EP0042470B1 - Matières à mouler thermodurcissables, procédé pour leur préparation et leur utilisation pour un procédé de fabrication de pièces moulées - Google Patents

Matières à mouler thermodurcissables, procédé pour leur préparation et leur utilisation pour un procédé de fabrication de pièces moulées Download PDF

Info

Publication number
EP0042470B1
EP0042470B1 EP81102062A EP81102062A EP0042470B1 EP 0042470 B1 EP0042470 B1 EP 0042470B1 EP 81102062 A EP81102062 A EP 81102062A EP 81102062 A EP81102062 A EP 81102062A EP 0042470 B1 EP0042470 B1 EP 0042470B1
Authority
EP
European Patent Office
Prior art keywords
weight
groups
component
prepolymer
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102062A
Other languages
German (de)
English (en)
Other versions
EP0042470A2 (fr
EP0042470A3 (en
Inventor
Klaus Dr. Recker
Gerhard Dr. Grögler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT81102062T priority Critical patent/ATE10503T1/de
Publication of EP0042470A2 publication Critical patent/EP0042470A2/fr
Publication of EP0042470A3 publication Critical patent/EP0042470A3/de
Application granted granted Critical
Publication of EP0042470B1 publication Critical patent/EP0042470B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to storage-stable, solvent-free and heat-curable molding compositions based on polyurethane, which contain a fibrous reinforcing material, and to the production of fiber-reinforced moldings using the molding compositions.
  • Fiber-reinforced molded articles can be produced using a number of different synthetic polymers using prior art methods, glass fibers having proven to be a particularly advantageous reinforcing material. It is e.g. known to produce unsaturated polyester-containing resins (hereinafter referred to as "UP resins") and glass fibers, storage-stable semi-finished products (resin mats, "prepregs", molding compounds), which can be deformed using heated presses and cured to give moldings of very high strength and rigidity.
  • UP resins unsaturated polyester-containing resins
  • prepregs storage-stable semi-finished products
  • this process has several disadvantages: for example, the monomers containing vinyl groups (e.g.
  • styrene which are usually used as solvents for the UP resins, lead to a very high crosslinking density in the free-radically initiated polymerization, which causes the molded article to be highly brittle and not susceptible to impact.
  • solvents make processing difficult because extensive measures must be taken to extract the solvent vapors and explosion-proof processing systems are required.
  • the UP resin was thickened so that the reinforcing fibers can be transported properly during the later heating / pressing process.
  • small amounts of an alkaline earth metal oxide or hydroxide are usually added to the resin, which initiates a lengthy ripening process which usually takes 7-21 days and has to take place in so-called "ripening cabinets" at a somewhat elevated temperature.
  • This intermediate storage requires a considerable amount of time and capital and impairs the economics of the process.
  • the reinforcement of polyurethane elastomers with the aid of fiber materials is also known.
  • glass-fiber reinforced polyurethane moldings are produced by the injection molding or reaction molding process.
  • the mechanical properties, in particular the bending stiffness, of such shaped articles can, however, only be increased to a limited extent, since the length of the fiber material must not exceed approx. 1 to 6 mm for procedural reasons. It must be regarded as particularly disadvantageous that, due to the limited fiber length, the coefficient of thermal expansion of the reinforced polyurethane elastomers is still a multiple of the coefficient of expansion of steel.
  • DE-PS-968 566 describes a process for the production of high-molecular, crosslinked plastics, in which an intermediate product is first prepared from a hydroxyl-containing polyester, a glycol and an excess of diisocyanate, which is then reacted with an excess of a uretdione group. containing diisocyanate leads to storage-stable semi-finished products. These semi-finished products can finally be plastically deformed and hardened into elastic molded bodies by the action of temperature.
  • polyurethane elastomers described in this patent have high elasticity and toughness, their hardness and rigidity are not sufficient for many applications.
  • fibrous reinforcing material is not mentioned in DE-PS-968 566.
  • glass fibers with a length> 6 mm could be incorporated into the intermediate product mentioned above; however, the high viscosity of the intermediate product would require rolling mills or kneaders, as are customary in rubber processing, to mix in the fiber material and the uretdione diisocyanate necessary for crosslinking.
  • the invention has for its object to provide new solvent-free, storage-stable molding compositions which can be cured by compression at elevated temperature to give moldings of high rigidity, good toughness and high dimensional stability.
  • Another object of the invention is to provide a method by means of which fiber-reinforced molded articles have high rigidity, good impact strength and high dimensional stability in economically justifiable periods, i.e. can be produced without lengthy intermediate storage of the body.
  • triphenylmethane-4,4 ', 4 "-triisocyanate polyphenyl-polymethylene-polyisocyanates as obtained by aniline-formaldehyde condensation and subsequent phosgenation and described, for example, in GB Patents 874 430 and 848 671 are, m- and p-isocyanatophenylsulfonyl isocyanates according to US Pat. No. 3,454,606, perchlorinated aryl polyisocyanates, such as are described, for example, in DE-A-1 157601 (US Pat. No.
  • carbodiimide groups have polyisocyanates as described in US Pat DE 1 092 007 (US Pat. No. 3 152 162) and DE Offenlegungsschriften 2 504 400, 2 537 685 and 2 552 350, norbornane diisocyanates according to US Pat. No. 3,492,330.
  • Polyisocyanates containing allphanate groups as described, for example, in GB patent specification 994 890, BE patent specification 761 626 and NL patent application 7 102 524, polyisocyanates containing isocyanurate groups, such as si e are described, for example, in US Pat. No.
  • polyisocyanates containing urethane groups as described, for example, in US Pat bE Patent ind described 752,261 or in US Patent 3,394,164 and 3,644,457 are, acylated urea groups, polyisocyanates containing polyisocyanates containing according to the DE Patent 1,230,778, biuret groups, as described for example in US 'patents 3 124 605, 3 201 372 and 3 124 605 and in GB Pat. No.
  • polyisocyanates prepared by telomerization reactions such as are described, for example, in US Pat. No. 3,654,106, polyisocyanates containing ester groups, as described, for example, in GB Patents 965 474 and 1 072 956, which are mentioned in US Pat. No. 3,567,763 and in DE Pat. No. 1,231,688, reaction products of the above-mentioned isocyanates with acetals according to DE. Patent 1,072,385 and polyisocyanates containing polymeric fatty acid esters according to US Pat. No. 3,455,883.
  • distillation residues containing isocyanate groups obtained in the technical production of isocyanates optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • polyisocyanates e.g. 2,4- and 2,6-tolylene diisocyanate as well as any mixtures of these isomers (“TDI”), polyphenyl-polymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgenation (“crude MDI”) and carbodiimide groups
  • TDI polyphenyl-polymethylene polyisocyanates
  • CADI aniline-formaldehyde condensation and subsequent phosgenation
  • carbodiimide groups Polyisocyanates ("modified polyisocyanates") containing urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups, in particular those modified polyisocyanates derived from 2,4- and / or 2,6-tolylene diisocyanate or from 4,4'- and / or 2nd Derive 4'-diphenylmethane diisocyanate.
  • the at least two, generally two to eight, preferably two to three, hydroxyl-containing polyesters which are suitable according to the invention are also of the type known per se and are obtained, for example, by polymerizing epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or Epichlorohydrin with itself, for example in the presence of Lewis catalysts such as BF 3 , or by addition of these epoxides, preferably of ethylene oxide and propylene oxide, optionally in a mixture or in succession, to starting components with reactive hydrogen atoms such as water, alcohols, ammonia or amines, for example ethylene glycol , Propylene glycol- (1,3) or - (1,2), trimethylolpropane, glycerol, sorbitol, 4,4'-dihydroxydiphenylpropane, aniline, ethanolamine or ethylenediamine.
  • epoxides such as
  • Sucrose polyethers such as are described, for example, in German Offenlegungsschrift 1 176 358 and 1 064 938, and polyethers started on formite or formose (German Offenlegungsschriften 2,639,083 and 2,737,951) are also suitable according to the invention. In many cases, those polyethers are preferred which predominantly (up to 90% by weight, based on all the OH groups present in the polyether) have primary OH groups. Polybutadienes containing OH groups are also suitable according to the invention.
  • the condensation products of thiodiglycol with itself and / or with other glycols, dicarboxylic acids, formaldehyde, aminocarboxylic acids or amino alcohols should be mentioned in particular.
  • the products are e.g. to polythio mixed ethers, polythioether esters or polythioether ester amides.
  • polyacetals e.g. those from glycols, such as diethylene glycol. Triethylene glycol, 4,4'-dioxethoxydiphenyldimethylmethane, hexanediol and formaldehyde producible compounds in question. Also by polymerizing cyclic acetals such as Trioxane (German Offenlegungsschrift 1 694 128) can be used to produce polyacetals suitable according to the invention.
  • Suitable polycarbonates containing hydroxyl groups are those of the type known per se, which e.g. by reacting diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6), diethylene glycol, triethylene glycol, tetraethylene glycol or thiodiglycol with diaryl carbonates, e.g. Diphenyl carbonate, or phosgene can be produced (DE-Auslegeschrift 1 694 080, 1 915 908 and 2 221 751; DE-Offenlegungsschrift 2 605 024).
  • polyester amides and polyamides include e.g. the predominantly linear condensates obtained from polyvalent saturated or unsaturated carboxylic acids or their anhydrides and polyvalent saturated or unsaturated amino alcohols, diamines, polyamines and mixtures thereof.
  • polyhydroxyl compounds already containing urethane or urea groups and optionally modified natural polyols such as castor oil or carbohydrates, e.g. Starch are usable.
  • Addition products of alkylene oxides on phenol-formaldehyde resins or also on urea-formaldehyde resins can also be used according to the invention.
  • polyhydroxyl compounds mentioned can be modified in a wide variety of ways before they are used in the polyisocyanate polyaddition process: for example, according to German Offenlegungsschriften 2,210,839 (US Pat. No. 3,849,515) and 2,544,195, a mixture of different polyhydroxyl compounds (e.g. from a Condense polyether and a polyester polyol) by etherification in the presence of a strong acid to a higher molecular weight polyol, which is composed of various segments connected by ether bridges. It is possible from e.g. according to DE Offenlegungsschrift 2,559,372 in the polyhydroxyl compounds amide groups or according to DE Offenlegungsschrift 2,620,487 by reaction with polyfunctional cyanate esters.
  • German Offenlegungsschriften 2,210,839 US Pat. No. 3,849,515) and 2,544,195
  • a mixture of different polyhydroxyl compounds e.g. from a Condense polyether and a polyester polyol
  • polyhydroxyl compounds in which high molecular weight polyadducts or polycondensates or polymers are present in finely dispersed or dissolved form.
  • Such polyhydroxyl compounds are e.g. obtained when polyaddition reactions (e.g. reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (e.g. between formaldehyde and phenols and / or amines) are carried out in situ in the above-mentioned compounds containing hydroxyl groups.
  • Polyhydroxyl compounds modified by vinyl polymers such as those e.g. by polymerization of styrene and acrylonitrile in the presence of polyethers (US Pat. Nos. 3,383,351, 3,304,273, 3,523,093, 3,110,695; DE Patent Specification 1,152,536) or polycarbonate polyols (DE Pat. No. 1,769,795; US Pat. No. 3 637 909) are suitable for the process according to the invention.
  • polyether polyols which have been modified in accordance with German Offenlegungsschriften 2,442,101, 2,644,922 and 2,646,141 by graft polymerization with vinylphosphonic esters and optionally (meth) acrylonitrile, (meth) acrylamide or OH-functional (meth) acrylic acid esters is obtained Particularly flame retardant plastics.
  • Polyhydroxyl compounds into which carboxyl groups have been introduced by radical graft polymerization using unsaturated carboxylic acids and, if appropriate, further olefinically unsaturated monomers (DE Offenlegungsschrift 2,714,291, 2,739,620 and 2,654,746) can be used with particular advantage in combination with mineral fillers.
  • low molecular weight polyols are also suitable as low molecular weight polyols.
  • polyols which contain sulfonate and / or phosphonate groups (German Offenlegungsschrift No. 2,719,372), preferably the adduct of bisulfite with 1,4-butenediol or its alkoxylation products.
  • the prepolymer A) containing component b) in the preparation of the amino groups Compounds using at least two amino groups are, for example, aliphatic and / or aromatic diamines.
  • Aliphatic diamines suitable according to the invention are, for example, ethylenediamine, 1,4-tetramethylene diamine, 1,11-undecamethylene diamine, 1,12-dodecamethylene diamine and mixtures thereof, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane ("isophorone diamine"), 2,4- and 2,6-hexahydrotoluenediamine and their mixtures, perhydro-2,4'- and 4,4'-diaminodiphenylmethane, p-xylylenediamine, bis- (3-aminopropyl) methylamine, diamino-perhydroanthrazenes (German Offenlegungsschrift 2 638 731) and cycloaliphatic triamines according to German Offenlegungsschrift 2,614,244.
  • Hydrazine and substituted hydrazines for example Methylhydrazine, N, N'-dimethylhydrazine and their homologues and acid dihydrazides are suitable according to the invention, e.g. Carbodihydrazide, oxalic acid dihydrazide, the dihydrazides of malonic acid, succinic acid, glutaric acid, adipic acid, ⁇ -methyladipic acid, sebacic acid, hydracylic acid and terephthalic acid; Semi-carbazidoalkylene hydrazides such as e.g. ⁇ -semicarbazidopropionic acid hydrazide (German Offenlegungsschrift 1,770,591).
  • Semicarbazido-alkylene carbazine esters such as 2-semicarbazidoethyl-carbazinester (DE-Offenlegungsschrift 1 918 504) or also amino-semicarbazide compounds such as e.g. ⁇ -aminoethyl-semicarbazido-carbonate (German Offenlegungsschrift 1 902 931).
  • the amino groups can be blocked entirely or partially by aldimine or ketimine groups (US Pat. No. 3,734,894; DE Offenlegungsschrift 2,637,115).
  • aromatic diamines are bisanthranilic acid esters in accordance with DE-Offenlegungsschriften 2,040,644 and 2,160,590, 3,5- and 2,4-diaminobenzoic acid esters in accordance with DE-Offenlegungsschrift 2,025,900, which are described in DE-Offenlegungsschriften 1,803,635 (US Pat. Patents 3,681,290 and 3,736,350), 2,040,650 and 2,160,589 described diamines containing ester groups, the diamines containing ether groups according to DE Offenlegungsschriften 1,770,525 and 1,809,172 (US Pat. Nos.
  • sodium alumosilicates e.g. the commercially available zeolites are used as molecular sieves.
  • Activators suitable according to the invention are polyurethane catalysts of the type known per se, e.g. tertiary amines such as triethylamine, tributylamine, N-methyl-morpholine, N-ethyl-morpholine, N, N, N ', N'-tetramethyl-ethylenediamine, pentamethyl-diethylenetriamine and higher homologues (DE-Offenlegungsschriften 2,624,527 and 2,624 528), 1,4-diazabicyclo- (2,2,2) -octane, N-methyl-N'-dimethylamino-ethylpiperazine, bis- (dimethylaminoalkyl) -piperazine (DE-Offenlegungsschrift 2,636,787), N, N- Dimethylbenzylamine, N, N-dimethylcyclohexylamine, N, N-diethylbenzylamine, bis (N, N-diethylaminoe
  • Suitable catalysts are also Mannich bases known per se from secondary amines, such as dimethylamine, and aldehydes, preferably formaldehyde, or ketones, such as acetone, methyl ethyl ketone or cyclohexanone, and phenols, such as phenol, nonylphenol or bisphenol.
  • Tertiary amines which have active hydrogen atoms with respect to isocyanate groups are, for example,
  • Triethanolamine triisopropanolamine, N-methyl-diethanolamine, N-ethyl-diethanolamine, N, N-dimethyl-ethanolamine, their reaction products with alkylene oxides such as propylene oxide and / or ethylene oxide and secondary tertiary amines in accordance with German Offenlegungsschrift No. 2,732,292.
  • Silaamines with carbon-silicon bonds such as those e.g. in DE Patent 1,229,290 (corresponding to U.S. Patent 3,620,984) in question, e.g. 2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyltetramethyl-disiloxane.
  • Suitable catalysts are also nitrogen-containing bases such as tetraalkylammonium hydroxides, alkali metal hydroxides such as sodium hydroxide, alkali phenolates such as sodium phenolate or alkali metal alcoholates such as sodium methylate. Hexahydrotriazines can also be used as catalysts (DE-Offenlegungsschrift 1 769 043).
  • organic metal compounds in particular organic tin compounds
  • tin organic compounds can also be used as catalysts.
  • sulfur-containing compounds such as di-n-octyl-tin-mercaptide (DE-Auslegeschrift 1,769,367; US Pat. No. 3,645,927)
  • tin organic compounds preferably include tin (II) salts of carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (II) ethylhexoate and tin (11) laurate and the tin (IV) compounds, e.g. Dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate or dioctyltin diacetate.
  • tin (II) salts of carboxylic acids such as tin (II) acetate,
  • Acid-reacting substances such as hydrochloric acid or organic nutrient halides can optionally also be used, as well as pigments or dyes and flame retardants of the known type, e.g. Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and - polyphosphate, also stabilizers against the effects of aging and weathering, plasticizers and fungistatic and bacteriostatic substances as well as fillers such as barium sulfate, diatomaceous earth, soot or chalk.
  • Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and - polyphosphate also stabilizers against the effects of aging and weathering, plasticizers and fungistatic and bacteriostatic substances as well as fillers such as barium sulfate, diatomaceous earth, soot or chalk.
  • additives that may be used according to the invention, as well as details on the use and mode of action of these additives, can be found in the plastics manual, volume VII, published by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. described on pages 103 to 113.
  • Suitable component B) of the molding compositions according to the invention are all known polyisocyanates (preferably diisocyanates) with a melting point above 120 ° C., preferably above 150 ° C.
  • examples include: 1,4-dichloro-2,5-diisocyanatobenzene, 1-chloro-4-methoxy-2,5-diisocyanato-benzene, 1,3-dimethoxy-4,6-diisocyanatobenzoi, 2,5,2 ', 5'- Tetramethyl-4,4'-diisocyanatodiphenylmethane, diphenylsulfone-4,4'-diisocyanate, naphthylene-1,5-diisocyanate and the urea diisocyanate from 1 mole of water and 2 moles of 2,4-tolylene diisocyanate (see DE-OS-2 902 469 ), the last three diisocyanates being preferred.
  • the high-melting polyisocyanate is preferably comminuted to a particle size of ⁇ 40 ⁇ m before it is used.
  • Component C) includes all known inorganic and / or organic fibrous reinforcing materials, such as Glass fibers (preferably in lengths between 20 and 60 mm).
  • Graphite fibers and asbestos fibers or fiber materials derived from an organic polymer such as e.g. from a polyester, polyethylene terephthalate or a polyamide such as polyhexamethylene adipamide or polycaprolactam.
  • These fiber materials can e.g. Continuous fibers or chopped staple fibers are available as a fabric, mat, ribbon, rope.
  • Preferred according to the invention are glass fibers which are provided with sizes in a manner known per se which give the fibers an affinity for polyurethanes (see e.g. DE-AS-2 426 657 and DE-AS-2 426 654).
  • the amount of fiber material to be installed depends on the desired improvement in the mechanical properties of the molding. In general, 5 to 69% by weight of fiber material, based on the total weight of the fiber-reinforced body, is used.
  • Particulate fillers such as chalk, carbon black, clay, iron oxide, mica, silicic acid-containing materials, titanium dioxide and color pigments, lubricants and release agents such as Zn stearate, UV absorbers, etc. can also be used.
  • Component B) is preferably used suspended in component a).
  • the equivalence ratio of component a) to component b) depends on the one hand on the functionality of the NCO prepolymer a) and on the other hand on the number of isocyanate-reactive groups in component b).
  • a relatively high degree of branching requires a low equivalence ratio in order to give the prepolymers A) and thus the molding composition a viscosity value which is favorable for further processing. Conversely, low branching must be compensated for by a higher equivalence ratio.
  • equivalence ratio ⁇ 0.5: 1
  • the average functionality of components b) and a) should be> 2.1
  • an equivalence ratio> 0.65: 1 the average functionality is ⁇ 2.4.
  • the polyaddition reaction between the reactive groups of b) and the prepolymer a) present in the liquid phase is started by mixing the suspension of component B) in component a) with component b).
  • the fiber materials C) can now be used, for example, using the technology customary for UP resins be incorporated (watering systems; kneaders).
  • the fibers can also advantageously be mixed in in a twin-screw kneading machine.
  • the maturation time to reach the storable, heat-compressible intermediate product is a few minutes to hours.
  • the prepolymer A) containing amino groups is formed, surprisingly without substantial participation of the high-melting polyisocyanate B), as is the case can be detected by titration of the total NCO content with n-dibutylamine.
  • the molding compositions according to the invention have a storage stability of at least 10 days which is sufficient in practice. (If air humidity and temperatures below 20 ° C are excluded, the storage stability is several months.) During this time, the molding compositions can be deformed by the action of temperatures above 90 ° C, preferably between 110 and 150 ° C, and pressures between 10 and 300 bar can be cured within 1 to 10 minutes to give moldings which, with a comparatively high bending stiffness, have good impact strength and dimensional stability.
  • a prepolymer containing NCO groups formed by reacting a linear polypropylene glycol (molecular weight 2000) with 2,4-tolylene diisocyanate in a molar ratio of 1: 8 and removing the excess diisocyanate by thin layers, with an NCO content of 4.1%.
  • urea diisocyanate formed from 1 mol of water and 2 mol of 2,4-tolylene diisocyanate, with an NCO content of 25.0%.
  • components I and II are mixed homogeneously with one another in the specified ratio using suitable metering and mixing units.
  • the reactive mass is scraped out on a polyethylene film with a thickness of 1 to 2 mm.
  • the pot or knife time is about 2 minutes.
  • the glass rovings are then sprinkled on the doctored layer and covered with a second layer of the recative mass, which is also doctored on a polyethylene film.
  • the glass fibers are then properly impregnated using corrugated pressure rollers. After completion of the prepolymer reaction taking place at room temperature, the polyethylene film can be removed from the resin mat.
  • the prepolymer a) is mixed with the diamine B) in the stated ratio, poured onto polyethylene film and covered with a second film.
  • the viscosity is determined in the high-pressure piston viscometer HKV 2000 (from Göttfert, Germany). It is 1.9. 10 8 mPas / 25 ° C.
  • parts corresponding to the respective shape are cut out of the mat and pressed at 120 ° C. and 75 bar. Depending on the layer thickness, curing takes 3 to 10 minutes. The finished part can then be demolded while hot. It is also possible to place several layers on top of one another in the mold, since the material flows homogeneously into one another during the pressing process. Even with longer flow paths, perfect transport of the glass fibers to the outermost corners of the molded part is guaranteed. With the exclusion of air humidity below 20 ° C, molding compounds produced according to a) were still processable after several months.
  • a twin-screw kneading machine (manufactured by ZSK 53 v, Werner & Pfleiderer, Germany) is used to produce the molding compound according to the invention.
  • Component I is dosed via a gear pump, component II via a Bosch pump.
  • the glass fibers enter the housing 1 via a double metering screw and funnel, the isocyanate suspension I is fed into the housing 2 and the diamine II into the housing 6 of the kneading machine.
  • the approx. 45 ° C warm extrudate is collected on a polyethylene film and covered with a second film. After two hours of ripening, test plates are pressed analogously to Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Insulating Materials (AREA)
  • Laminated Bodies (AREA)

Claims (10)

1. Masses de moulage essentiellement exemptes de solvant du départ de
A) 92-30% en poids, de préférence 87-32% en poids, d'un composé présentant des atomes d'hydrogène réactifs envers les isocyanates,
B) 24-1 % en poids, de préférence 18 à 2% en poids, d'un polyisocyanate ayant un point de fusion supérieur à 120°C et
C) 5-69% en poids, de préférence 11 à 50% en poids, d'une matière de charge organique ou minérale,

le rapport d'équivalence entre groupes NCO (en tenant compte des groupes NCO masqués) et atomes H actifs des composants A et B se situant entre 1:1 et 1:1,75, caractérisées en ce que le composant A est un prépolymère présentant des groupes amino, qui contient:
0,3 à 4% en poids de groupes amino libres primaires et/ou secondaires,
1,5 à 10% en poids de groupes uréthane et
1,5 à 10% en poids de groupes urée, de même qu'éventuellement
1 à 5% en poids d'un tamis moléculaire du type aluminosilicate de sodium et
0,1 à 5% en poids, chaque fois rapporté au prépolymère, d'un ou de plusieurs activateurs, et en ce que

la matière de charge utilisée en tant que composant C est un matériau fibreux ayant une longueur de fibre de 0,1 à 100 mm.
2. Masse de moulage selon la revendication 1, caractérisée en ce que le composant A contient 0,5 à 2% en poids de groupes amino.
3. Masse de moulage selon les revendications 1 et 2, caractérisée en ce que le composant A contient 5 à 7,5% en poids de groupes uréthane.
4. Masse de moulage selon les revendications 1 à 3, caractérisée en ce que le composant A contient 5 à 7,5% en poids de groupes urée.
5. Masse de moulage selon les revendications 1 à 4, caractérisée en ce que le composant B présente un point de fusion supérieur à 150°C.
6. Masse de moulage selon la revendication 5, caractérisée en ce que le composant B est un urée- diisocyanate au départ de 1 mole d'eau et de 2 moles de 2,4-toluylène-diisocyanate.
7. Masse de moulage selon les revendications 1 à 6, caractérisée en ce que le composant C est un matériau en fibre de verre ayant une longueur de 20 à 60 mm.
8. Procédé de fabrication de masses de moulage suivant les revendications 1 à 7, caractérisé en ce qu'à une température de 10 à 70°C, de préférence de 20 0 50°C,
a) on fait réagir 95 à 70% en poids, de préférence 90-75% en poids, par rapport à la somme a)+b), d'un prépolymère présentant des groupes NCO, avec
b) 5 à 30% en poids, de préférence 10 à 25% en poids, par rapport à a)+b), d'un composé ayant 2 à 4 groupes amino ou d'une quantité d'eau équivalente à celui-ci, éventuellement en présence de
c) 1 à 5% en poids, par rapport à a)+b), d'un tamis moléculaire du type aluminosilicate de sodium et/ou de
d) 0,1 à 5% en poids, par rapport à a)+b), d'un ou de plusieurs activateurs,

pour obtenir un prépolymère A présentant 0,3 à 4% en poids de groupes amino primaire et/ou secondaires, 1,5 à 10% en poids de groupes uréthane et 1,5 à 10% en poids de groupes urée, avec comme mesure que les composants a) et b) à la température de réaction choisie soient liquides et que le rapport d'équivalence entre les groupes NCO du composant a) et les groupes amino du composant b) se situe entre 0,40:1 et 0,85:1, en ajoutant, avant ou pendant la réaction de polyaddition aux composants a) et b) 1 à 24% en poids, par rapport à A+B+C, d'un polyisocyanate B solide, de préférence broyé à une dimension de particule inférieure à 40 jum et ayant un point de fusion supérieur à 120°C, et 5 à 69% en poids, par rapport à A+B+C, d'un matériau fibreux C ayant une longueur de fibre de 0,1 à 100 mm.
9. Procédé selon la revendication 8, caractérisé en ce qu'on utilise le composant B en suspension dans le composant a et en ce qu'on incorpore le matériau fibreux C au cours de la réaction de polyaddition entre les composants a et b.
10. Utilisation de masses de moulage pour la fabrication de corps moulés, renforcés par des fibres, à base de polyuréthanes, caractérisée en ce qu'on durcit complètement tout en conférant une forme des masses de moulage selon les revendications 1 à 9 à une température supérieure à 90°C, de préférence entre 110 et 150°C, sous une pression entre 10 et 300 bars.
EP81102062A 1980-04-03 1981-03-19 Matières à mouler thermodurcissables, procédé pour leur préparation et leur utilisation pour un procédé de fabrication de pièces moulées Expired EP0042470B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81102062T ATE10503T1 (de) 1980-04-03 1981-03-19 Hitzehaertbare formmassen, verfahren zu deren herstellung und deren verwendung in einem verfahren zur herstellung von formkoerpern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803013263 DE3013263A1 (de) 1980-04-03 1980-04-03 Hitzehaertbare formmassen, verfahren zu deren herstellung und deren verwendung in einem verfahren zur herstellung von formkoerpern
DE3013263 1980-04-03

Publications (3)

Publication Number Publication Date
EP0042470A2 EP0042470A2 (fr) 1981-12-30
EP0042470A3 EP0042470A3 (en) 1982-09-08
EP0042470B1 true EP0042470B1 (fr) 1984-11-28

Family

ID=6099351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102062A Expired EP0042470B1 (fr) 1980-04-03 1981-03-19 Matières à mouler thermodurcissables, procédé pour leur préparation et leur utilisation pour un procédé de fabrication de pièces moulées

Country Status (8)

Country Link
US (1) US4336180A (fr)
EP (1) EP0042470B1 (fr)
JP (1) JPS56152825A (fr)
AT (1) ATE10503T1 (fr)
AU (1) AU538203B2 (fr)
CA (1) CA1161982A (fr)
DE (2) DE3013263A1 (fr)
ES (1) ES501054A0 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941051A1 (de) * 1979-10-10 1981-04-23 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von faserverstaerkten formkoerpern
US5011647A (en) * 1983-02-16 1991-04-30 The Dow Chemical Company Internal mold release compositions
WO1984003288A1 (fr) * 1983-02-16 1984-08-30 Dow Chemical Co Composition active contenant de l'hydrogene conferant de bonnes proprietes de demoulage a un article moule, composition interne de demoulage pour preparer la composition active contenant de l'hydrogene, et procede de preparation de produits polymeres moules, a partir de la composition active contenant de l'hydrogene
US5008033A (en) * 1983-02-16 1991-04-16 The Dow Chemical Company Internal mold release compositions
US4876019A (en) * 1983-02-16 1989-10-24 The Dow Chemical Company Internal mold release compositions
DE3507374A1 (de) * 1985-03-02 1986-09-04 Bayer Ag, 5090 Leverkusen Verfahren von nichtgeschaeumten formkoerpern
US4935460A (en) * 1987-03-11 1990-06-19 Ici Americas Inc. Reaction injection molding compositions
GB8821183D0 (en) * 1988-09-09 1988-10-12 Ici America Inc Composition of matter
DE19711528A1 (de) * 1996-03-26 1997-11-06 Relius Coatings Gmbh & Co Lösemittelfreier, zweikomponentiger Abziehlack für Metalloberflächen
US5807513A (en) * 1997-07-08 1998-09-15 Ut Automotive Dearborn, Inc. Recycling trim components
US6692802B1 (en) * 1997-08-27 2004-02-17 Reichhold, Inc. Resins for lining surfaces
AR040209A1 (es) * 2002-06-14 2005-03-16 Agrolinz Melamin Gmbh Material de moldeo de amino resina para productos con flexibilidad mejorada y productos de amino resina con flexibilidad mejorada
US7185468B2 (en) 2002-10-31 2007-03-06 Jeld-Wen, Inc. Multi-layered fire door and method for making the same
US20070160793A1 (en) * 2005-12-21 2007-07-12 Bayer Materialscience Llc And Daimlerchrysler Corporation Load-bearing composite panels
JP2018531169A (ja) 2015-09-17 2018-10-25 ロベルト ベロッツィ ヘレス 耐力複合パネル、材料、製品、ならびに製造方法および使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1928129B2 (de) * 1969-06-03 1974-03-21 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von nichtzelligen Polyurethankunststoffen
BE793041A (fr) * 1971-12-23 1973-06-20 Bayer Ag Resines de polyurethanes dures renforcees et aptes au formage reversible a la chaleur
JPS5216595A (en) * 1975-07-31 1977-02-07 Kao Corp Process for preparing anionic polyurethane emulsions
DE2842805A1 (de) * 1978-09-30 1980-04-10 Bayer Ag Beschichtungsmassen
DE2921162A1 (de) * 1979-05-25 1980-12-04 Bayer Ag Hitzehaertbare formmassen und verfahren zur herstellung von formkoerpern
DE2941051A1 (de) * 1979-10-10 1981-04-23 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von faserverstaerkten formkoerpern

Also Published As

Publication number Publication date
DE3167381D1 (en) 1985-01-10
CA1161982A (fr) 1984-02-07
US4336180A (en) 1982-06-22
DE3013263A1 (de) 1981-10-15
AU538203B2 (en) 1984-08-02
JPH023411B2 (fr) 1990-01-23
ES8202037A1 (es) 1982-01-01
ATE10503T1 (de) 1984-12-15
EP0042470A2 (fr) 1981-12-30
EP0042470A3 (en) 1982-09-08
ES501054A0 (es) 1982-01-01
JPS56152825A (en) 1981-11-26
AU6883081A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
EP0019803B1 (fr) Matières à mouler thermodurcissables et procédé de préparation de pièces moulées
EP0292772B1 (fr) Polyéther-polycarbonate diols, leur préparation et leur utilisation comme produits de départ pour polyuréthanes
EP0042470B1 (fr) Matières à mouler thermodurcissables, procédé pour leur préparation et leur utilisation pour un procédé de fabrication de pièces moulées
EP0027202B1 (fr) Procédé pour la préparation de corps moulés renforcés par des fibres
EP0022497B1 (fr) Procédé de préparation de polyuréthane-urées élastiques, éventuellement cellulaires
EP0012352B1 (fr) Procédé de préparation de matières plastiques de polyuréthannes dans des moules closes
EP0019232B1 (fr) Procédé de préparation d'élastomères de polyuréthane-urée
EP0009613A1 (fr) Procédé de préparation d'élastomères vulcanisés contenant des groupes uréthane et leur utilisation
DE2638760C2 (de) Gegebenenfalls zellförmige Polyurethankunststoffe und Verfahren zu ihrer Herstellung
EP0199967B1 (fr) Procédé de recouvrement des bords des panneaux de bois
EP0137182B1 (fr) Procédé de fabrication de polyuréthanes éventuellement cellulaires
DE2635400A1 (de) Verfahren zur herstellung von polyurethankunststoffen
DE2455679A1 (de) Verfahren zur herstellung elastischer schichtstoffe
DE3015440A1 (de) Verfahren zur herstellung von polyurethan-kunststoffen unter verwendung von cyclischen, n-hydroxyalkyl-substituierten, amidingruppen aufweisenden verbindungen als katalysatoren
EP0249860B1 (fr) Mousses de polyuréthane (polyurée) et leur procédé de préparation
EP0508259B1 (fr) Adhésif réactif à une composante à base de polyuréthane
DE3940270A1 (de) Verfahren zur herstellung von waermestandfesten polyurethanharnstoff-elastomeren
EP0017905B1 (fr) Polyuréthane-urées à groupements urée aromatiques contenant du soufre et procédé pour leur préparation
DE2734574A1 (de) Thiogruppenhaltige polyurethankunststoffe
DE3430285A1 (de) Verwendung von 1-phosphonoethan- und/oder -propan-2-carbonsaeure-tri-c(pfeil abwaerts)1(pfeil abwaerts)-c(pfeil abwaerts)4(pfeil abwaerts)-alkylestern bei der herstellung von kunststoffen auf isocyanatbasis
DE2719372A1 (de) Verfahren zur herstellung von fuellstoffverstaerkten polyurethanelastomeren
DE2623961A1 (de) Verfahren zur herstellung von polyurethanen
EP0171019B1 (fr) Procédé pour la préparation de polyuréthanes le cas échéant cellulaires
DE2717653A1 (de) Verfahren zur herstellung von kalthaertenden, flexiblen, urethangruppen aufweisenden schaumstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810319

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 10503

Country of ref document: AT

Date of ref document: 19841215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3167381

Country of ref document: DE

Date of ref document: 19850110

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930215

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930308

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930317

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930322

Year of fee payment: 13

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930331

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930401

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940319

Ref country code: AT

Effective date: 19940319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940331

Ref country code: CH

Effective date: 19940331

Ref country code: BE

Effective date: 19940331

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19940331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940319

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81102062.7

Effective date: 19941010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950214

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203