロムが基板表面上に層として沈着される。
そのように沈着された層には、引張または圧縮内部応力を生ずる。圧縮内部応力は、沈着層にマイクロクラックを生じ、すなわち被覆層は連続的に閉鎖(closed)されず、むしろマイクロクラックの網状組織を形成する。
For galvanic deposition of the chrome layer, the coated substrate surface after appropriate pretreatment to condition the surface is contacted with an electrolyte having at least a deposited metal (chromium), during which the deposition voltage is reduced. Applied between the cathode (cathode) contact substrate surface and the anode (anode). As a result, chromium dissolved in the electrolyte is deposited as a layer on the substrate surface.
Such deposited layers produce internal tensile or compressive stresses. The compressive internal stress creates microcracks in the deposited layer, i.e. the coating layer is not continuously closed, but rather forms a network of microcracks.

引張内部応力は、一方で、沈着層に深いクラックを生じさせ、その中に湿気や腐食性物質が浸透し、クロム層下の基板表面に腐食効果を誘導し、究極的にはクロム層の破損やひいては剥離をもたらす。
さらに、そのような層に生ずる引張内部応力は、多くの用途に不利で、例えばアクセル・ハブのクロムめっきであり、これは構造部品や基板の反対曲げ応力下で疲労強度に対する悪い影響を有するからである。さらに、クロム層の沈着中にガス状の水素が不可避的に発生し、層や基板に水素が持ち込まれ、その代わりに層にクラックが発生し、基板を破損する。
Tensile internal stress, on the other hand, causes deep cracks in the deposited layer, and moisture and corrosive substances penetrate into it, inducing a corrosive effect on the substrate surface under the chromium layer, ultimately breaking the chromium layer. As a result, peeling occurs.
In addition, the tensile internal stresses that occur in such layers are disadvantageous for many applications, such as chrome plating on accelerator hubs, which has a negative effect on fatigue strength under the opposite bending stresses of structural components and substrates. It is. Further, gaseous hydrogen is inevitably generated during the deposition of the chromium layer, hydrogen is brought into the layer and the substrate, and instead a crack is generated in the layer, damaging the substrate.

沈着クロム層に発生する引張内部応力を軽減するために、被覆基板表面は、従来技術によれば当該層に生じた内部引張応力を除去するために、例えば切削やホーニング仕上げによって、引き続いて加工が施される。これが必要とする二次加工費用に加えて、当該加工は沈着クロム層の損傷を与え、ひいては最終的に腐食保護としてのそれらの性質を著しく低減する。クロムそれ自身は、化学的見地からみれば比較的卑金属であるが、表面の薄い酸化層の形成とそれに付随するすこぶる有利な潜在性のおかげで、クロム層は、それらの腐食および曇り保護に関して、金、銀、白金のような貴金属に比べてより腐食を保護し、腐食保護性を発揮するように作用する。   In order to reduce the tensile internal stress generated in the deposited chromium layer, the coated substrate surface is subsequently processed, for example by cutting or honing, to remove the internal tensile stress generated in the layer according to the prior art. Applied. In addition to the secondary processing costs that this requires, the processing damages the deposited chrome layer and thus ultimately significantly reduces their properties as corrosion protection. Chromium itself is relatively base metal from a chemical point of view, but thanks to the formation of a thin oxide layer on the surface and the enormous advantageous potential associated therewith, the chromium layer is related to their corrosion and haze protection. Compared to precious metals such as gold, silver, and platinum, it protects against corrosion and acts to exhibit corrosion protection.

四気筒内燃エンジンのバルブ、ショック・アブソーバー、アクセル・ハブ、或いは同様の機械部品の如きガルバニー電気にて被覆した量産品の工業的二次加工において、経済的に合理的な生産工程を保証するために、基板表面上の沈着速度が十分に早いクロム層の沈着が必要となる。早い沈着速度は、一般にガルバニー電気による被覆方法において高い電流密度に設定することによって達成される。しかし乍、陰極における水素の生成は、クロム層のガルバニー電気沈着において一方の側の反応として起こる。被覆された基板表面は、ガルバニー電気被覆プロセスにおいて陰極として働くので、その結果生ずる水素は基板表面にバブルの生成を誘導し、それはガルバニー電気クロム沈着の産品に強く影響する。こうして、ポアやひび割れが水素バブルのために形成され、沈着クロム層の防食性に極めて悪影響を及ぼす。   To guarantee an economically reasonable production process in industrial secondary machining of galvanically coated mass-produced products such as valves, shock absorbers, accelerator hubs, or similar mechanical parts of a four-cylinder internal combustion engine In addition, it is necessary to deposit a chromium layer having a sufficiently high deposition rate on the substrate surface. Fast deposition rates are generally achieved by setting a high current density in the galvanic coating method. However, hydrogen production at the cathode occurs as a reaction on one side in the galvanic deposition of the chromium layer. Since the coated substrate surface acts as a cathode in the galvanic electrocoating process, the resulting hydrogen induces bubble formation on the substrate surface, which strongly affects the product of galvanic electrochromic deposition. In this way, pores and cracks are formed due to hydrogen bubbles, which adversely affects the corrosion resistance of the deposited chromium layer.

十分に早い沈着速度を達成すべく電流密度を上げると、基板表面の水素形成を大いに助長する結果になる。   Increasing the current density to achieve a sufficiently fast deposition rate results in greatly promoting hydrogen formation on the substrate surface.

しかし乍、内部圧縮応力によってガルバニー電気沈着層に発生するクラックの網状体は、単に沈着層の防食性に悪影響を及ぼすだけでなく、その代わりにそのように被覆された作動部品の性質を改善するべく誘導する。作動部品間の摩擦を低減する潤滑剤がマイクロクラックの中に埋め込まれ、こうして、潤滑剤のための補給所効果を有するからである。当該層のこの能力は、オイル運搬能として知られ、そのような機械部品には絶対的に所望される。例えば、ピストン・リングの場合に耐火安定性を維持するためにこれは重要である。   However, the network of cracks generated in the galvanic electrodeposition layer due to internal compressive stress not only adversely affects the anticorrosion properties of the deposit layer, but instead improves the properties of the working parts so coated. Guide as much as possible. This is because the lubricant that reduces the friction between the working parts is embedded in the microcracks and thus has a replenishment effect for the lubricant. This ability of the layer is known as oil carrying capacity and is absolutely desirable for such machine parts. For example, this is important to maintain fire stability in the case of piston rings.

GB 1 551 340 Aは60℃、電流密度設定80 A/dmでクロム沈着電解質を入れた低圧室内に基板を通過させて基板表面に硬質クロム層を沈着することを開示する。 GB 1 551 340 A discloses that a hard chromium layer is deposited on a substrate surface by passing the substrate through a low pressure chamber containing a chromium deposition electrolyte at 60 ° C. and a current density setting of 80 A / dm 2 .

US2,706,175 Aは、中空筒の内部をコーティングするための装置を開示し、それによってクロム層は低圧で沈着される。   US 2,706,175 A discloses an apparatus for coating the inside of a hollow tube, whereby the chromium layer is deposited at low pressure.

EP 1 191 129 Aでは、低圧下の硬質クロム層の沈着のための方法を開示し、電解質及び基板は互いに対して0.4 m/secの速度で移動する。   EP 1 191 129 A discloses a method for the deposition of a hard chromium layer under low pressure, the electrolyte and the substrate moving at a rate of 0.4 m / sec relative to each other.

US 2001/054557 A1では、硬質クロム層のガルバニー電気沈着の方法を開示し、クロム層は同様に低圧下、30〜40A/dm2および5〜700Hzのパルス周波数において沈着される。   US 2001/054557 A1 discloses a method of galvanic electrodeposition of a hard chromium layer, which is likewise deposited under low pressure at a pulse frequency of 30-40 A / dm 2 and 5-700 Hz.

EP 0 024 946 Aでは、低圧下、200 A/dmの電流密度で、電解質と被覆される基板の相対運動を追加した硬質クロム層の沈着方法を開示する。 EP 0 024 946 A discloses a method of depositing a hard chromium layer with the addition of relative motion of the electrolyte and the substrate to be coated at a current density of 200 A / dm 2 under low pressure.

US 5,277,785では、ブラシ沈着によって、硬質クロム層を沈着するための方法と装置を開示する。   US 5,277,785 discloses a method and apparatus for depositing a hard chromium layer by brush deposition.

上述の記載を考慮して、本発明の課題はしたがって、高い防食性及び優れた機械的性質を有する硬質クロム層を早い沈着速度で沈着する、硬質クロム層の沈着方法に関する。   In view of the above description, the subject of the present invention therefore relates to a method of depositing a hard chromium layer, which deposits a hard chromium layer having high anticorrosion properties and excellent mechanical properties at a high deposition rate.

したがって、まとめると、本発明は一つには、被覆される基板表面およびガルバニー電気沈着に適するクロム含有電解質間を接触させるステップを有し、基板表面上の硬質クロム層のガルバニー電気沈着のために、被覆すべき基板表面と対電極との間に電圧を印加し、ここで、沈着は周囲に対して本質的にガス不透過性の容器で起こり、少なくとも電圧印加中に周囲に対して本質的にガス不透過性の容器内で低圧力が作られ、さらに基板表面とクロム含有電解質とは0.1〜5m/秒、好ましくは1〜5m/秒より大の速度で互いに対して移動される、特に基板表面に硬質クロム(すなわちクロムベースの)層をガルバニー電気沈着する方法に関する。   Thus, in summary, the present invention has, in part, a step of contacting between a substrate surface to be coated and a chromium-containing electrolyte suitable for galvanic electrodeposition, for galvanic electrodeposition of a hard chromium layer on the substrate surface. Applying a voltage between the surface of the substrate to be coated and the counter electrode, wherein the deposition takes place in a container that is essentially gas-impermeable to the surroundings and is at least essential to the surroundings during voltage application A low pressure is created in a gas-impermeable container, and the substrate surface and the chromium-containing electrolyte are moved relative to each other at a speed of 0.1-5 m / sec, preferably greater than 1-5 m / sec. In particular, it relates to a method of galvanic electrodeposition of a hard chromium (ie chromium based) layer on a substrate surface.

その他の目的および特徴は、以下に一つには明らかにされ、また一つには指摘される。   Other objects and features will be clarified and pointed out in part below.

本出願は、2008年10月22日出願の欧州特許出願08018462.5の優先権を主張しその全部の開示を参考として組み入れている。
本願の課題は、基板表面上の硬質クロム層のガルバニー電気沈着のための以下のステップから成る方法によって解決される。
−被覆される基板表面およびガルバニー電気沈着に適するクロム含有電解質間の接触をさせるステップ;
−被覆される基板表面および基板表面上の硬質クロム層のガルバニー電気沈着のための対電極間に電圧を印加するステップ;
−ここで、沈着は周囲に対して本質的にガス不透過性の容器で起こり、少なくとも電圧印加中に周囲に特にガス不透過性の容器内で低圧力が作られ、さらに基板表面とクロム含有電解質とは0.1〜5m/秒、好ましくは1〜5m/秒の速度で互いに対して移動され、第2硬質クロム層が第1の硬質クロム層の上に沈着され、第1の硬質クロム層の沈着のために、基板表面と対電極の間にパルス電流が流され、第2の硬質クロム層のガルバニー電気沈着のためには、第1の硬質クロム層に直流が流される。
This application claims the priority of European patent application 080184462.5 filed on October 22, 2008, the entire disclosure of which is incorporated by reference.
The problem of the present application is solved by a method comprising the following steps for galvanic electrodeposition of a hard chromium layer on a substrate surface.
Making contact between the substrate surface to be coated and a chromium-containing electrolyte suitable for galvanic electro-deposition;
Applying a voltage between the counter electrode for galvanic electrodeposition of the substrate surface to be coated and a hard chromium layer on the substrate surface;
Here, the deposition takes place in an essentially gas-impermeable container with respect to the surroundings, at least during the application of a voltage, a low pressure is created in the surroundings, in particular in a gas-impermeable container, and the substrate surface and chromium-containing The electrolyte is moved relative to each other at a speed of 0.1 to 5 m / sec, preferably 1 to 5 m / sec, a second hard chromium layer is deposited on the first hard chromium layer, and the first hard chromium A pulse current is applied between the substrate surface and the counter electrode for the deposition of the layer, and a direct current is applied to the first hard chromium layer for the galvanic electrodeposition of the second hard chromium layer.

ガルバニー電気沈着中の周囲圧に対する圧力の減少は、ガルバニー電気沈着中に形成される基板表面上の水素バブルの改善された分離を誘導する。この分離は、基板表面と電解質の相対運動によって助けられ、またこれと同時に高い沈着電流密度であってもポアやひび割れが本質的にない硬質クロム層の沈着を誘導する。   The decrease in pressure relative to ambient pressure during galvanic electrodeposition induces improved separation of hydrogen bubbles on the substrate surface that are formed during galvanic electrodeposition. This separation is aided by the relative movement of the substrate surface and the electrolyte, and at the same time induces the deposition of a hard chromium layer that is essentially free of pores and cracks even at high deposition current densities.

ポンプなどの適当な手段によって、適度の低圧力が作られる。有利なことには、達成される圧力差は10ミリバール〜800ミリバール、好ましくは20〜200ミリバールである。   A moderate low pressure is created by suitable means such as a pump. Advantageously, the pressure difference achieved is between 10 mbar and 800 mbar, preferably between 20 and 200 mbar.

本発明の前記方法において、第2の硬質クロム層は第1の硬質クロム層上に沈着され、第1の硬質クロム層の沈着のために、基板表面と対電極の間にパルス電流が流され、第2の硬質クロム層のガルバニー電気沈着のためには、第1の硬質クロム層に直流が流される。   In the method of the present invention, the second hard chromium layer is deposited on the first hard chromium layer, and a pulse current is passed between the substrate surface and the counter electrode for the deposition of the first hard chromium layer. For galvanic deposition of the second hard chrome layer, a direct current is passed through the first hard chrome layer.

本発明に係る前記方法の一態様において、印加されたパルス電流のお蔭で内部応力およびマイクロクラックの無い、第1の硬質クロム層が沈着される。被覆される基板表面と対電極の間に引き続いて直流電流を流し、第2の硬質クロム層が、クラックや内部応力のない既に沈着された第1の硬質クロム層の上に沈着され、第2の硬質クロム層は、内部引張応力および機械的に望ましいマイクロクラックを有する。   In one embodiment of the method according to the invention, a first hard chromium layer free of internal stress and microcracks is deposited thanks to the applied pulsed current. Subsequently, a direct current is passed between the surface of the substrate to be coated and the counter electrode, and a second hard chrome layer is deposited on the already deposited first hard chrome layer free of cracks and internal stress, The hard chromium layer has internal tensile stress and mechanically desirable microcracks.

生成するコンパウンド層構造は、上部のクロム層に生ずるマイクロクラックのお蔭で、走行またはすべり表面として優れた防食性及びさらに優れた機械的性質を示す。
第1のクロム層の沈着のために、パルス電流は5〜5000Hz、好ましくは50〜1000Hzのパルス周波数で調整され得る。電流密度は、これに対して25〜1000A/dm,好ましくは50〜500A/dmで調整される。
The resulting compound layer structure exhibits excellent anticorrosion properties and excellent mechanical properties as a running or sliding surface thanks to microcracks generated in the upper chromium layer.
For the deposition of the first chromium layer, the pulse current can be adjusted with a pulse frequency of 5 to 5000 Hz, preferably 50 to 1000 Hz. On the other hand, the current density is adjusted to 25 to 1000 A / dm 2 , preferably 50 to 500 A / dm 2 .

第2クロム層の沈着のために、直流電流は25〜1000A/dm、好ましくは50〜500A/dmの範囲の電流密度で調整される。
本発明によれば、被覆される基板表面はクロム含有電解質と30℃〜85℃の温度で接触させ、電解質はpH3未満、好ましくはpH1未満の範囲のpH値を有する。
また本発明によれば、クロム含有電解質は20℃において200mS/cm〜550mS/cmの誘電率K を有し得る。
有利には、前記方法は単一被覆セルにおいて只1つの電解質で実行され得る。
For the deposition of the second chromium layer, the direct current is adjusted with a current density in the range of 25 to 1000 A / dm 2 , preferably 50 to 500 A / dm 2 .
According to the present invention, the surface of the substrate to be coated is brought into contact with a chromium-containing electrolyte at a temperature of 30 ° C. to 85 ° C., and the electrolyte has a pH value in the range of less than pH 3, preferably less than pH 1.
Also according to the present invention, the chromium-containing electrolyte can have a dielectric constant K 2 of 200 mS / cm to 550 mS / cm at 20 ° C.
Advantageously, the method can be carried out with only one electrolyte in a single coated cell.

本発明によれば、電解質と被覆基板表面の間の相対運動は少なくとも一時的に行なわせることができる。また本発明によれば、相対運動は0.1m/秒〜5.0m/秒の範囲で行なわせる。
電解質と被覆基板表面の間の相対運動を行なわせるために、基板表面が動かされるかまたは電解質が適度に供給される。撹拌機またはポンプは電解質の供給に適する。
こうして作られた電解質と被覆基板表面の間の相対運動は、適用される低圧力に加えて、生成する水素バブルの分離を促進する。
According to the present invention, the relative movement between the electrolyte and the coated substrate surface can be performed at least temporarily. According to the present invention, the relative movement is performed in the range of 0.1 m / second to 5.0 m / second.
To cause relative movement between the electrolyte and the coated substrate surface, the substrate surface is moved or the electrolyte is moderately supplied. A stirrer or pump is suitable for supplying the electrolyte.
The relative movement between the electrolyte thus created and the coated substrate surface facilitates the separation of the hydrogen bubbles that are generated, in addition to the low pressure applied.

本発明の方法の特に有利な実施態様において、被覆される基板表面は電解質と1個のセル中で接触させ、その中でクロム含有電解質は下から流し込まれ、排水口を超えて流出させて、十分な流速が生成した水素バブルの分離を維持するように調整される。   In a particularly advantageous embodiment of the method according to the invention, the surface of the substrate to be coated is brought into contact with the electrolyte in one cell, in which the chromium-containing electrolyte is poured from below and flows over the drain, A sufficient flow rate is adjusted to maintain the separation of the generated hydrogen bubbles.

本発明の方法を実施するために、筒状の形状を持ち、白金被覆チタン、ニオブ、タンタルの如き白金被覆金属の筒状内部陽極を外から取り付けた、コーティング反応器が特に適する。コーティング反応器の上部と底部に、クロムメッキされた構造部品のための架台を備え得る。この種のコーティング反応器は、筒状の部品の被覆に適する。少なくとも2つの架台の1つは、被覆される部品に電流を供給し、こうして電気接触が形成される。   For carrying out the process according to the invention, a coating reactor is particularly suitable which has a cylindrical shape and is externally fitted with a cylindrical internal anode of platinum-coated metal such as platinum-coated titanium, niobium or tantalum. The top and bottom of the coating reactor can be equipped with cradles for chromed structural parts. This type of coating reactor is suitable for coating cylindrical parts. One of the at least two pedestals supplies current to the part to be coated, thus making electrical contact.

適当なポンプ手段によって、電解質は貯槽から吸い上げられ反応器を通って反応器の頂部に至り、そこから貯槽へ戻される。貯槽では、適当な装置で電解質が脱気される。こうして分離されたガス混合物はドロップ分離器を介して外部へ取り除かれる。代替として、分離脱気タンクを設置し得る。   By suitable pumping means, the electrolyte is drawn from the reservoir, through the reactor to the top of the reactor, and from there back to the reservoir. In the reservoir, the electrolyte is degassed with a suitable device. The gas mixture thus separated is removed to the outside through a drop separator. Alternatively, a separate degassing tank can be installed.

加熱および/または冷却システムの如き電解質の温度調節のための装置が貯槽に備え得る。貯槽は吐出ポンプを介して別の貯槽へ接続され得て、さらに電解質の吐出が必要な限りにおいて、その別の貯槽は前記貯槽中の電解質に補充する組成物を含む。容量を低減するために、印加沈着電圧によって加熱された電解質は、蒸発器ユニットを通過させ、そこで冷却と同時に電解質から水を除去する。   An apparatus for temperature regulation of the electrolyte, such as a heating and / or cooling system, may be provided in the reservoir. The reservoir can be connected to another reservoir via a discharge pump, and as long as electrolyte discharge is required, the additional reservoir contains a composition that replenishes the electrolyte in the reservoir. In order to reduce the capacity, the electrolyte heated by the applied deposition voltage passes through the evaporator unit, where it removes water from the electrolyte simultaneously with cooling.

有利なことに、本発明に従って構成されたそのような反応器には、少なくとも1つの可動式の、被覆部品を下から持ち上げ、取り上げるのを可能にする端面(片口)が外から取り付けられている。さらに、このプロセスの自動化のために通常の取り扱いシステムおよびシールを備え得る。   Advantageously, such a reactor constructed in accordance with the invention is fitted with an end face (single port) from the outside, which enables at least one movable, covered part to be lifted and picked up from below. . In addition, conventional handling systems and seals may be provided for automation of this process.

そのようなコーティング反応器の一態様として、反応器中の被覆される部品はリンス水または水蒸気によって洗浄され、または少なくとも予備洗浄される。このために、電解質の反応器への供給が中断され、リンス水又は水蒸気によって置き換わる。反応器の被覆部品の単純な予備洗浄の場合は、最終の洗浄は第2反応器で行なわれ、その第2反応器は第1反応器とデザインが基本的に同じであるが、如何なる陽極(アノード)や電流供給は不要である。
本発明の前記方法は、以下に試料実施態様として記載されるが、本発明の概念はその試料実施態様に制限されるものではない。
In one embodiment of such a coating reactor, the parts to be coated in the reactor are cleaned with rinse water or steam, or at least pre-cleaned. For this reason, the supply of electrolyte to the reactor is interrupted and replaced by rinsing water or steam. In the case of a simple precleaning of the reactor coating parts, the final cleaning is performed in a second reactor, which is basically the same design as the first reactor, but with any anode ( Anode) and current supply are not required.
The method of the present invention is described below as a sample embodiment, but the concept of the present invention is not limited to that sample embodiment.

[実施例1]
クロムメッキされた試験片(鋼鉄タイプCK45のピストンロッド)は本発明によって構成された反応器中の硬質クロム層沈着用のクロム酸370g/lおよび硫酸5.3g/lを含む電解質と接触され、電解質は各反応器の底部から流入され、反応器頂部の排水口から取り出される。このようにして行なわれた試験片の被覆基板表面および電解質間の相対速度は4m/sであった。電解質は70℃であった。適当な装置によって、反応器内は50ミリバールにされた。適当な電流傾斜板を用いて試験片を適当にコンディショニングおよび活性化した後、235A/dmの電流密度で300秒間隔で調整して硬質クロム層を沈着した。基板はその後洗浄された。
得られたクロム層は、11μmの層厚があり、cm当たり約40個のクラックがあり、中性塩スプレーテストで腐食耐性が100時間未満であった。
[Example 1]
A chrome-plated specimen (steel type CK45 piston rod) is contacted with an electrolyte comprising 370 g / l chromic acid and 5.3 g / l sulfuric acid for depositing a hard chromium layer in a reactor constructed according to the present invention; The electrolyte flows from the bottom of each reactor and is removed from the drain at the top of the reactor. The relative velocity between the coated substrate surface and the electrolyte of the test piece thus obtained was 4 m / s. The electrolyte was 70 ° C. With appropriate equipment, the reactor was brought to 50 mbar. The specimen was properly conditioned and activated using a suitable current ramp and then a hard chromium layer was deposited by adjusting at a current density of 235 A / dm 2 at 300 second intervals. The substrate was then cleaned.
The obtained chromium layer had a layer thickness of 11 μm, had about 40 cracks per cm, and had a corrosion resistance of less than 100 hours in a neutral salt spray test.

[実施例2]
クロムメッキされた試験片は、実施例1と同様に本発明によって構成された反応器中の電解質と接触された。電解質はクロム酸370g/l、硫酸5.3g/lおよび6g/lのメタンスルホン酸を含んでいた。沈着条件は実施例1に倣った。層厚11μmの輝くクロム層が得られ、それは約250個/cmのクラックがあり、中性塩スプレーテストで腐食耐性が100時間未満であった。
[Example 2]
The chrome-plated specimen was contacted with the electrolyte in a reactor constructed according to the present invention as in Example 1. The electrolyte contained 370 g / l chromic acid, 5.3 g / l sulfuric acid and 6 g / l methanesulfonic acid. The deposition conditions were the same as in Example 1. A bright chromium layer with a layer thickness of 11 μm was obtained, which had cracks of about 250 / cm and a corrosion resistance of less than 100 hours in a neutral salt spray test.

[実施例3]
クロムメッキされた試験片は実施例2と同様の電解質に実施例2と同様の条件で接触され、パルス中の電流密度が235 A/dmのパルス電流が、1000Hz周波数および50%のオンタイムで400秒間供給された。
層厚11μmの輝くクロム層が得られ、それはクラック数が0個/cmであり、中性塩スプレーテストで腐食耐性が500時間を超えていた。
[Example 3]
The chrome-plated test piece was brought into contact with the same electrolyte as in Example 2 under the same conditions as in Example 2, and the pulse current with a current density of 235 A / dm 2 during the pulse was 1000 Hz frequency and 50% on-time. For 400 seconds.
A bright chromium layer with a layer thickness of 11 μm was obtained, which had a crack number of 0 / cm and a corrosion resistance of more than 500 hours in a neutral salt spray test.

[実施例4]
クロムメッキされた試験片が実施例3と同様の沈着条件で実施され、初めにパルス中の電流密度が235 A/dmのパルス電流が、1000Hz周波数および50%のオンタイムで400秒間供給され、その後同じ電解質中で235A/dm2の電流密度で、100秒間直流を供給し、その他の条件は同じとした。
層厚17μmの輝くクロム層が得られ、それは約25個/cmのクラックがあり、中性塩スプレーテストで腐食耐性が500時間を超えていた。
[Example 4]
The chrome-plated specimens were run under the same deposition conditions as in Example 3 and initially a pulse current with a current density during the pulse of 235 A / dm 2 was supplied for 400 seconds at a frequency of 1000 Hz and an on-time of 50%. Thereafter, direct current was supplied for 100 seconds at a current density of 235 A / dm 2 in the same electrolyte, and the other conditions were the same.
A bright chromium layer with a layer thickness of 17 μm was obtained, which had cracks of approximately 25 / cm and had a corrosion resistance of more than 500 hours in a neutral salt spray test.

本発明或いはその望ましい実施態様において要素を導入するときは、不定冠詞や定冠詞は1またはそれ以上の要素を意味するように意図されている。“comprising”(から成る)、“including”(含む)、“having”(有する)は包括的で、記載された成分・要素以外に付加的な成分・要素があることを意味する。
上記観点から、当該発明に関するいくつかの目的は達成され、その他の有利な結果得られている。
本発明の範囲から離脱しない限りにおいて、上記組成物やプロセスにおいて種々の変更がなし得るので、上記の記載に含まれる全ての事項は例示的に解釈され、限定的の意味で解釈されるものでない。
When introducing an element in the present invention or a preferred embodiment thereof, the indefinite article and definite article are intended to mean one or more elements. “Comprising”, “including”, “having” are inclusive, meaning that there are additional components / elements in addition to the listed components / elements.
In view of the above, several objects of the invention have been achieved and other advantageous results have been obtained.
Since various changes may be made in the above compositions and processes without departing from the scope of the present invention, all matters included in the above description are interpreted in an illustrative manner and not in a limiting sense. .

Claims (9)

基板表面に硬質クロム層のガルバニー電気沈着をするための方法であって、以下のステップを有する:
被覆される前記基板表面およびガルバニー電気沈着に適するクロム含有電解質を接触させるステップ;
被覆される基板表面および基板表面上の硬質クロム層のガルバニー電気沈着のための対電極間に電圧を印加するステップ;
ここで、沈着は周囲に対して本質的にガス不透過性の容器で起こり、少なくとも電圧印加中に周囲に対して本質的にガス不透過性の容器内で低圧力が作られ、さらに基板表面とクロム含有電解質とは0.1〜5m/秒、好ましくは1〜5m/秒の速度で互いに対して移動される。
A method for galvanic electrodeposition of a hard chromium layer on a substrate surface comprising the following steps:
Contacting the substrate surface to be coated and a chromium-containing electrolyte suitable for galvanic electro-deposition;
Applying a voltage between the counter electrode for galvanic electrodeposition of the substrate surface to be coated and a hard chromium layer on the substrate surface;
Here, the deposition occurs in a container that is essentially gas impermeable to the surroundings, and at least during the application of voltage, a low pressure is created in the container that is essentially gas impermeable to the surroundings, and further the substrate surface And the chromium-containing electrolyte are moved relative to each other at a speed of 0.1 to 5 m / sec, preferably 1 to 5 m / sec.
第2硬質クロム層が第1の硬質クロム層の上に沈着され、第1の硬質クロム層の沈着のために、基板表面と対電極の間にパルス電流が供給され、第2の硬質クロム層のガルバニー電気沈着のためには、第1の硬質クロム層に直流が供給される、請求項1に記載の方法。   A second hard chrome layer is deposited on the first hard chrome layer, and for the deposition of the first hard chrome layer, a pulse current is supplied between the substrate surface and the counter electrode, and the second hard chrome layer. The method according to claim 1, wherein a direct current is supplied to the first hard chromium layer for the galvanic electrodeposition. 周囲圧力に対して、10ミリバール〜800ミリバール、好ましくは20〜200ミリバールの圧力差を設ける請求項1に記載の方法。   2. A method according to claim 1, wherein a pressure difference of 10 mbar to 800 mbar, preferably 20 to 200 mbar, is provided for the ambient pressure. 第1の硬質クロム層の沈着に、5Hz〜5000Hzの周波数、好ましくは50Hz〜1000Hzの周波数でパルス電圧を印加する、請求項2または3の何れかに記載の方法。   4. The method according to claim 2, wherein a pulse voltage is applied to the first hard chromium layer deposition at a frequency of 5 Hz to 5000 Hz, preferably at a frequency of 50 Hz to 1000 Hz. 前記硬質クロム層の沈着に、25A/dm〜1000A/dm、好ましくは50A/dm〜500A/dmの電流密度が調整される請求項1〜4の何れかに記載の方法。 The method according to claim 1, wherein a current density of 25 A / dm 2 to 1000 A / dm 2 , preferably 50 A / dm 2 to 500 A / dm 2 is adjusted to deposit the hard chromium layer. 被覆される基板表面がクロム含有電解質と30℃〜85℃の温度で接触される請求項1〜5の何れかに記載の方法。   The method according to any one of claims 1 to 5, wherein the substrate surface to be coated is contacted with the chromium-containing electrolyte at a temperature of 30C to 85C. 前記電解質のpHが3以下、好ましくは1以下に調整される、請求項1〜6の何れかに記載の方法。   The method according to claim 1, wherein the pH of the electrolyte is adjusted to 3 or less, preferably 1 or less. 被覆される基板表面が1個のセル中の電解質と接触され、クロム含有電解質が下から流入され、排水口を超えて流出される、請求項1〜7の何れかに記載の方法。   The method according to any of claims 1 to 7, wherein the surface of the substrate to be coated is brought into contact with the electrolyte in one cell, and the chromium-containing electrolyte is flowed from below and flows out beyond the drain. 基板表面に硬質クロム層のガルバニー電気沈着をするための方法であって、以下のステップを有する:
被覆される前記基板表面およびガルバニー電気沈着に適するクロム含有電解質を接触させるステップ;
被覆される基板表面および基板表面上の硬質クロム層のガルバニー電気沈着のための対電極間に電圧を印加するステップ;
ここで、沈着は周囲に対して本質的にガス不透過性の容器で起こり、少なくとも電圧印加中に周囲対して本質的にガス不透過性の容器内で低圧力が作られ、さらに基板表面とクロム含有電解質とは0.1〜5m/秒、好ましくは1〜5m/秒の速度で互いに対して移動され、第2硬質クロム層が第1の硬質クロム層の上に沈着され、第1の硬質クロム層の沈着のために、基板表面と対電極の間にパルス電流が供給され、第2の硬質クロム層のガルバニー電気沈着のためには、第1の硬質クロム層に直流が供給される。
A method for galvanic electrodeposition of a hard chromium layer on a substrate surface comprising the following steps:
Contacting the substrate surface to be coated and a chromium-containing electrolyte suitable for galvanic electro-deposition;
Applying a voltage between the counter electrode for galvanic electrodeposition of the substrate surface to be coated and a hard chromium layer on the substrate surface;
Here, deposition occurs in a container that is essentially gas impermeable to the surroundings, and at least during the application of voltage, a low pressure is created in the container that is essentially gas impermeable to the surroundings, and further the substrate surface and The chromium-containing electrolyte is moved relative to each other at a speed of 0.1 to 5 m / sec, preferably 1 to 5 m / sec, and a second hard chromium layer is deposited on the first hard chromium layer, A pulse current is supplied between the substrate surface and the counter electrode for the deposition of the hard chromium layer, and a direct current is supplied to the first hard chromium layer for the galvanic electrodeposition of the second hard chromium layer. .
JP2011533333A 2008-10-22 2009-10-22 Method for depositing hard chrome layer on substrate surface and substrate having hard chrome layer on surface Active JP5739341B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08018462.5 2008-10-22
EP08018462.5A EP2180088B2 (en) 2008-10-22 2008-10-22 Method for electroplating hard chrome layers
PCT/US2009/061683 WO2010048404A1 (en) 2008-10-22 2009-10-22 Method for galvanic deposition of hard chrome layers

Publications (3)

Publication Number Publication Date
JP2012506496A true JP2012506496A (en) 2012-03-15
JP2012506496A5 JP2012506496A5 (en) 2012-12-06
JP5739341B2 JP5739341B2 (en) 2015-06-24

Family

ID=40427109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011533333A Active JP5739341B2 (en) 2008-10-22 2009-10-22 Method for depositing hard chrome layer on substrate surface and substrate having hard chrome layer on surface

Country Status (9)

Country Link
US (1) US20110198226A1 (en)
EP (1) EP2180088B2 (en)
JP (1) JP5739341B2 (en)
KR (1) KR101658254B1 (en)
CN (1) CN102257184B (en)
BR (1) BRPI0920600B1 (en)
ES (1) ES2363566T5 (en)
PL (1) PL2180088T5 (en)
WO (1) WO2010048404A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2845928T3 (en) * 2013-09-05 2020-05-18 Macdermid Enthone Inc. Aqueous electrolyte composition having a reduced airborne emission
ES2726301T3 (en) * 2014-12-19 2019-10-03 Weber Hydraulik Gmbh Procedure to label and / or mark optically round
US11566679B2 (en) * 2020-11-03 2023-01-31 DRiV Automotive Inc. Bumper cap for damper
CN114703516A (en) * 2021-12-14 2022-07-05 西安昆仑工业(集团)有限责任公司 Rapid chromium plating process method for artillery barrel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263991A (en) * 1986-05-07 1987-11-16 Adachi Shin Sangyo Kk Manufacture of plated material
JPH02217429A (en) * 1989-02-17 1990-08-30 Fujitsu Ltd Plating method and apparatus
JP2002047595A (en) * 2000-07-31 2002-02-15 Tokico Ltd Chromium plating method and chromium plating apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE494578A (en) 1949-03-18
FI53841C (en) 1975-05-07 1978-08-10 Teuvo Tapio Korpi ELEKTROLYTISK YTBELAEGGNINGSANORDNING
FR2462490A1 (en) * 1979-08-03 1981-02-13 Centre Techn Ind Mecanique ELECTROLYTIC COATING DEVICE
US4261086A (en) 1979-09-04 1981-04-14 Ford Motor Company Method for manufacturing variable capacitance pressure transducers
US5277785A (en) 1992-07-16 1994-01-11 Anglen Erik S Van Method and apparatus for depositing hard chrome coatings by brush plating
US20010054557A1 (en) 1997-06-09 2001-12-27 E. Jennings Taylor Electroplating of metals using pulsed reverse current for control of hydrogen evolution
USRE40386E1 (en) * 1998-11-06 2008-06-17 Hitachi Ltd. Chrome plated parts and chrome plating method
JP3918142B2 (en) 1998-11-06 2007-05-23 株式会社日立製作所 Chrome-plated parts, chromium-plating method, and method of manufacturing chromium-plated parts
JP3423702B2 (en) 2000-08-29 2003-07-07 創輝株式会社 Metal plating method
JP2007077494A (en) * 2005-08-08 2007-03-29 Nanofilm Technologies Internatl Pte Ltd Metal coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263991A (en) * 1986-05-07 1987-11-16 Adachi Shin Sangyo Kk Manufacture of plated material
JPH02217429A (en) * 1989-02-17 1990-08-30 Fujitsu Ltd Plating method and apparatus
JP2002047595A (en) * 2000-07-31 2002-02-15 Tokico Ltd Chromium plating method and chromium plating apparatus

Also Published As

Publication number Publication date
US20110198226A1 (en) 2011-08-18
BRPI0920600A2 (en) 2015-12-22
EP2180088B1 (en) 2011-05-11
ES2363566T3 (en) 2011-08-09
KR101658254B1 (en) 2016-09-20
ES2363566T5 (en) 2020-04-16
PL2180088T3 (en) 2011-09-30
PL2180088T5 (en) 2020-11-16
BRPI0920600B1 (en) 2019-05-28
WO2010048404A1 (en) 2010-04-29
EP2180088B2 (en) 2019-06-12
KR20110075028A (en) 2011-07-05
CN102257184B (en) 2014-01-15
CN102257184A (en) 2011-11-23
EP2180088A1 (en) 2010-04-28
JP5739341B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
CA2764968C (en) Functionally graded coatings and claddings for corrosion and high temperature protection
CN101243211B (en) Pretreatment of magnesium substrates for electroplating
CN101862940B (en) Manufacturing process of corrosion-resistant piston rod of shock absorber for vehicle
RU2618017C2 (en) Nickel and/or chromium-plated element and method for its production
TW201325905A (en) Surface treatment for aluminum or aluminum alloy and product manufactured by the same
JP5739341B2 (en) Method for depositing hard chrome layer on substrate surface and substrate having hard chrome layer on surface
CN103510130A (en) Trivalent hard chromium electroplating method
CN110453261B (en) Material surface modification method and device based on electrochemistry
US7138043B2 (en) Method for applying a metal layer to a light metal surface
JP2005511898A (en) Pretreatment process for coating aluminum materials
US8425751B1 (en) Systems and methods for the electrodeposition of a nickel-cobalt alloy
CN211170931U (en) Iron casting zinc-plating and hydroxyl graphene closed plating structure
RU2503751C2 (en) Method of iron coat electroplating in flowing electrolyte with coarse disperse particles
RU2529602C2 (en) Method to apply chrome coating onto internal surface of cylindrical items
CN111945112A (en) Method for manufacturing vacuum tin plate
CN112522746B (en) Method for electroplating trivalent thick chromium coating on inner wall of pipe with large length-diameter ratio
US20240060203A1 (en) Stabilization of the Deposition Rate of Platinum Electrolytes
CN219603688U (en) Galvanized silane chromium-free passivation coating structure
RU2252982C2 (en) Method for chromatizing of zinc cover
JP2001521581A (en) Method for plating continuous product made of metal or nonmetal and apparatus used for this method
Feng et al. Direct plating of steel with pyrophosphate copper
WO2022266528A1 (en) Coated surfaces, coatings and articles using them
KR20240093445A (en) Articles containing a surface coating on the outer surface, the inner surface, or both
BG66882B1 (en) Nickel coating modified with nano-diamond particles and a method for its production
CN104928687A (en) Surface treatment method for zinc alloy product

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140610

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140710

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250