EP0044512A1 - Verfahren und Vorrichtung zum Kühlen von Gefässteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens - Google Patents

Verfahren und Vorrichtung zum Kühlen von Gefässteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens Download PDF

Info

Publication number
EP0044512A1
EP0044512A1 EP81105529A EP81105529A EP0044512A1 EP 0044512 A1 EP0044512 A1 EP 0044512A1 EP 81105529 A EP81105529 A EP 81105529A EP 81105529 A EP81105529 A EP 81105529A EP 0044512 A1 EP0044512 A1 EP 0044512A1
Authority
EP
European Patent Office
Prior art keywords
cooling
heat exchange
exchange surface
furnace
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81105529A
Other languages
English (en)
French (fr)
Other versions
EP0044512B1 (de
Inventor
Werner Dr. Marnette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Fuchs Systemtechnik GmbH
Korf and Fuchs Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6107637&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0044512(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuchs Systemtechnik GmbH, Korf and Fuchs Systemtechnik GmbH filed Critical Fuchs Systemtechnik GmbH
Priority to AT81105529T priority Critical patent/ATE6095T1/de
Publication of EP0044512A1 publication Critical patent/EP0044512A1/de
Application granted granted Critical
Publication of EP0044512B1 publication Critical patent/EP0044512B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/001Cooling of furnaces the cooling medium being a fluid other than a gas
    • F27D2009/0013Cooling of furnaces the cooling medium being a fluid other than a gas the fluid being water
    • F27D2009/0016Water-spray
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/004Cooling of furnaces the cooling medium passing a waterbox

Definitions

  • the invention relates to a method according to the preamble of patent claim 1. Furthermore, it relates to a device according to the preamble of patent claim 8.
  • Evaporative cooling systems are already used in a variety of ways in technical facilities. In metallurgical furnaces, this cooling technology is used on blast furnaces, for example. These ovens are due to the continuous process control by largely stationary loading drive states and thus supply almost constant heat flow densities on the heat exchange surfaces. These blast furnace cooling systems can thus be operated like generally known waste heat recovery systems. Evaporative cooling systems of this type, which always operate at high system pressures, cannot be used in batch-operated electric furnaces, since heat flows which fluctuate spatially and temporally significantly during the melting process have to be dissipated over the outer surfaces of an electric furnace.
  • the object of the invention is to achieve good cooling over the entire heat exchange surface in a method or a device of the type mentioned in the introduction, despite strong local and temporal fluctuations in the thermal stress, utilizing the evaporation enthalpy. In spite of the local and temporal fluctuations in the thermal stress, film boiling which leads to an inadmissibly high local thermal stress on the heat exchange wall should be reliably prevented.
  • the aim of the invention is also an apparatus for performing the method.
  • evaporative cooling can also be used by the invention for cooling the outer surfaces of an electric furnace.
  • An important feature of this invention is that electric furnaces can also be cooled below the melting and slag zone with very little cooling water consumption, without any impairment operational safety is given.
  • the cooling system according to the invention operates at normal pressure or a pressure slightly above 1 bar and ensures adaptation to the transient operating states of an electric furnace without dangerous cooling water accumulations occurring on the furnace vessel wall.
  • this technology can achieve cooling water consumption of 0.6 1 water / m 2 ⁇ min.
  • Precision nozzles for example hollow cone, full cone or pneumatic atomizer nozzles, are suitable for generating finely distributed water flows. Vibrating-mechanical atomizing devices that are excited, for example, with ultrasound can also be used.
  • the coolant is preferably applied to the surface to be cooled with a constant jet width, constant drop spectrum (0-100 ⁇ m) and constant drop speed (20-40 m / sec).
  • FIG. 1 shows an evaporative cooling system 1 with a closed coolant circuit.
  • the system pressure is approximately 1 bar.
  • the cooling water is applied through atomizing nozzles 3 in finely divided droplet form 4 to the surface 2 to be cooled.
  • the surface 2 to be cooled and a fastening surface 26 for the nozzles 3 form a space which is closed off from the outside.
  • the saturated steam generated during evaporation is fed to the condenser 6 by means of a saturated steam pump 5 through a saturated steam line 22.
  • the resulting condensed coolant is collected in a container 7 and pumped into a pressure container 18 with a liquid pump 8.
  • the pressure vessel 18 ensures a largely constant liquid pressure in the feed line 19.
  • the temperature of the surface 2 to be cooled is continuously measured with a large number of independent thermal sensors 10. With a local or large area If the lower limit temperature, which corresponds to the boiling point of the water, is exceeded, the corresponding spatially assigned atomizing nozzles are actuated by opening the valves 20. The cooling water is then applied to the surface 2 with a constant volume flow until the lower limit temperature is reached. The mode of operation of the atomizing nozzles 3 is thus intermittent.
  • the nozzle switch-on times can be controlled by a microprocessor 21, which processes the numerous temperature measurement values and converts them into corresponding commands for the valve actuators.
  • the nozzles can be controlled individually in furnace regions which are exposed to heat flows which fluctuate widely in space and time, as shown in FIG. 1. In areas with uniform heat loads, several nozzles are controlled in groups.
  • FIG. 2 shows the application of the cooling method shown in FIG. 1 using the example of the side wall 14 of an electric arc furnace.
  • the cooling system is also used in furnace vessel areas which are below the bath surface 11.
  • the melt 12 is located in a refractory material bricked and rammed out from the side wall 14 and the furnace bottom 16 formed furnace bottom, which is made of steel.
  • the furnace vessel according to FIG. 2 is bricked up to above the bath surface 11.
  • the section of the refractory lining marked with 15 is only partially cooled in conventional water-cooled walls for safety reasons, namely from above to the bath surface 11.
  • the isotherm of the lower reaction limit temperature for the chemical wear reactions is moved sufficiently far to the side of the refractory lining facing the bath 12, so that a sufficient residual stone thickness and thus an increased service life of the lining is achieved.
  • FIG. 3 shows the application of the cooling method shown in FIG. 1 using the example of an electrode 17 inserted in the bottom 16 of an electric furnace.
  • the bottom electrode 17 consists of a material with low specific electrical resistance and good thermal conductivity.
  • copper was mainly used as the electrode material.
  • the bottom electrode 17 is in electrical contact with the electrically conductive melt 12 via a solidified portion 23 of the melt and serves to dissipate the electrical current from the melt 12, which generally serves as an anode in direct current and plasma furnaces.
  • cooling in accordance with the inventive concept presented here in addition to a reduction in the cooling water consumption figures, in particular leads to a significant increase in operational and occupational safety.
  • the bottom electrode is fastened interchangeably in the cylindrical holder 25.

Abstract

Zum Kühlen von Gefäßteilen eines metallurgischen Ofens wird die Temperaturverteilung auf der Wärmeaustauschfläche (2) erfaßt und auf diese nur so lange Kühlflüssigkeit aufgesprüht, so lange der Meßwert an der betreffenden Stelle oberhalb des Siedepunktes der Kühlflüssigkeit liegt und ferner die aufgesprühte Menge auf einen Wert begrenzt, bei dem es unter Vermeidung eines zusammenhängenden Flüssigkeitsfilms zu einer spontanen Verdampfung der Kühlflüssigkeit kommt. (Fig. 1).

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1. Ferner bezieht sie sich auf eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 8.
  • Bei der Kühlung eines thermisch hoch beanspruchten Wandbereichs eines metallurgischen Ofens, insbesondere eines Lichtbogenofens, mit örtlich und zeitlich stark schwankender thermischer Beanspruchung der Wand besteht das Problem, ein Filmsieden zu verhindern, d. h. ein Auftreten von dünnen Dampfschichten an der Wärmeaustauschfläche, da diese stark wärmeisolierend wirken, an dieser Stelle den Wärmeaustausch stark herabsetzen und es insbesondere bei Wasserkühlkästen, die selbst die Ofenwandung bilden, zu einer Beschädigung durch örtliche Uberhitzung kommen kann. Um ein Filmsieden zu verhindern, ist es üblich, die Strömungsgeschwindigkeit des Kühlmittels im Bereich der Wärmeaustauschfläche zu erhöhen. Dies wird bei der Kühleinrichtung nach der DE-AS 1 108 372 dadurch erreicht, daß die Kühlflüssigkeit der Wärmeaustauschfläche über mehrere Düsen zugeführt wird, die knapp oberhalb dieser Fläche liegen. Bei dem metallurgischen Ofen gemäß der DE-OS 27 22 681 wird die hohe Strö- - mungsgeschwindigkeit und damit ein Verdampfen der Kühlflüssigkeit durch Verengen des Strömungsquerschnittes des Strömungskanals erreicht.
  • Bei Kühlwassersystemen mit zwangsgeführten Kühlwasserströmen werden an der Wärmeaustauschfläche Wärmeübergangskoeffizienten von 1000 bis 3000 W/K·m2 erreicht, die allerdings Strömungsgeschwindigkeiten von 1 - 3 m/sec erforderlich machen. Bei wassergekühlten Ofenwänden oberhalb der Schmelzzone und einem Temperaturanstieg im Kühlwasser von Z 10 K lassen sich unter günstigen Bedingungen spezifische Kühlwasserverbrauchszahlen von 30 bis 50 1 Wasser/m2.min erzielen. Im allgemeinen liegen diese Verbrauchszahlen jedoch bei ≈ 100 1 Wasser/m2·min.
  • Diese Verbrauchszahlen führen bei offenen Kühlwassersystemen, vorzugsweise in Ländern mit Wassermangel, zu einer erheblichen Kostenbelastung des Elektroofenverfahrens. Bei Verwendung geschlossener Kühlwasserkreisläufe wird die Einrichtung großer Pump-, Kühl- und Aufbereitungskapazitäten erforderlich.
  • Bei Ausnutzung der Verdampfungswärme des Wassers von 2257 KJ/Kg sowie der bei der Verdampfungskühlung erreichbaren Wärmeübergangskoeffizienten von 10000 bis 20000 W/K.m2 wäre ein wesentlich wirtschaftlicherer Betrieb möglich.
  • Verdampfungskühlsysteme werden bereits in vielfältiger Weise bei technischen Einrichtungen genutzt. Bei metallurgischen öfen wird diese Kühltechnik beispielsweise an Hochöfen angewendet. Diese öfen sind infolge der kontinuierlichen Prozeßführung durch weitgehend stationäre Betriebszustände gekennzeichnet und liefern damit nahezu konstante Wärmestromdichten an den Wärmeaustauschflächen. Diese Hochofenkühlsysteme können somit wie allgemein bekannte Abhitzeverwertesysteme betrieben werden. Derartige Verdampfungskühlsysteme, die stets bei hohen Systemdrücken arbeiten, sind bei chargenweise betriebenen Elektroöfen nicht einsetzbar, da während des Schmelzverlaufes über die Außenflächen eines Elektroofens räumlich und zeitlich erheblich schwankende Wärmeströme abgeführt werden müssen.
  • Aufgabe der Erfindung ist es, bei einem Verfahren bzw. einer Vorrichtung der einleitend genannten Art trotz starker örtlicher und zeitlicher Schwankungen der thermischen Beanspruchung unter Ausnutzung der Verdampfungsenthalpie eine gute Kühlung über die gesamte Wärmeaustauschfläche zu erzielen. Es soll trotz der örtlichen und zeitlichen Schwankungen der thermischen Beanspruchung ein Filmsieden, das zu einer unzulässig hohen örtlichen thermischen Beanspruchung der Wärmeaustauschwand führt, sicher verhindert werden. Ziel der Erfindung ist ferner eine Vorrichtung zur Durchführung des Verfahrens.
  • Das erfindungsgemäße Verfahren ist durch die Merkmale des Anspruchs 1, die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens durch die Merkmale des Anspruchs 8 gekennzeichnet. Vorteilhafte Ausgestaltungen der Erfindung sind den übrigen Ansprüchen zu entnehmen.
  • Durch die Erfindung lassen sich die Vorteile der Verdampfungskühlung auch für die Kühlung der Außenflächen eines Elektroofens nutzen. Ein wesentliches Merkmal dieser Erfindung ist, daß Elektroöfen bei sehr geringem Kühlwasserverbrauch auch unterhalb der Schmelz- und Schlackenzone gekühlt werden können, ohne daß eine Beeinträchtigung der Betriebssicherheit gegeben ist.
  • Das erfindungsgemäße Kühlsystem arbeitet bei Normaldruck oder einem geringfügig über 1 bar liegenden Druck und gewährleistet die Anpassung an die instationären Betriebszustände eines Elektroofens, ohne daß gefährliche Kühlwasseransammlungen an der Ofengefäßwand auftreten.
  • Dies wird durch das Auftragen feinverteilter Kühlwassermengen mitaefiniertem'Tropfenspektrum auf die zu kühlenden Außenflächen erreicht, wobei durch eine Temperaturmeßeinrichtung gewährleistet ist, daß bei Kühlmittelzufuhr die Außenflächentemperatur stets mindestens der Siedetemperatur des Wassers entspricht, damit eine spontane Verdampfung des Kühlwassers eintritt und die Ausbildung zusammenhängender Flüssigkeitsfilme auf der Wärmeaustauschfläche unterbleibt.
  • Im Gegensatz zu bekannten Kühlsystemen, wie zum Beispiel in der Offenlegungsschrift 1 934 486 beschrieben, wird bei der hier dargelegten Kühlung das Auftreten koexistierender flüssiger und gasförmiger Phasen bewußt vermieden.
  • Bei üblichen Verlustleistungen von 29 KW/m2 bei Elektroöfen im Bereich oberhalb der Schmelze kann mit dieser Technik ein Kühlwasserverbrauch von 0,6 1 Wasser/m2· min erreicht werden.
  • Der entsprechende theoretische Kühlwasserverbrauch bei einem mit Zwangskonvektion arbeitenden heutigen Kühlsystem liegt bei 41 1 Wasser/m2· min.
  • Zur Erzeugung feinverteilter Wasserströme sind handelsübliche Präzisionsdüsen, zum Beispiel Hohlkegel-, Vollkegel- oder Pneumatikzerstäuberdüsen, geeignet. Schwingend-mechanisch arbeitende Zerstäubereinrichtungen, die beispielsweise mit Ultraschall angeregt werden, können ebenfalls Anwendung finden.
  • Vorzugsweise wird das Kühlmittel mit gleichbleibender Strahlbreite, gleichbleibendem Tropfenspektrum (0 - 100 µm) und gleichbleibender Tropfengeschwindigkeit (20 - 40 m/sec) auf die zu kühlende Fläche aufgebracht.
  • Beispiele für die Verwirklichung des Erfindungsgedankens werden in den nachfolgend beschriebenen Figuren dargestellt.
  • Die Fig. 1 zeigt ein Verdampfungskühlsystem 1 mit geschlossenem Kühlmittelkreislauf. Der Systemdruck beträgt ungefähr 1 bar. Das Kühlwasser wird durch Zerstäuberdüsen 3 in feinverteilter Tropfenform 4 auf die zu kühlende Fläche 2 aufgebracht. Die zu kühlende Fläche 2 und eine Befestigungsfläche 26 für die Düsen 3 bilden einen nach außen abgeschlossenen Raum. Der bei der Verdampfung entstehende Sattdampf wird mittels einer Sattdampfpumpe 5 durch eine Sattdampfleitung 22 dem Kondensator 6 zugeführt. Das dabei entstehende kondensierte Kühlmittel wird in einem Behälter 7 gesammelt und mit einer Flüssigkeitspumpe 8 in einen Druckbehälter 18 gepumpt. Der Druckbehälter 18 gewährleistet bei geöffnetem Ventil 20 einen weitgehend konstanten Flüssigkeitsdruck in der Zuleitung 19.
  • Teile des Kühlmittels, die unkontrolliert kondensieren, werden durch eine Kondensatrückführungsleitung 9 dem Behälter 7 zugeleitet.
  • Die Temperatur der zu kühlenden Fläche 2 wird mit einer Vielzahl voneinander unabhängiger Thermofühler 10 ständig gemessen. Bei einem örtlich begrenzten oder großflächigen Überschreiten der unteren Grenztemperatur, die der Siedetemperatur des Wassers entspricht, werden die entsprechend räumlich zugeordneten Zerstäuberdüsen durch öffnen der Ventile 20 betätigt. Das Kühlwasser wird dann mit gleichbleibendem Volumenstrom solange auf die Oberfläche 2 aufgebracht, bis die untere Grenztemperatur erreicht ist. Die Betriebsweise der Zerstäuberdüsen 3 ist somit intermittierend. Die Steuerung der Düseneinschaltzeiten kann durch einen Mikroprozessor 21 erfolgen, der die vielzähligen Temperaturmeßwerte verarbeitet und in entsprechende Befehle für die Ventilstellglieder umsetzt.
  • An Ofenbereichen, die räumlich und zeitlich stark schwankenden Wärmeflüssen ausgesetzt sind, können, wie in Fig. 1 dargestellt, die Düsen einzeln gesteuert werden. In Gebieten mit gleichmäßiger Wärmebelastung werden mehrere Düsen gruppenweise gesteuert.
  • Nachfolgend werden die Kennzahlen eines Ausführungsbeispiels aufgeführt:
    Figure imgb0001
  • Die Fig. 2 zeigt die Anwendung des in Fig. 1 dargestellten Kühlverfahrens am Beispiel der Seitenwand 14 eines Elektrolichtbogenofens. In diesem Beispiel wird das Kühlsystem auch in Ofengefäßbereichen angewandt, die unterhalb der Badoberfläche 11 liegen. Die Schmelze 12 befindet sich in einem mit feuerfestem Material 13 ausgemauerten und ausgestampften aus der Seitenwand 14 und dem Ofenboden 16 gebildeten Ofengefäßunterteil, das aus Stahl gefertigt ist. Bei einer feuerfesten Neuzustellung des Elektrolichtbogenofens wird das Ofengefäß entsprechend Fig. 2 bis über die Badoberfläche 11 ausgemauert. Der mit 15 gekennzeichnete Abschnitt der feuerfesten Ausmauerung wird entgegen der in Fig. 2 dargestellten Kühltechnik bei herkömmlichen wassergekühlten Wänden aus Sicherheitsgründen nur teilweise, und zwar von oben her bis zur Badoberfläche 11 gekühlt. Da der Verschleiß der feuerfesten Baustoffe 13 im wesentlichen auf chemische Umsetzungen mit der flüssigen Schmelze 12 zurückzuführen und damit stark temperaturabhängig ist, ist bei einer Verwirklichung des Erfindungsgedankens entsprechend Fig. 2 mit einer erheblichen Verminderung des Verbrauches an feuerfesten Werkstoffen im Badbereich zu rechnen.
  • Durch die gezielte Wärmeabfuhr in dem mit 15 gekennzeichneten Bereich wird die Isotherme der unteren Reaktionsgrenztemperatur für die chemischen Verschleißreaktionen genügend weit auf die dem Bad 12 zugewandte Seite der feuerfesten Zustellung verlegt, so daß eine ausreichende Reststeindicke und damit eine erhöhte Lebensdauer der Auskleidung erreicht wird.
  • Die Fig. 3 zeigt die Anwendung des in Fig. 1 dargestellten Kühlverfahrens am Beispiel einer im Boden 16 eines Elektroofens eingesetzten Elektrode 17. Die Bodenelektrode 17 besteht aus einem Werkstoff mit geringem spezifischen elektrischen Widerstand und guter Wärmeleitfähigkeit. Bei den im Schrifttum bekannt gewordenen Bodenelektroden wurde als Elektrodenwerkstoff vorwiegend Kupfer verwendet.
  • Die Bodenelektrode 17 steht in elektrischem Kontakt mit der elektrisch leitenden Schmelze 12 über eine erstarrte Teilmenge 23 der Schmelze und dient zur Abführung des elektrischen Stromes von der bei Gleichstrom- und Plasmaöfen im allgemeinen als Anode dienenden Schmelze 12.
  • Gegenüber den bisher bekannten Kühleinrichtungen für derartige-Bodenelektroden, die ausschließlich mit zwangsgeführtem Kühlwasser arbeiten, führt eine Kühlung nach dem hier dargelegten Erfindungsgedanken neben einer Herabsetzung der Kühlwasserverbrauchszahlen insbesondere zu einer bedeutenden Erhöhung der Betriebs- und Arbeitssicherheit.
  • Bei dem hier dargestellten Beispiel dient das Stromrohr 24, das über die elektrisch leitende Befestigungsplatte 26 der Düsen 3 mit der Bodenelektrode 17 verbunden ist, zugleich als Sattdampfableitung 22. Die Bodenelektrode ist auswechselbar in der zylinderförmigen Halterung 25 befestigt.

Claims (8)

1. Verfahren zum Kühlen von Gefäßteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens, mit einem in den zu kühlenden Wandbereich eingesetzten oder den Wandbereich bildenden Kühlkasten, der eine Wärmeaustauschfläche enthält, auf die eine Kühlflüssigkeit aufgesprüht wird,
dadurch gekennzeichnet, daß die räumliche und zeitliche Temperaturverteilung auf der Wärmeaustauschfläche durch eine Vielzahl unabhängiger Temperaturmeßstellen erfaßt und entsprechend den erhaltenen Meßwerten großflächig oder örtlich begrenzt Kühlflüssigkeit nur so lange auf den dem Meßwert zugeordneten Bereich der Wärmeaustauschfläche aufgesprüht wird, solange der betreffende Meßwert oberhalb des Siedepunktes der Kühlflüssigkeit liegt und daß die aufgesprühte Menge auf einen Wert begrenzt wird, bei dem es unter Vermeidung eines zusammenhängenden Flüssigkeitsfilms zu einer spontanen Verdampfung der Kühlflüssigkeit kommt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß die Kühlflüssigkeit mit einer Tropfengröße von maximal 100 µm auf die Wärmeaustauschfläche aufgesprüht wird.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß die Kühlflüssigkeit mittels Zerstäuberdüsen auf;die Wärmeaustauschfläche aufgesprüht wird.
4. Verfahren nach einem der Ansprüche 1 bis 3 gekennzeichnet durch seine Anwendung zur Kühlung des Deckels eines Elektroofens insbesondere eines Lichtbogenofens.
5. Verfahren nach einem der Ansprüche 1 bis 4 gekennzeichnet durch seine Anwendung zur Kühlung der Außenflächen des Ofengefäßes eines metallurgischen Ofens unterhalb der Schmelz- und Schlackenzone.
6. Verfahren nach Anspruch 5 gekennzeichnet durch seine Anwendung zur Kühlung eines mit dem Schmelzbad in Verbindung stehenden und am Ofengefäß austretenden elektrischen Kontaktstückes eines Elektroofens. x
7. Verfahren nach Ansprüchen 1 bis 6 dadurch gekennzeichnet, daß die verwendete Kühlflüssigkeit Wasser ist.
8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, mit einem in den zu kühlenden Wandbereich eines metallurgischen Ofens, insbesondere eines Lichtbogenofens eingesetzten oder den Wandbereich bildenden Kühlkasten der eine Wärmeaustauschfläche und dieser gegenüberliegend eine Einrichtung zum Aufsprühen einer Kühlflüssigkeit auf die Wärmeaustauschfläche enthält, dadurch gekennzeichnet, daß die Kühlflüssigkeit durch die Aufsprüheinrichtung auf verschiedene Bereiche der Wärmeaustauschfläche unterschiedlich dosiert aufsprühbar ist und die Steuerung der Aufsprüheinrichtung durch einen Mikroprozessor auf der Grundlage von Temperaturmeßwerten erfolgt, die durch eine Vielzahl von über die Wärmeaustauschfläche verteilt angeordneten Temperaturmeßgebern geliefert wird.
EP81105529A 1980-07-19 1981-07-14 Verfahren und Vorrichtung zum Kühlen von Gefässteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens Expired EP0044512B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81105529T ATE6095T1 (de) 1980-07-19 1981-07-14 Verfahren und vorrichtung zum kuehlen von gefaessteilen eines metallurgischen ofens, insbesondere eines lichtbogenofens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3027465A DE3027465C1 (de) 1980-07-19 1980-07-19 Verfahren und Vorrichtung zum Kuehlen von Gefaessteilen eines metallurgischen Ofens,insbesondere eines Lichtbogenofens
DE3027465 1980-07-19

Publications (2)

Publication Number Publication Date
EP0044512A1 true EP0044512A1 (de) 1982-01-27
EP0044512B1 EP0044512B1 (de) 1984-02-01

Family

ID=6107637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81105529A Expired EP0044512B1 (de) 1980-07-19 1981-07-14 Verfahren und Vorrichtung zum Kühlen von Gefässteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens

Country Status (6)

Country Link
EP (1) EP0044512B1 (de)
JP (1) JPS5752788A (de)
AT (1) ATE6095T1 (de)
BR (1) BR8104601A (de)
DE (1) DE3027465C1 (de)
ES (1) ES504094A0 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3603783A1 (de) * 1985-02-07 1986-08-07 Elkem As Seitenwand fuer einen metallurgischen schmelzofen
EP0197137A1 (de) * 1984-10-12 1986-10-15 Ronald G Heggart Ofenkühlsystem und verfahren.
WO1989003011A1 (en) * 1987-09-23 1989-04-06 Davy Mckee (Stockton) Limited Vessels for containing molten metal
EP0335042A1 (de) * 1988-03-08 1989-10-04 Ucar Carbon Technology Corporation Kühlsystem und -verfahren zum Handhaben von geschmolzenen metallenthaltenden Gefässen
EP0393970A2 (de) * 1989-04-20 1990-10-24 Davy Mckee (Stockton) Limited Kühlung von heissen Körpern
FR2652890A1 (fr) * 1989-10-11 1991-04-12 Siderurgie Fse Inst Rech Dispositif de connexion electrique destine a etre place en paroi d'un recipient metallurgique au contact d'un metal en fusion.
EP0472254A2 (de) * 1990-08-23 1992-02-26 MANNESMANN Aktiengesellschaft Metallurgisches Gefäss mit metallischer Elektrode
DE4103508A1 (de) * 1991-02-06 1992-08-13 Kortec Ag Verfahren und vorrichtung zur kuehlung von gefaessteilen fuer die durchfuehrung von pyro-verfahren, insbesondere metallurgischer art
WO1995012797A1 (en) * 1993-11-03 1995-05-11 Davy Mckee (Stockton) Limited Cooling of hot bodies
EP0740121A1 (de) * 1995-04-27 1996-10-30 Ucar Carbon Technology Corporation Seitenwandanordnung eines Lichtbogenofens
US5653936A (en) * 1994-07-25 1997-08-05 Voest-Alpine Industrieanlagenbau Gmbh Method of cooling a hot surface and an arrangement for carrying out the method
WO2006089971A2 (en) * 2005-02-28 2006-08-31 Paul Wurth S.A. Electric arc furnace
US7527715B2 (en) 2002-07-09 2009-05-05 Aluminum Pechiney Method and system for cooling an electrolytic cell for aluminum production
LU91408B1 (en) * 2008-01-11 2009-07-13 Wurth Paul Sa Cooling of a metallurgical smelting reduction vessel
US7644752B2 (en) 2002-09-16 2010-01-12 Bio 3D Applications Regulating heat exchange and cooling method and system for monitoring and controlling the temperatures of walls subjected to high temperatures
DE102009031355A1 (de) * 2009-07-01 2011-01-05 Siemens Aktiengesellschaft Verfahren zum Kühlen eines Kühlelements eines Lichtbogenofens, Lichtbogenofen zum Einschmelzen von Metallgut, und Steuer- und/oder Regeleinrichtung für einen Lichtbogenofen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529924C1 (de) * 1995-08-01 1996-10-31 Mannesmann Ag Lichtbogenofen und Verfahren zur Vermeidung von Überhitzungen der Ofenwand
US11619450B2 (en) * 2019-09-04 2023-04-04 Systems Spray-Cooled, Inc. Stand alone copper burner panel for a metallurgical furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2275515A (en) * 1939-08-03 1942-03-10 George S Dunham Method of and apparatus for cooling blast furnaces
US2671658A (en) * 1951-02-14 1954-03-09 Meehanite Metal Corp Metal lined cupola
DE1043591B (de) * 1956-11-09 1958-11-13 Strico Ges Fuer Metallurg Vorrichtung zur Regelung der Kuehlwassermenge
DE1133083B (de) * 1956-07-10 1962-07-12 Strico Ges Fuer Metallurg Schmelzzonenkuehlmantel fuer Schachtoefen
FR1335903A (fr) * 1962-10-11 1963-08-23 Bbc Brown Boveri & Cie Système pour régler la température de l'agent de refroidissement parcourant les organes réfrigérants de la zone de refroidissement d'un four de traitement thermique
US3652070A (en) * 1968-10-22 1972-03-28 Mitsubishi Heavy Ind Ltd Cooling assembly for blast furnace shells
US4024764A (en) * 1976-04-22 1977-05-24 Bethlehem Steel Corporation Method and apparatus for measuring product surface temperature in a spray cooling chamber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1108372B (de) * 1956-11-01 1961-06-08 Josef Cermak Dr Ing Kuehlungseinrichtung fuer thermisch hochbeanspruchte Waende
DE1934486C3 (de) * 1969-07-08 1984-03-01 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Einrichtung zur Kühlung hochhitzebeanspruchter Mauerwerksteile, insbesondere von Metallschmelzöfen
US4091228A (en) * 1976-05-19 1978-05-23 United States Steel Corporation Water cooled shell for electric arc furnaces
SE410654B (sv) * 1978-02-28 1979-10-22 Asea Ab Likstromsljusbagsugn med minst en katodiskt ansluten elektrod och minst en bottnkontakt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2275515A (en) * 1939-08-03 1942-03-10 George S Dunham Method of and apparatus for cooling blast furnaces
US2671658A (en) * 1951-02-14 1954-03-09 Meehanite Metal Corp Metal lined cupola
DE1133083B (de) * 1956-07-10 1962-07-12 Strico Ges Fuer Metallurg Schmelzzonenkuehlmantel fuer Schachtoefen
DE1043591B (de) * 1956-11-09 1958-11-13 Strico Ges Fuer Metallurg Vorrichtung zur Regelung der Kuehlwassermenge
FR1335903A (fr) * 1962-10-11 1963-08-23 Bbc Brown Boveri & Cie Système pour régler la température de l'agent de refroidissement parcourant les organes réfrigérants de la zone de refroidissement d'un four de traitement thermique
US3652070A (en) * 1968-10-22 1972-03-28 Mitsubishi Heavy Ind Ltd Cooling assembly for blast furnace shells
US4024764A (en) * 1976-04-22 1977-05-24 Bethlehem Steel Corporation Method and apparatus for measuring product surface temperature in a spray cooling chamber

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197137A1 (de) * 1984-10-12 1986-10-15 Ronald G Heggart Ofenkühlsystem und verfahren.
EP0197137A4 (de) * 1984-10-12 1988-02-18 Ronald G Heggart Ofenkühlsystem und verfahren.
AU592957B2 (en) * 1984-10-12 1990-02-01 Union Carbide Corporation Furnace cooling by spraying
DE3603783A1 (de) * 1985-02-07 1986-08-07 Elkem As Seitenwand fuer einen metallurgischen schmelzofen
WO1989003011A1 (en) * 1987-09-23 1989-04-06 Davy Mckee (Stockton) Limited Vessels for containing molten metal
EP0335042A1 (de) * 1988-03-08 1989-10-04 Ucar Carbon Technology Corporation Kühlsystem und -verfahren zum Handhaben von geschmolzenen metallenthaltenden Gefässen
EP0393970A2 (de) * 1989-04-20 1990-10-24 Davy Mckee (Stockton) Limited Kühlung von heissen Körpern
EP0393970A3 (en) * 1989-04-20 1990-12-19 Davy Mckee (Stockton) Limited Cooling of hot bodies
FR2652890A1 (fr) * 1989-10-11 1991-04-12 Siderurgie Fse Inst Rech Dispositif de connexion electrique destine a etre place en paroi d'un recipient metallurgique au contact d'un metal en fusion.
EP0423003A1 (de) * 1989-10-11 1991-04-17 Irsid Sa Elektrische Kontaktvorrichtung, welche in die Wand eines metallurgischen Gefässes in Kontakt mit einem geschmolzenen Metall angebracht werden soll
US5125003A (en) * 1989-10-11 1992-06-23 Francaise Institut De Recherches De La Siderurgie Bottom electrode cooled sleeve for a metallurgical container
EP0472254A2 (de) * 1990-08-23 1992-02-26 MANNESMANN Aktiengesellschaft Metallurgisches Gefäss mit metallischer Elektrode
EP0472254A3 (en) * 1990-08-23 1992-04-29 Mannesmann Aktiengesellschaft Metallurgical vessel with metal electrode
US5290016A (en) * 1991-02-06 1994-03-01 Emil Elsner Arrangement for cooling vessel portions of a furnace, in particular a metallurgical furnace
DE4103508A1 (de) * 1991-02-06 1992-08-13 Kortec Ag Verfahren und vorrichtung zur kuehlung von gefaessteilen fuer die durchfuehrung von pyro-verfahren, insbesondere metallurgischer art
WO1995012797A1 (en) * 1993-11-03 1995-05-11 Davy Mckee (Stockton) Limited Cooling of hot bodies
AU679580B2 (en) * 1993-11-03 1997-07-03 Davy Mckee (Stockton) Limited Cooling of hot bodies
US5797274A (en) * 1993-11-03 1998-08-25 Davy Mckee (Stockton) Limited Cooling of hot bodies
US5653936A (en) * 1994-07-25 1997-08-05 Voest-Alpine Industrieanlagenbau Gmbh Method of cooling a hot surface and an arrangement for carrying out the method
EP0740121A1 (de) * 1995-04-27 1996-10-30 Ucar Carbon Technology Corporation Seitenwandanordnung eines Lichtbogenofens
US7527715B2 (en) 2002-07-09 2009-05-05 Aluminum Pechiney Method and system for cooling an electrolytic cell for aluminum production
US7644752B2 (en) 2002-09-16 2010-01-12 Bio 3D Applications Regulating heat exchange and cooling method and system for monitoring and controlling the temperatures of walls subjected to high temperatures
WO2006089971A2 (en) * 2005-02-28 2006-08-31 Paul Wurth S.A. Electric arc furnace
WO2006089971A3 (en) * 2005-02-28 2006-11-23 Wurth Paul Sa Electric arc furnace
LU91408B1 (en) * 2008-01-11 2009-07-13 Wurth Paul Sa Cooling of a metallurgical smelting reduction vessel
WO2009087183A1 (en) * 2008-01-11 2009-07-16 Paul Wurth S.A. Cooling of a metallurgical smelting reduction vessel
DE102009031355A1 (de) * 2009-07-01 2011-01-05 Siemens Aktiengesellschaft Verfahren zum Kühlen eines Kühlelements eines Lichtbogenofens, Lichtbogenofen zum Einschmelzen von Metallgut, und Steuer- und/oder Regeleinrichtung für einen Lichtbogenofen
EP2449136A2 (de) * 2009-07-01 2012-05-09 Siemens AG Verfahren zum kühlen eines kühlelements eines lichtbogenofens, lichtbogenofen zum einschmelzen von metallgut, und steuer- und/oder regeleinrichtung für einen lichtbogenofen

Also Published As

Publication number Publication date
JPS5752788A (en) 1982-03-29
EP0044512B1 (de) 1984-02-01
BR8104601A (pt) 1982-04-06
ES8205459A1 (es) 1982-06-16
ATE6095T1 (de) 1984-02-15
DE3027465C1 (de) 1982-03-18
ES504094A0 (es) 1982-06-16

Similar Documents

Publication Publication Date Title
EP0044512B1 (de) Verfahren und Vorrichtung zum Kühlen von Gefässteilen eines metallurgischen Ofens, insbesondere eines Lichtbogenofens
EP3194635B1 (de) Vorrichtung zur ausbildung von beschichtungen auf oberflächen eines bauteils, bandförmigen materials oder werkzeugs
AT408437B (de) Einrichtung zum zerstäuben von flüssigen schmelzen
EP1760169B1 (de) Verdampfervorrichtung zum Beschichten von Substraten
EP0645946A1 (de) Brennerkopf für Plasmaspritzgeräte
DE102013103668B4 (de) Anordnung zum Handhaben eines flüssigen Metalls zur Kühlung von umlaufenden Komponenten einer Strahlungsquelle auf Basis eines strahlungsemittierenden Plasmas
DE2442180B2 (de) Verfahren und Vorrichtung zum Schmelzen eines auf einen Gegenstand aufgebrachten Lötmittels
CH658257A5 (en) Process and device for vapour deposition of material onto a substrate
EP0157104A1 (de) Verfahren und Vorrichtung zum Schmelzen und Erhitzen von Werkstoffen
DE10011873B4 (de) Verfahren zum Versprühen von Metall auf eine Auftragsfläche und Verwendung eines Keramikkörpers mit einer Auftragsfläche
DE2952978C1 (de) Vorrichtung zur gasdynamischen Durchmischung von fluessigem Metall und gleichzeitiger Raffination mit einem Behandlungsgas in einem Behaelter
DE19526882A1 (de) Verfahren zum Kühlen einer heißen Oberfläche sowie Einrichtung zur Durchführung des Verfahrens
EP0024604B1 (de) Verfahren und Vorrichtung zum Aufdampfen von elektrisch leitenden Stoffen (Metallen) im Hochvakuum
DE3721945C2 (de)
DE60015432T2 (de) Vorrichtung und Verfahren zum Wärmebehandeln von metallischem Material
DE3202731C2 (de) Schmiermittelzuführung für eine Mehrfachstranggießvorrichtung
EP0517735A1 (de) Plasmatron mit wasserdampf als plasmagas und verfahren zum stabilen betrieb des plasmatrons.
DE102010036332B4 (de) Verfahren zum Beschichten von Elektroden für die Elektrolyse mittels eines Lichtbogens
DE102019126640A1 (de) Lichtbogen-Drahtspritzeinrichtung
DE4225352C1 (de) Vorrichtung zum reaktiven Aufdampfen von Metallverbindungen und Verfahren
EP0865857B1 (de) Verfahren zum Signieren mit einer Lichtbogenmaschine
DE3114467A1 (de) Verdampferschiffchen und verfahren zu seiner herstellung
DE102007041327B4 (de) Verfahren und Vorrichtung zur Herstellung von Nanopulver
DE19848162C1 (de) Einrichtung zur Befestigung an der Außenwand eines metallurgischen Gefäßes und zugehöriges metallourgisches Gefäß
DE202005020544U1 (de) Verdampfervorrichtung zum Beschichten von Substraten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810714

AK Designated contracting states

Designated state(s): AT CH GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KORF & FUCHS SYSTEMTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT CH GB LI

AK Designated contracting states

Designated state(s): AT CH GB LI

REF Corresponds to:

Ref document number: 6095

Country of ref document: AT

Date of ref document: 19840215

Kind code of ref document: T

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FUCHS SYSTEMTECHNIK GMBH

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ASEA AKTIEBOLAG

Effective date: 19841025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19850205

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state