EP1743053B1 - Method for production of a coating - Google Patents

Method for production of a coating Download PDF

Info

Publication number
EP1743053B1
EP1743053B1 EP05747427A EP05747427A EP1743053B1 EP 1743053 B1 EP1743053 B1 EP 1743053B1 EP 05747427 A EP05747427 A EP 05747427A EP 05747427 A EP05747427 A EP 05747427A EP 1743053 B1 EP1743053 B1 EP 1743053B1
Authority
EP
European Patent Office
Prior art keywords
stage
substrate
coating time
deposition process
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05747427A
Other languages
German (de)
French (fr)
Other versions
EP1743053A2 (en
Inventor
Anton Albrecht
Thomas Dautl
Oemer-Refik Oezcan
Horst Pillhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH, MTU Aero Engines AG filed Critical MTU Aero Engines GmbH
Publication of EP1743053A2 publication Critical patent/EP1743053A2/en
Application granted granted Critical
Publication of EP1743053B1 publication Critical patent/EP1743053B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Definitions

  • the invention relates to a method for producing a corrosion-resistant and / or oxidation-resistant coating according to the preamble of patent claim 1,
  • components In particular components of gas turbines, at high temperatures, their free surfaces are exposed to highly corrosive and oxidizing conditions.
  • such components may consist of a nickel base or cobalt base superalloy.
  • the components are provided with coatings. Preference is given to PtA1 coatings, with which a particularly good corrosion protection and / or oxidation protection can be realized.
  • the EP 0 784 104 Bl discloses a PtA1 coating for gas turbine components and a method of making such a coating. According to the method described there, a PtA1 coating is produced on a substrate by depositing a platinum layer on a substrate surface, wherein after the deposition of the platinum layer, diffusion of platinum from the platinum layer into the substrate surface is carried out. After deposition of the platinum layer and the diffusion of the platinum, the thus coated substrate is a-lit, ie coated with aluminum, wherein the aluminum is preferably diffused into the substrate surface.
  • the deposition of platinum on the substrate surface before Alitieren the substrate is preferably carried out by electroplating.
  • the present invention relates to details of a method of making a corrosion resistant and / or oxidation resistant coating on a substrate, which involves electrodepositing a platinum group metal, particularly platinum and / or palladium, or an alloy based on at least one platinum group metal. So it is essential for the quality of the corrosion-resistant and / or oxidation-resistant coating that a uniformly defined Deposition of particular platinum is realized by galvanic way, so as to realize a uniform thickness of the platinum coating. For example, a minimum value of the coating thickness of approximately 1 ⁇ m may not be undershot, since this would result in insufficient hot gas resistance and locally rapid failure of the coating.
  • the present invention is based on the problem to provide a novel method for producing a corrosion-resistant and / or oxidation-resistant coating, which is a platinum group metal-A1 coating.
  • the galvanic deposition of the or each platinum group metal or alloy is carried out in a two-stage deposition process, wherein in a first stage of the deposition process in a coating time T1, a current applied for electroplating is increased continuously or stepwise from a start value to a maximum value , and in a second stage of the deposition process in a coating time T2, the current applied for plating is kept constant at the maximum value.
  • the present invention relates in particular to those details which relate to the electrodeposition of at least one platinum group metal, in particular platinum and / or palladium, or an alloy based on at least one platinum group metal on a substrate to be examined.
  • platinum group metal in particular platinum and / or palladium
  • an alloy based on at least one platinum group metal on a substrate to be examined At this point it should be noted that after the galvanic deposition of platinum and / or palladium or a related alloy on the substrate and before Alitieren the so galvanically coated substrate diffusing the platinum and / or palladium or the corresponding alloy into the substrate can.
  • a surface pretreatment of the substrate takes place.
  • the surface pretreatment of the substrate comprises at least the following three steps: In a first step of the surface pretreatment, the surface of the substrate to be coated is blasted. The blasting takes place with Al 2 O 3 particles which have a particle diameter of 100 to 200 ⁇ m and are directed at a pressure of 1.5 to 3.5 bar onto the substrate surface to be irradiated. When blasting, a coverage of 200 to 1500% is used, which means that each surface section is blasted between two and fifteen times or detected by a corresponding number of particle beams. After blasting, there is a metallically bright and oxide-free substrate surface. Following blasting, the blasted surface is electrochemically cleaned or degreased, in a NaOH-containing solution. Following degreasing or cleaning of the substrate surface, the same is activated in a 40 to 60% strength by volume HCl solution.
  • the galvanic deposition of the or each metal of the platinum group or of the corresponding alloy takes place by means of a deposition process.
  • the electrodeposition takes place in a two-stage deposition process, wherein in a first stage of the deposition process, a current applied for electroplating is increased continuously or stepwise from a initial value to a maximum value, and wherein in a second stage of the deposition process the current applied for electroplating is kept constant at the maximum value.
  • the electrodeposition is carried out over a total coating time T, wherein the first stage of the cutting process, in which the current applied for plating is continuously or stepwise increased to the maximum value from the initial value, takes place in a coating time T 1 , and wherein the second stage the deposition process, in which the current applied to the plating is kept constant at the maximum value, in a coating time T 2 is performed.
  • the coating time T 1 of the first stage of the deposition process amounts to approximately 50% of the total coating time
  • the current intensity I is continuously increased to the maximum value starting from an initial value which corresponds approximately to 10% of the maximum value I MAX of the current applied for electroplating within the coating time T 1 .
  • the current intensity I in the coating time T 1 can be increased stepwise from the initial value to the maximum value I MAX .
  • the current applied to the plating current I is maintained at this maximum value I MAX .
  • the current applied to the electrodeposition electrode I preferably has one of the following conditions, wherein the condition (1) corresponds to the continuous increase of the current I in the first phase of the deposition process, and the condition (2) of the stepwise increase of the current I corresponds during the first phase of the deposition process.
  • I ⁇ 0 . 1 * I MAX + 0 . 9 * I MAX 0 . 5 * T * t For 0 ⁇ t ⁇ 0 . 5 * T I MAX For 0 .
  • the maximum current I MAX applied for the galvanic deposition corresponds, depending on the type of galvanic bath used, to a magnitude of 0.2 to 3.5 A / dm 2 , preferably with maximum currents of 1.5 A. / dm 2 or 2 A / dm 2 worked.
  • an initial value of the current I is used, which is about 10% of the maximum current I MAX , it is also possible to work with an initial value of the current I which is approximately 15% or even 20% of the maximum current I MAX is.
  • the substrate to be coated during the entire Abscheideprczesses ie during the entire first stage and the entire second stage of the deposition process, connected cathodically and thus negatively.
  • the substrate to be coated can be anodically or positively treated prior to the actual deposition process and thus introduced into the galvanic bath. Alternatively, it is also possible to switch the substrate to be coated directly cathodically.
  • preferably several substrates are coated simultaneously in a galvanic bath with the or each metal of the platinum group or a corresponding alloy.
  • egg is a rational production of relatively large quantities in batch mode possible.
  • a uniform deposition of platinum and / or palladium or a corresponding alloy on substrates having a complex, three-dimensional geometry is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung nach dem Oberbegriff des Patentanspruchs 1,The invention relates to a method for producing a corrosion-resistant and / or oxidation-resistant coating according to the preamble of patent claim 1,

Beim Betrieb von Bauteilen, insbesondere Bauteilen von Gasturbinen, bei hohen Temperaturen sind deren freie Oberflächen stark korrodierenden und oxidierenden Bedingungen ausgesetzt. Beim Einsatz in Gasturbinen können derartige Bauteile zum Beispiel aus einer Superlegierung auf Nickelbasis oder Kobaltbasis bestehen. Zum Schutz vor Korrosion, Oxydation oder auch Erosion werden die Bauteile mit Beschichtungen versehen. Bevorzugt sind PtA1-Beschichtungen, mit denen ein besonders guter Korrosionsschutz und/oder Oxidationsschutz realisiert werden kann.When operating components, in particular components of gas turbines, at high temperatures, their free surfaces are exposed to highly corrosive and oxidizing conditions. For example, when used in gas turbines, such components may consist of a nickel base or cobalt base superalloy. To protect against corrosion, oxidation or erosion, the components are provided with coatings. Preference is given to PtA1 coatings, with which a particularly good corrosion protection and / or oxidation protection can be realized.

Die EP 0 784 104 Bl offenbart eine PtA1-Beschichtung für Gasturbinenbauteile sowie ein Verfahren zur Herstellung einer solchen Beschichtung. Nach dem dort beschriebenen Verfahren wird eine PtA1-Beschichtung auf einem Substrat dadurch hergestellt, dass auf eine Substratoberfläche eine Platinschicht abgeschieden wird, wobei nach dem Abscheiden der Platinschicht ein Eindiffundieren von Platin aus der Platinschicht in die Substratoberfläche durchgeführt wird. Nach dem Abscheiden der Platinschicht und dem Eindiffundieren des Platins wird das so beschichtete Substrat a-litiert, also mit Aluminium beschichtet, wobei das Aluminium vorzugsweise in die Substratoberfläche eindiffundiert wird.The EP 0 784 104 Bl discloses a PtA1 coating for gas turbine components and a method of making such a coating. According to the method described there, a PtA1 coating is produced on a substrate by depositing a platinum layer on a substrate surface, wherein after the deposition of the platinum layer, diffusion of platinum from the platinum layer into the substrate surface is carried out. After deposition of the platinum layer and the diffusion of the platinum, the thus coated substrate is a-lit, ie coated with aluminum, wherein the aluminum is preferably diffused into the substrate surface.

Aus den Dokumenten US 5 415 761 A und WO 03/088316 A sind Verfahren zum galvanischen Abscheiden von metallischen Beschichtungen auf Substratoberflächen bekannt, welche prozesstechnisch in zwei oder mehr zeitlich aufeinander folgenden Stufen ablaufen. Die Prozesstufen unterscheiden sich vorzugsweise durch eine unterschiedliche Stromstärke bzw. Stromdichte und somit ein unterschiedliches Abscheidungsverhalten.From the documents US 5,415,761A and WO 03/088316 A are known processes for the electrodeposition of metallic coatings on substrate surfaces, which proceed in terms of process technology in two or more temporally successive stages. The process stages preferably differ by a different current intensity or current density and thus a different deposition behavior.

Das Abscheiden von Platin auf die Substratoberfläche vor dem Alitieren des Substrats erfolgt vorzugsweise auf galvanischem Weg. Die hier vorliegende Erfindung betrifft Details eines Verfahrens zum Herstellen einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung auf einem Substrat, die das galvanische Abscheiden eines Metalls der Platingruppe, insbesondere von Platin und/oder Palladium, oder einer Legierung auf Basis mindestens eines Metalls der Platingruppe betreffen. So ist es für die Qualität der korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung von wesentlicher Bedeutung, dass eine gleichmäßig definierte Abscheidung von insbesondere Platin auf galvanischem Weg realisiert wird, um so eine gleichmäßige Dicke der Platinbeschichtung zu realisieren. So darf zum Beispiel ein Minimalwert der Beschichtungsdicke von ca. 1 µm nicht unterschritten werden, da dies eine ungenügende Heißgasbeständigkeit und ein lokal rasches Versagen der Beschichtung nach sich ziehen würde. Auf der anderen Seite dürfen Schichtdicken von 8 bis 15 µm nicht überschritten werden, da hierdurch einerseits wertvolles Edelmetall verschwendet würde und andererseits die ligenschaften der Beschichtung verschlechtert würden. Ein weiteres Problem beim galvanischen Abscheiden von insbesondere Platin auf ein Substrat besteht dann, wenn das Platin zum Beispiel auf Bauteile mit einer komplexen dreidimensionalen Gestalt abgeschieden werden soll. Bei solchen Substraten mit einer komplexen dreidimensionalen Kontur handelt es sich zum Beispiel um Gasturbinenschaufeln, weil dieselben einerseits stark unsymmetrisch sind, und anderseits kanten-, ecken- und spitzenbehaftete Oberflächen sowie Hohlräume und Hinterschneidungen aufweisen. Mit den aus dem Stand der Technik bekannten Verfahren zum galvanischen Abscheiden von Platin lässt sich eine gleichmäßig definierte Abscheidung von Platin auf Substraten mit einer komplexen dreidimensionalen Kontur nur unzureichend realisieren.The deposition of platinum on the substrate surface before Alitieren the substrate is preferably carried out by electroplating. The present invention relates to details of a method of making a corrosion resistant and / or oxidation resistant coating on a substrate, which involves electrodepositing a platinum group metal, particularly platinum and / or palladium, or an alloy based on at least one platinum group metal. So it is essential for the quality of the corrosion-resistant and / or oxidation-resistant coating that a uniformly defined Deposition of particular platinum is realized by galvanic way, so as to realize a uniform thickness of the platinum coating. For example, a minimum value of the coating thickness of approximately 1 μm may not be undershot, since this would result in insufficient hot gas resistance and locally rapid failure of the coating. On the other hand, layer thicknesses of 8 to 15 .mu.m may not be exceeded, since this would waste precious valuable metal on the one hand and on the other hand would impair the properties of the coating. Another problem with the galvanic deposition of particular platinum on a substrate is when the platinum is to be deposited, for example, on components with a complex three-dimensional shape. Such substrates with a complex three-dimensional contour are, for example, gas turbine blades, because they are on the one hand highly asymmetrical, and on the other hand have edge-, corner- and tip-like surfaces as well as cavities and undercuts. With the methods known from the prior art for the galvanic deposition of platinum, a uniformly defined deposition of platinum on substrates with a complex three-dimensional contour can be realized only insufficiently.

Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Herstellung einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung zu schaffen, die eine Platingruppenmetall-A1 Beschichtung ist.On this basis, the present invention is based on the problem to provide a novel method for producing a corrosion-resistant and / or oxidation-resistant coating, which is a platinum group metal-A1 coating.

Dieses Problem wird durch ein Verfahren zur Herstellung einer korrosionsbeständigen und/oder oxidationsbeständigen Beschichtung im Sinne von Patentanspruch 1 gelöst. Erfindungsgemäß wird das galvanische Abscheiden des oder jeden Metalls der Platingruppe bzw. der entsprechenden Legierung in einem zweistufigen Abscheideprozess durchgeführt, wobei in einer ersten Stufe des Abscheideprozesses in einer Beschichtungszeit T1 eine zum Galvanisieren angelegte Stromstarke ausgehend von einem Anfangswert kontinuierlich oder stufenweise auf einen Maximalwert gesteigert wird, und wobei in einer zweiten Stufe des Abscheideprozesses in einer Beschichtungszeit T2 die zum Galvanisieren angelegte Stromstärke konstant auf dem Maximalwert gehalten wird.This problem is solved by a method for producing a corrosion-resistant and / or oxidation-resistant coating in the sense of claim 1. According to the invention, the galvanic deposition of the or each platinum group metal or alloy is carried out in a two-stage deposition process, wherein in a first stage of the deposition process in a coating time T1, a current applied for electroplating is increased continuously or stepwise from a start value to a maximum value , and in a second stage of the deposition process in a coating time T2, the current applied for plating is kept constant at the maximum value.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung.Preferred embodiments of the invention will become apparent from the dependent claims and the description below.

Nachfolgend wird das erfindungsgemäße Verfahren zum Herstellen einer korrosionsbeständigen and/oder oxidationsbeständigen Beschichtung, vorzugsweise einer PtAl-Beschichtung, in größerem Detail beschrieben.The process according to the invention for producing a corrosion-resistant and / or oxidation-resistant coating, preferably a PtAl coating, will be described in greater detail below.

Die hier vorliegende Erfindung betriffz dabei insbesondere solche Details, die das galvanischen Abscheiden mindestens eines Metalls der Platingruppe, insbesondere von Platin und/oder Palladium, oder einer Legierung auf Basis mindestens eines Metalls der Platingruppe auf ein zu besthichtendes Substrat betreffen. An dieser Stelle sei darauf hingewiesen, dass nach dem galvanischen Abscheiden von Platin und/oder Palladium oder einer diesbezüglichen Legierung auf das Substrat und vor dem Alitieren des so galvanisch beschichteten Substrats ein Eindiffundieren des Platins und/oder Palladiums oder der entsprechenden Legierung in das Substrat erfolgen kann.The present invention relates in particular to those details which relate to the electrodeposition of at least one platinum group metal, in particular platinum and / or palladium, or an alloy based on at least one platinum group metal on a substrate to be examined. At this point it should be noted that after the galvanic deposition of platinum and / or palladium or a related alloy on the substrate and before Alitieren the so galvanically coated substrate diffusing the platinum and / or palladium or the corresponding alloy into the substrate can.

Vor dem eigentlichen galvanischen Abscheiden des oder jeden Metalls der Platingruppe bzw. der entsprechenden Legierung erfolgt eine Oberflächenvorbehandlung des Substrats. Die Oberflächenvorbehandlung des Substrats umfasst zumindest die folgenden drei Schritte: In einem ersten Schritz der Oberflächenvorbehandlung wird die Oberfläche des zu beschichtenden Substrats gestrahlt. Das Strahlen erfolgt mit Al2O3-Partikeln, die einen Partikeldurchmesser von 100 bis 200 µm aufweisen und mit einem Druck von 1,5 bis 3,5 bar auf die zu strahlende Substratoberfläche gerichtet werden. Beim Strahlen wird mit einem Überdeckungsgrad von 200 bis 1500 % gearbeitet, was bedeutet, dass jeder Oberflächenabschnitt zwischen zwei und fünfzehn Mal gestrahlt bzw. von einer entsprechenden Partikelstrahlanzahl erfasst wird. Nach dem Strahlen liegt eine metallisch blanke sowie oxidfreie Substratoberfläche vor. Im Anschluss an das Strahlen wird die gestrahlte Oberfläche elektrochemisch gereinigt bzw. entfettet, und zwar in einer NaOH-haltigen Lösung. Im Anschluss an das Entfetten bzw. Reinigen der Substratoberfläche erfolgt eine Aktivierung derselben in einer 40 bis 60 Vol-%igen HCl-Lösung.Before the actual galvanic deposition of the or each metal of the platinum group or the corresponding alloy, a surface pretreatment of the substrate takes place. The surface pretreatment of the substrate comprises at least the following three steps: In a first step of the surface pretreatment, the surface of the substrate to be coated is blasted. The blasting takes place with Al 2 O 3 particles which have a particle diameter of 100 to 200 μm and are directed at a pressure of 1.5 to 3.5 bar onto the substrate surface to be irradiated. When blasting, a coverage of 200 to 1500% is used, which means that each surface section is blasted between two and fifteen times or detected by a corresponding number of particle beams. After blasting, there is a metallically bright and oxide-free substrate surface. Following blasting, the blasted surface is electrochemically cleaned or degreased, in a NaOH-containing solution. Following degreasing or cleaning of the substrate surface, the same is activated in a 40 to 60% strength by volume HCl solution.

Im Arschluss an die Oberflächenvorbehandlung des Substrats erfolgt das galvanische Abscheiden des oder jeden Metalls der Platingruppe bzw. der entsprechenden Legierung mithilfe eines Abscheideprozesses. Nach einem ersten Aspekt der hier vorliegenden Erfindung erfolgt das galvanische Abscheiden in einem zweistufigen Abscheideprozess, wobei in einer ersten Stufe des Abscheideprozesses eine zum Galvanisierung angelegte Stromstärke ausgehend von einem Anfangswert kontinuierlich oder stufenweise auf einen Maximalwert gesteigert wird, und wobei in einer zweiten Stufe des Abscheideprozesses die zum Galvanisieren angelegte Stromstärke konstant auf dem Maximalwert gehalten wird.In connection with the surface pretreatment of the substrate, the galvanic deposition of the or each metal of the platinum group or of the corresponding alloy takes place by means of a deposition process. According to a first aspect of the present invention, the electrodeposition takes place in a two-stage deposition process, wherein in a first stage of the deposition process, a current applied for electroplating is increased continuously or stepwise from a initial value to a maximum value, and wherein in a second stage of the deposition process the current applied for electroplating is kept constant at the maximum value.

Das galvanische Abscheiden wird dabei über eine Gsamtbeschichtungszeit T durchgeführt, wobei die erste Stufe des Abschneideprozesses, in welcher die zum Galvanisieren angelegte Stromstärke ausgehend von dem Anfangswert kontinuierlich oder stufenweise auf den Maximalwert gesteigert wird, in einer Beschichtungszeit T1 erfolgt, und wobei die zweite Stufe des Abscheideprozesses, in welcher die zum Galvanisieren angelegte Stromstärke auf dem Maximalwert konstant gehalten wird, in einer Beschichtungszeit T2 durchgeführt wird. Die Beschichtungszeit T1 der ersten Stufe des Abscheideprozesses beträgt dabei in etwa 50 % der Gesamtbeschichtungszeit, die Beschichtungszeit T2 der zweiten Stufe des Abscheideprozesses beträgt ebenfalls in etwa 50 % der Gesamtbeschichtungszeit T. Demnach gilt dann für die Gesamtbeschichtungszeit T: T = T1 + T2.In this case, the electrodeposition is carried out over a total coating time T, wherein the first stage of the cutting process, in which the current applied for plating is continuously or stepwise increased to the maximum value from the initial value, takes place in a coating time T 1 , and wherein the second stage the deposition process, in which the current applied to the plating is kept constant at the maximum value, in a coating time T 2 is performed. The coating time T 1 of the first stage of the deposition process amounts to approximately 50% of the total coating time, the coating time T 2 of the second stage of the deposition process is also approximately 50% of the total coating time T. Accordingly, the total coating time T then applies: T = T 1 + T 2 .

Nach einer ersten bevorzugten Weiterbildung dieses ersten Aspekts der hier vorliegenden Erfindung wird die Stromstärke I aufgehend von einem Anfangswert, der in etwa 10 % des Maximalwerts IMAX der zum Galvanisieren angelegten Stromstärke entspricht, innerhalb der Beschichtungszeit T1 kontinuierlich auf den Maximalwert gesteigert. Alternativ hierzu kann die Stromstärke I in der Beschichtungszeit T1 ausgehend von diesem Anfangswert stufenweise auf den Maximalwert IMAX gesteigert werden. Nach dem Erreichen dieses Maximalwerts IMAX wird in jedem Fall während der zweiten Stufe des Abscheideprozesses die zum galvanischen Abscheiden angelegte Stromstärke I auf diesem Maximalwert IMAX gehalten.According to a first preferred development of this first aspect of the present invention, the current intensity I is continuously increased to the maximum value starting from an initial value which corresponds approximately to 10% of the maximum value I MAX of the current applied for electroplating within the coating time T 1 . Alternatively, the current intensity I in the coating time T 1 can be increased stepwise from the initial value to the maximum value I MAX . In any case, after reaching this maximum value I MAX , during the second stage of the deposition process, the current applied to the plating current I is maintained at this maximum value I MAX .

In besonders bevorzugten Ausführungsbeispielen, in welchen die Beschichtungszeit T1 der ersten Stufe sowie die Beschichtungszeit T2 der zweiten Stufe jeweils 50 % der Gesamtbeschichtungszeit T betragen, und in welcher der Anfangswert der Stromstärke I in der ersten Stufe des Abscheideprozesses 10 % der maximalen Stromstärke IMAX beträgt, gilt für den zum galvanischen Abscheiden angelegten Strom I vorzugsweise eine der folgenden Bedingungen, wobei die Bedingung (1) dem kontinuierlichen Ansteigen des Stroms I in der ersten Phase des Abscheideprozesses entspricht, und wobei die Bedingung (2) der stufenweisen Vergrößerung des Stroms I während der ersten Phase des Abscheideprozesses entspricht. I = { 0 , 1 * I MAX + 0 , 9 * I MAX 0 , 5 * T * t für 0 t 0 , 5 * T I MAX für 0 , 5 * T t T

Figure imgb0001
I = { 0 , 1 * I MAX für 0 t < 0 , 1 * T 0 , 4 * I MAX für 0 , 1 t < 0 , 3 * T 0 , 7 * I MAX für 0 , 3 t < 0 , 5 * T I MAX für 0 , 5 * T t < T
Figure imgb0002
In particularly preferred embodiments, in which the coating time T 1 of the first stage and the coating time T 2 of the second stage are each 50% of the total coating time T, and in which the initial value of the current I in the first stage of the deposition process 10% of the maximum current I MAX , the current applied to the electrodeposition electrode I preferably has one of the following conditions, wherein the condition (1) corresponds to the continuous increase of the current I in the first phase of the deposition process, and the condition (2) of the stepwise increase of the current I corresponds during the first phase of the deposition process. I = { 0 . 1 * I MAX + 0 . 9 * I MAX 0 . 5 * T * t For 0 t 0 . 5 * T I MAX For 0 . 5 * T t T
Figure imgb0001
I = { 0 . 1 * I MAX For 0 t < 0 . 1 * T 0 . 4 * I MAX For 0 . 1 t < 0 . 3 * T 0 . 7 * I MAX For 0 . 3 t < 0 . 5 * T I MAX For 0 . 5 * T t < T
Figure imgb0002

An dieser Stelle sei darauf hingewiesen, dass der zum galvanischen Abscheiden angelegte Maximalstrom IMAX je nach verwendeten Typ eines galvanischen Bads in einer Größenordnung von 0,2 bis 3,5 A/dm2 entspricht, vorzugsweise wird mit maximalen Strömen von 1,5 A/dm2 bzw. 2 A/dm2 gearbeitet. Obwohl in dem obigen Ausführungsbeispiel mit einem Anfangswert der Stromstärke I gearbeitet wird, der in etwa 10% der maximalen Stromstärke IMAX beträgt, kann auch mit einem Anfangswert der Stromstärke I gearbeitet wird, der in etwa 15% oder auch 20% der maximalen Stromstärke IMAX beträgt.It should be noted at this point that the maximum current I MAX applied for the galvanic deposition corresponds, depending on the type of galvanic bath used, to a magnitude of 0.2 to 3.5 A / dm 2 , preferably with maximum currents of 1.5 A. / dm 2 or 2 A / dm 2 worked. Although in the above embodiment, an initial value of the current I is used, which is about 10% of the maximum current I MAX , it is also possible to work with an initial value of the current I which is approximately 15% or even 20% of the maximum current I MAX is.

Im Sinne der hier vorliegenden Erfindung ist das zu beschichtende Substrat während des gesamten Abscheideprczesses, also während der gesamten ersten Stufe und der gesamten zweiten Stufe des Abscheideprozesses, kathodisch und damit negativ geschaltet. Im Sinne der hier vorliegenden Erfindung kann vor dem eigentlichen Abscheideprozess das zu beschichtende Substrat anodisch bzw. positiv geachaltet und so in das galvanische Bad eingebracht werden. Alternativ ist es auch möglich, das zu beschichtenden Substrat unmittelbar kathodisch zu schalten.For the purposes of the present invention, the substrate to be coated during the entire Abscheideprczesses, ie during the entire first stage and the entire second stage of the deposition process, connected cathodically and thus negatively. For the purposes of the present invention, the substrate to be coated can be anodically or positively treated prior to the actual deposition process and thus introduced into the galvanic bath. Alternatively, it is also possible to switch the substrate to be coated directly cathodically.

Im Sinne der hier vorliegenden Erfindung werden vorzugsweise mehrere Substrate gleichzeitig in einem galvanischen Bad mit dem oder jedem Metall der Platingruppe bzw. einer entsprechenden Legierung beschichtet. Eierdurch ist eine rationale Fertigung von relativ großen Stückzahlen im Batchbetrieb möglich. Mit dem erfindungsgemäßen Verfahren ist darüber hinaus eine gleichmäßige Abscheidung von Platin und/oder Palladium bzw. einer entsprechenden Legierung auf Substraten mit einer komplexen, dreidimensionalen Geometrie möglich.For the purposes of the present invention, preferably several substrates are coated simultaneously in a galvanic bath with the or each metal of the platinum group or a corresponding alloy. By egg is a rational production of relatively large quantities in batch mode possible. With the method according to the invention, moreover, a uniform deposition of platinum and / or palladium or a corresponding alloy on substrates having a complex, three-dimensional geometry is possible.

Claims (8)

  1. Method for producing a corrosion-resistant and/or oxidation-resistant coating, wherein at least one metal of the platinum group, in particular platinum and/or palladium or an alloy based on at least one metal of the platinum group, is deposited by means of galvanization onto a surface of a substrate, and wherein subsequently aluminization of the thus galvanically coated substrate is carried out, characterised in that
    the galvanic deposition of the or each metal of the platinum group or of the corresponding alloy is carried out in a two-stage deposition process, wherein in a first stage of the deposition process in a coating time T1 a current intensity that is applied for galvanization is increased continuously or stepwise starting from an initial value to a maximum value of the order of magnitude of 0.2 to 3.5 A/dm2, and wherein in a second stage of the deposition process in a coating time T2 the current intensity applied for galvanization is kept constantly at the maximum value, and
    the deposition process is carried out over a total coating time T, wherein the coating time T1 of the first stage amounts to approximately 50% of the total coating time T, and the coating time T2 of the second stage amounts to approximately 50% of the total coating time T, and wherein T = T1 + T2.
  2. Method according to claim 1,
    characterised in that
    the initial value of the current intensity applied in the first stage corresponds to approximately 10 to 20% of the maximum value.
  3. Method according to claim 1 or 2,
    characterised in that
    starting from the initial value of the current intensity the current intensity is increased continuously to the maximum value in the coating time T1 of the first stage.
  4. Method according to claim 1 or 2,
    characterised in that
    starting from the initial value of the current intensity the current intensity is increased stepwise to the maximum value in the coating time T1 of the first stage.
  5. Method according to one of claims 1 to 4,
    characterised in that
    the substrate that is to be coated is connected cathodically or negatively throughout the deposition process.
  6. Method according to one of claims 1 to 5, characterised in that
    before the deposition process the substrate that is to be coated is connected anodically or positively and is thus introduced into a galvanic bath.
  7. Method according to one of claims 1 to 6,
    characterised in that
    before the deposition process and, if applicable, before the anodic or positive connection of the same the substrate that is to be coated is subjected to surface pretreatment, wherein
    a) the surface of the substrate that is to be coated is jet-blasted;
    b) subsequently the jet-blasted surface is electrochemically cleaned or degreased;
    c) subsequently the cleaned or degreased surface is activated.
  8. Method according to claim 7,
    characterised in that
    during the surface pretreatment
    a) the surface of the substrate that is to be coated is jet-blasted with Al2O3 particles, which have a particle diameter of 100 to 200 µm, at a pressure of 1.5 to 3.5 bar;
    b) subsequently the jet-blasted surface is electrochemically cleaned or degreased in a NaOH solution;
    c) subsequently the cleaned or degreased surface is activated preferably in a 40 to 60 viol % HCl solution.
EP05747427A 2004-05-04 2005-05-02 Method for production of a coating Active EP1743053B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021926A DE102004021926A1 (en) 2004-05-04 2004-05-04 A method of making a coating and anode for use in such a method
PCT/DE2005/000811 WO2005108651A2 (en) 2004-05-04 2005-05-02 Method for production of a coating and anode used in such a method

Publications (2)

Publication Number Publication Date
EP1743053A2 EP1743053A2 (en) 2007-01-17
EP1743053B1 true EP1743053B1 (en) 2012-08-29

Family

ID=34968980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05747427A Active EP1743053B1 (en) 2004-05-04 2005-05-02 Method for production of a coating

Country Status (4)

Country Link
US (1) US7771578B2 (en)
EP (1) EP1743053B1 (en)
DE (1) DE102004021926A1 (en)
WO (1) WO2005108651A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361888B3 (en) * 2003-12-23 2005-09-22 Airbus Deutschland Gmbh Anodizing process for aluminum materials
FR2954780B1 (en) * 2009-12-29 2012-02-03 Snecma METHOD FOR THE ELECTROLYTIC DEPOSITION OF A METALLIC MATRIX COMPOSITE COATING CONTAINING PARTICLES FOR THE REPAIR OF A METAL BLADE
US8828214B2 (en) * 2010-12-30 2014-09-09 Rolls-Royce Corporation System, method, and apparatus for leaching cast components
JP6226231B2 (en) 2013-09-18 2017-11-08 株式会社Ihi Heat-shielding coated Ni alloy part and manufacturing method thereof
US10392948B2 (en) 2016-04-26 2019-08-27 Honeywell International Inc. Methods and articles relating to ionic liquid bath plating of aluminum-containing layers utilizing shaped consumable aluminum anodes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666638A (en) 1970-04-21 1972-05-30 Sidney Levine Process for anodizing aluminum materials
US4085012A (en) 1974-02-07 1978-04-18 The Boeing Company Method for providing environmentally stable aluminum surfaces for adhesive bonding and product produced
GB1555940A (en) 1977-01-21 1979-11-14 Boeing Co Aluminium or aluminium alloy adherends and to a method oxide coating on an aluminium or aluminium alloy article
IT1094825B (en) * 1978-05-11 1985-08-10 Panclor Chemicals Ltd PROCEDURE AND EQUIPMENT FOR THE HALOGENATION OF WATER
US4894127A (en) 1989-05-24 1990-01-16 The Boeing Company Method for anodizing aluminum
DE4211881C2 (en) 1992-04-09 1994-07-28 Wmv Ag Process for the electrochemical application of a structured surface coating
EP0567755B1 (en) 1992-04-29 1996-09-04 WALBAR INC. (a Delaware Corporation) Improved diffusion coating process and products
US5486283A (en) 1993-08-02 1996-01-23 Rohr, Inc. Method for anodizing aluminum and product produced
DE69509202T2 (en) 1994-12-24 1999-09-09 Chromalloy United Kingdom Ltd. Thermal insulation layer and method for applying it to a superalloy body
US6066405A (en) * 1995-12-22 2000-05-23 General Electric Company Nickel-base superalloy having an optimized platinum-aluminide coating
DE19902527B4 (en) * 1999-01-22 2009-06-04 Hydro Aluminium Deutschland Gmbh Printing plate support and method for producing a printing plate support or an offset printing plate
US6254756B1 (en) 1999-08-11 2001-07-03 General Electric Company Preparation of components having a partial platinum coating thereon
EP1094131B1 (en) 1999-10-23 2004-05-06 ROLLS-ROYCE plc A corrosion protective coating for a metallic article and a method of applying a corrosion protective coating to a metallic article
US6432821B1 (en) * 2000-12-18 2002-08-13 Intel Corporation Method of copper electroplating
ITTO20010149A1 (en) 2001-02-20 2002-08-20 Finmeccanica S P A Alenia Aero LOW ECOLOGICAL ANODIZATION PROCEDURE OF A PIECE OF ALUMINUM OR ALUMINUM ALLOYS.
WO2003088316A2 (en) 2002-04-12 2003-10-23 Acm Research, Inc. Electropolishing and electroplating methods
US6974531B2 (en) * 2002-10-15 2005-12-13 International Business Machines Corporation Method for electroplating on resistive substrates
DE10350882A1 (en) 2003-10-31 2005-06-02 Mtu Aero Engines Gmbh Component, oxidation protection coating for such a component and manufacturing process
DE10361888B3 (en) 2003-12-23 2005-09-22 Airbus Deutschland Gmbh Anodizing process for aluminum materials

Also Published As

Publication number Publication date
EP1743053A2 (en) 2007-01-17
WO2005108651A3 (en) 2007-03-22
WO2005108651A2 (en) 2005-11-17
DE102004021926A1 (en) 2005-12-01
US7771578B2 (en) 2010-08-10
US20080035486A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
DE19748926B4 (en) A method of electroplating a silicon-containing aluminum alloy, cylinder block of a silicon-containing aluminum alloy
DE3872294T2 (en) COATING.
DE3329907C2 (en) Process for forming a protective diffusion layer on parts made of a nickel, cobalt and iron alloy
DE3321231C2 (en) Process for the production of wear protection layers on the surfaces of components made of titanium or titanium-based alloys
EP1743053B1 (en) Method for production of a coating
CH647008A5 (en) STEEL STRIP COATED WITH HYDRATED CHROMOXIDE AND METHOD FOR THE PRODUCTION THEREOF.
EP3118352B1 (en) Method for galvanically coating of ti-al alloys
DE69222129T2 (en) Automotive body panel made of multi-coated aluminum plate
DE3414048A1 (en) METHOD FOR PRODUCING STEEL PARTS GALVANIZED WITH A ZINC-NICKEL ALLOY
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
EP2851455B1 (en) Method of electroplating wear-resistant coating
DE102019219651A1 (en) Sheet metal with a deterministic surface structure and process for the production of a formed and painted sheet metal component
DE68919135T2 (en) Steel sheet plated with a Zn-Ni alloy with improved adhesion in the event of impact and method for its production.
EP2180088B2 (en) Method for electroplating hard chrome layers
EP1451392B1 (en) Pretreatment process for coating of aluminium materials
EP2581473B1 (en) Method for protecting a workpiece made of an aluminium material from corrosion, in particular a workpiece made from an aluminium forgeable alloy
EP2770088B1 (en) Extremely corrosion-resistant steel parts and method for their production
DE10259362A1 (en) Process for depositing an alloy on a substrate
DE19745811C2 (en) Electroplated hard chrome layer, use and method for the production thereof
DE102005055303A1 (en) Multi-stage surface etching process to manufacture high-temperature metal titanium components for gas turbine engine
DE19536312C1 (en) Prodn. of multilayered coating with defect-free bore holes used for turbine blades
EP2045364A2 (en) Galvanic deposition of metal layers on magnesium or magnesium alloy surfaces
DE102005036426B4 (en) Process for coating steel products
DE102021111983A1 (en) HIGH TEMPERATURE COATINGS TO REDUCE WELD CRACKING DURING RESISTANCE WELDING
DE68902917T2 (en) METHOD FOR PLATING TITANIUM.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OEZCAN, OEMER-REFIK

Inventor name: PILLHOEFER, HORST

Inventor name: ALBRECHT, ANTON

Inventor name: DAUTL, THOMAS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH DE FR GB IT LI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20091009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005013051

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0005040000

Ipc: C25D0003500000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/04 20060101ALI20111125BHEP

Ipc: C25D 17/10 20060101ALI20111125BHEP

Ipc: C23C 10/02 20060101ALI20111125BHEP

Ipc: C25D 3/50 20060101AFI20111125BHEP

Ipc: C25D 5/18 20060101ALI20111125BHEP

Ipc: C25D 5/08 20060101ALI20111125BHEP

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCTION OF A COATING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013051

Country of ref document: DE

Effective date: 20121025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013051

Country of ref document: DE

Effective date: 20130530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190521

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 19

Ref country code: DE

Payment date: 20230519

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 19