EP0039867B1 - Câble longitudinal étanche à l'eau, notamment câble de communication - Google Patents

Câble longitudinal étanche à l'eau, notamment câble de communication Download PDF

Info

Publication number
EP0039867B1
EP0039867B1 EP81103352A EP81103352A EP0039867B1 EP 0039867 B1 EP0039867 B1 EP 0039867B1 EP 81103352 A EP81103352 A EP 81103352A EP 81103352 A EP81103352 A EP 81103352A EP 0039867 B1 EP0039867 B1 EP 0039867B1
Authority
EP
European Patent Office
Prior art keywords
gas bubbles
cable
filling material
cable according
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81103352A
Other languages
German (de)
English (en)
Other versions
EP0039867A2 (fr
EP0039867A3 (en
Inventor
Günter Dr. Dipl.-Ing. Zeidler
Gerhard Dipl.-Chem. Lange
Helmut Saller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19803018141 external-priority patent/DE3018141C2/de
Priority claimed from DE19803048074 external-priority patent/DE3048074A1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT81103352T priority Critical patent/ATE9121T1/de
Publication of EP0039867A2 publication Critical patent/EP0039867A2/fr
Publication of EP0039867A3 publication Critical patent/EP0039867A3/de
Application granted granted Critical
Publication of EP0039867B1 publication Critical patent/EP0039867B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2935Discontinuous or tubular or cellular core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Definitions

  • the invention relates to a longitudinally watertight cable, in particular a communication cable, in the interior of which a filling compound containing water-repellent substance is provided, into which gas bubbles are embedded, the filling compound containing an admixture of thermoplastic rubber or rubber-like thermoplastics which melts at its processing temperature as part of the cable filling.
  • the filling compound containing an admixture of thermoplastic rubber or rubber-like thermoplastics which melts at its processing temperature as part of the cable filling.
  • a longitudinally sealed cable of this type is known from DE-A 2243615.
  • gas bubbles When gas bubbles are stored, their position in the filling compound is not readily stable, and there is therefore a risk of gas bubbles forming at certain points due to migration of the gas bubbles, which adversely affect the electrical properties of the cable.
  • the known arrangement provides for the position of the air pockets to be stabilized by adding a stiffening agent to such an extent that at most longitudinal cavities with a length of a few centimeters can form.
  • the admixture serving as a stiffening agent there is the requirement that it should be as easy to process as possible and that the spatial lattice structure formed by linking, hooking or connection via thermoplastic blocks is designed in such a way that the gas bubbles are held as firmly as possible is achieved. This securing of the gas bubbles against movement is necessary in order to prevent the gas bubbles from moving over a longer period of time and possibly under the influence of the prevailing temperature and pressure conditions and combining to form larger gas bubbles.
  • the invention is based on the object of specifying an admixture which is particularly advantageous both in terms of its processability and in terms of the spatial lattice structure formed by it.
  • this object is achieved in the case of a longitudinally watertight cable of the type mentioned at the outset, in that the admixture consists of a polyolefin powder, in particular a polyethylene powder, with a grain size of between 20 and 600 11 m, that the proportion of the polyolefin powder is between 5 and 30 percent by weight of the filler mass is chosen that the volume fraction of the gas bubbles in the filling mass is chosen between 10 and 80% and that the diameter of the gas bubbles is between 1 and 1500 ⁇ m.
  • the use of a powdery admixture with the specified grain sizes and percentages by weight has the advantage that it dissolves more quickly in the filling compound, while at the same time ensuring that the admixture is distributed evenly throughout the entire filling compound.
  • the formation of the spatial lattice structure from the admixture as a result of the smaller particles of the admixture and their better mixing with the filling compound is also favorably influenced.
  • the longitudinally watertight cable thus constructed shows particularly favorable properties with regard to the strength and temporal stability of its lattice structure and the manufacturing possibilities.
  • the specified diameter range and the volume fraction make a decisive contribution to securing the position of the gas bubbles.
  • Polyolefins with a chain length of 25 to 45 carbon atoms can preferably be used as thermoplastic blocks, in particular low molecular weight polyethylene (PE) or paraffin wax.
  • PE low molecular weight polyethylene
  • paraffin wax paraffin wax
  • polyethylene powder When using a polyethylene powder, it is expedient to select a polyethylene whose starting material has between about 5000 and 200,000 carbon atoms per molecule.
  • the invention further relates to a method for producing a longitudinally watertight cable, which is characterized in that the polyolefin powder is added to the filling compound heated to 140 to 150 ° C. with stirring and this is homogeneously distributed, that gas at a pressure of about 1.5 to 15 barü and at a temperature of about 140 ° C is introduced into the filler containing the molten powder, and that after relaxing and cooling to 80 to 120 ° C gas bubbles are formed in a fine, uniform distribution.
  • the lowest limit for adding a powder is about 5% of polyolefin or polyethylene, while the upper limit is about 30% (percent by weight).
  • a suitable range in percentages by weight for the powdery admixture is between 6 and 20%, with optimal values being achieved by admixture between 8 and 10 percent by weight.
  • compositions which consist entirely or in mixtures of petrolates, hydrocarbon waxes, aliphatic or cycloaliphatic paraffins or polymeric olefins can advantageously be used.
  • the filling compound is first heated to 140-150 ° C.
  • the required amount of polyolefin powder, in particular polyethylene powder, is added with constant stirring.
  • the stirring process is complete when the powder is melted and homogeneously distributed in the filling compound.
  • the mass is placed in a conventional foaming device and a gas (C0 2 , N 2 ) is dissolved under pressure (1.5-15 barg) at about 140 ° C.
  • the gas bubbles correspondingly finely divided then have a diameter in the range of 1-1500 ⁇ m, preferably between 20 and 200 11 m.
  • the gas bubbles are advantageously formed in a temperature range of 80-120 ° C.
  • the described foaming of the mass can take place either by means of a filling pipe in the cable core or in the stranding point.
  • the gas bubbles can be mixed in (as in cell PE production) in a known manner either by gas injection, ie they are added to the mass flow under high pressure as nitrogen or free gas before the actual filling pipe.
  • gas injection ie they are added to the mass flow under high pressure as nitrogen or free gas before the actual filling pipe.
  • the cable filling compound When the cable is cooled, e.g. After the downstream extruder, as already mentioned, a rubber network forms in the cable filling compound, the nodes of which are mainly formed by the then solidified thermoplastic blocks.
  • the gas bubbles in the oil mass are held in place by the network threads.
  • the proportion of the polyolefin powder must be sufficiently high, namely between 3 to 30 percent by weight.
  • the filling compound must be sufficiently viscous, and clearly above 5 Pa s.
  • thermoplastic blocks TB are provided, which e.g. be formed by PE waxes. These thermoplastic blocks link the existing rubber-elastic molecular threads of the rubber network, which in turn has the effect that the gas bubbles present in the filling compound are held in place.
  • thermoplastic rubber composition forming the network is produced by block polymerization of thread-like, rubber-elastic molecules with the thermoplastics melting at about 60 to 80 ° C. Below their melting temperature, these thermoplastic blocks attach to one another and thus contribute to the formation of networks.
  • the velocity therefore increases with the square of the bubble size and decreases with the viscosity ⁇ .
  • the bubbles must be as small as possible, ideally less than a tenth of a mm, and the viscosity ⁇ should be as high as possible. It is not the dynamic viscosity that is important, but the resting viscosity that arises at very low shear rates and speeds. This rest value is the greater than the dynamic value (which determines the processability) if the «liquid» contains more thread-like, elongated components. The resting value can become very large to infinite if the threads can form a real gel by cross-linking. The mass then behaves like a solid body of extremely low strength for small mechanical loads.
  • the rubber-like mass described behaves differently than the flowable mass of non-crosslinked polymers.
  • both the network that provides stability at rest and the added liquid must be taken into account.
  • the network In the idle state, however, the network can only absorb tensile and shear stresses up to a very low tear limit, while the liquid phase remains mobile within the mesh and approximates the laws of hydrostatics.
  • the bubbles embedded in the liquid in turn experience a buoyancy which is transmitted to the network via the surface tension in the vicinity of the bubble and puts it under tensile, shear and possibly also compressive stresses.
  • the fracture mechanics of the network must be used here.
  • the tensile stress a z below the bladder is approximate, for example
  • the buoyancy K can thus be adjusted in a particularly simple manner by selecting the size of the bubbles so that the network structure cannot be torn apart by this driving force K.
  • the still permissible bubble size for a given substance can be determined simply by creating samples with gas bubbles of different sizes and by observing which diameter value no longer occurs.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Claims (11)

1. Câble à étanchéité longitudinale à l'eau, notamment câble de communication, à l'intérieur duquel est prévue une masse de remplissage contenant une substance hydrophobe dans laquelle sont incluses de petites bulles de gaz, la masse de remplissage (FM) contenant un additif fondant à la température de traitement intervenant lors du remplissage du câble et constitué par du caoutchouc thermoplastique ou par une matière thermoplastique semblable à du caoutchouc et dont l'état est fixé, dans la plage des températures de fonctionnement du câble, par jonction, ancrage ou liaison par l'intermédiaire de blocs thermoplastiques possédant une plage de températures de fusion correspondante plus basse, c'est-à-dire juste inférieure à la température de remplissage, et dans lequel les bulles de gaz (GB) sont maintenues fermement par le réseau de caoutchouc se formant dans la masse de remplissage de telle sorte que ces zones de jonction peuvent prendre en charge sans se rompre, les forces ascentionnel- les des petites bulles de gaz, caractérisé par le fait que l'additif est constitué par une poudre de polyoléfine, notamment d'une poudre de polyéthylène, possédant une granulation comprise entre 20 et 600 µm, que le pourcentage de la poudre de polyoléfine est choisi entre 5 et 30 pour-cent en poids de la masse de remplissage, que le pourcentage en volume des petites bulles de gaz dans la masse de remplissage est choisie entre 10 et 80% et que le diamètre des petites bulles de gaz est compris entre 1 et 1500 gm.
2. Câble suivant la revendication 1, caractérisé par le fait qu'on utilise comme additif, des polyoléfines possédant une longueur de chaîne de 20 à 45 atomes de C, notamment du polyéthylène à bas poids moléculaire, ou de la cire de paraffine.
3. Câble suivant la revendication 1 ou 2, caractérisé par le fait que le pourcentage en volume des petites bulles de gaz est compris entre 50 et 70% de la masse de remplissage.
4. Câble suivant l'une des revendications précédentes, caractérisé par le fait que dans le cas de l'utilisation d'une poudre de polyéthylène, on choisit un matériau qui possède entre environ 5000 et 200 000 atomes de C par molécule.
5. Câble suivant l'une des revendications précédentes, caractérisé par le fait que la poudre utilisée comme additif possède une densité dans la plage comprise entre 0,915 à 0,96 g/ml.
6. Câble suivant l'une des revendications précédentes, caractérisé par le fait que le point de fusion des cristallites de la poudre ajoutée de polyoléfine est supérieur à la température de traitement des autres composantes de la masse de remplissage.
7. Câble suivant l'une des revendications précédentes, caractérisé par le fait que le pourcentage de l'additif en forme de poudre est compris entre 6 et 20 pour-cent en poids, et de préférence entre 8 et 10 pour-cent en poids.
8. Câble suivant l'une des revendications précédentes, caractérisé par le fait que le diamètre des petites bulles de gaz est compris entre 20 et 200 Ilm.
9. Câble suivant l'une des reven dicationsprécé- dentes, caractérisé par le fait que la masse de remplissage du gaz est constituée par un mélange de cires et d'huiles.
10. Câble suivant l'une des revendications précédentes, caractérisé par le fait que la masse de remplissage possède une viscosité nettement supérieure à 5 Pa s.
11. Procédé pour fabriquer un câble à étanchéité longitudinale à l'eau suivant l'une des revendications précédentes, caractérisé par le fait qu'on ajoute la poudre de polyoléfine à la masse de remplissage chauffée entre 140 et 150 °C en réalisant une agitation et qu'on répartit cette poudre d'une manière homogène, qu'on introduit le gaz sous une pression manométrique d'environ 1,5 à 15 bars et à une température d'environ 140 °C dans la masse de remplissage contenant la poudre fondue, et qu'après détente et refroidissement à une température comprise entre 80 et 120 °C, il se forme de petites bulles de gaz à répartition fine et uniforme.
EP81103352A 1980-05-12 1981-05-04 Câble longitudinal étanche à l'eau, notamment câble de communication Expired EP0039867B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81103352T ATE9121T1 (de) 1980-05-12 1981-05-04 Laengswasserdichtes kabel, insbesondere nachrichtenkabel.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3018141 1980-05-12
DE19803018141 DE3018141C2 (de) 1980-05-12 1980-05-12 Längswasserdichtes Kabel, insbesondere Nachrichtenkabel
DE3048074 1980-12-19
DE19803048074 DE3048074A1 (de) 1980-12-19 1980-12-19 Laengswasserdichtes kabel und verfahren zu seiner herstellung

Publications (3)

Publication Number Publication Date
EP0039867A2 EP0039867A2 (fr) 1981-11-18
EP0039867A3 EP0039867A3 (en) 1981-12-23
EP0039867B1 true EP0039867B1 (fr) 1984-08-22

Family

ID=25785416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103352A Expired EP0039867B1 (fr) 1980-05-12 1981-05-04 Câble longitudinal étanche à l'eau, notamment câble de communication

Country Status (2)

Country Link
US (1) US4387958A (fr)
EP (1) EP0039867B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081248A1 (fr) * 1981-12-09 1983-06-15 Witco Chemical Corporation Mousse de remplissage de pétrolatum pour câble
EP0160778B2 (fr) * 1984-03-03 1996-07-24 Mitsubishi Cable Industries, Ltd. Câble optique imperméable
DE4136617C2 (de) * 1991-11-07 1997-08-14 Henkel Kgaa Füllmasse und deren Verwendung
DE19500467A1 (de) * 1995-01-05 1996-07-11 Siemens Ag Optisches Kabel und Verfahren zu dessen Wiederverwertung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE18863C (de) * GEBRÜDER FORSTREUTER in Oschersleben Neuerungen an Verdampfapparaten
US1524124A (en) * 1920-07-03 1925-01-27 Standard Underground Cable Co Canada Construction of cables
US3607487A (en) * 1968-12-02 1971-09-21 Bell Telephone Labor Inc Waterproof electrical cable
GB1308778A (en) * 1969-11-28 1973-03-07 British Insulated Callenders Telecommunication cables
US3830953A (en) * 1970-02-16 1974-08-20 Inmont Corp Cable sealant
US3683104A (en) * 1971-01-07 1972-08-08 Dow Chemical Co Heat resistant cable
US3733427A (en) * 1972-05-11 1973-05-15 Union Carbide Canada Ltd Waterproof electrical cable
DE2243615A1 (de) * 1972-09-01 1974-03-07 Siemens Ag Laengsdichtes nachrichtenkabel
CA991716A (en) * 1973-04-24 1976-06-22 George S. Eager (Jr.) Filled telephone cables with irradiated polyethylene insulation
JPS5014347A (fr) * 1973-06-06 1975-02-14
US3875323A (en) * 1973-10-01 1975-04-01 Gen Cable Corp Waterproof telephone cables with pliable non-flowing filling compound
DE2361207A1 (de) * 1973-12-06 1975-06-12 Aeg Telefunken Kabelwerke Kunststoffisoliertes fernmeldekabel
US3893961A (en) * 1974-01-07 1975-07-08 Basil Vivian Edwin Walton Telephone cable splice closure filling composition
DE2716524A1 (de) * 1977-04-12 1978-10-19 Siemens Ag Laengsdichtes kabel
JPS5528164A (en) * 1978-08-18 1980-02-28 Tokico Ltd Pressure control unit

Also Published As

Publication number Publication date
US4387958A (en) 1983-06-14
EP0039867A2 (fr) 1981-11-18
EP0039867A3 (en) 1981-12-23

Similar Documents

Publication Publication Date Title
EP0405439B1 (fr) Mousse rigide et son procédé de préparation
EP0189843B1 (fr) Granulé de matière plastique expansible et matériau d'emballage fabriqué avec ce granulé
DE1947187C3 (de) Verfahren zum Herstellen eines Schaumbetons
DE2533218C3 (de) Verfahren zum Dosieren von gasförmigem Treibmittel
EP0417405B1 (fr) Procédé de préparation d'une mousse de polymère thermoplastique
EP0039867B1 (fr) Câble longitudinal étanche à l'eau, notamment câble de communication
DE3819630A1 (de) Verfahren zum einbringen von treibmitteln in mindestens eine der fliessfaehigen reaktionskomponenten fuer die herstellung von polyurethanschaumstoffen
EP0375685B1 (fr) Charge pour rendre etanches des cables electriques et/ou optiques dans le sens de la longueur
DE3886392T2 (de) Methode zur Verbesserung der Festigkeit und der Wasserundurchlässigkeit von Böden und Baukörpern.
EP0037072A1 (fr) Câble longitudinalement étanche à l'eau, notamment câble de communication
DE69503945T2 (de) Injektionsschlamm für die Beschichtung einer Bewehrung, insbesondere einer Vorgespannten Bewehrung
DE3921523C1 (fr)
EP0144961A2 (fr) Granules de résine moussable et son application comme matériau d'emballage
DE9017904U1 (de) Schüttfähiger Packmaterialkörper
DE3048912A1 (de) Laengsdichtes elektrisches kabel und verfahren zu seiner herstellung
DE3018141C2 (de) Längswasserdichtes Kabel, insbesondere Nachrichtenkabel
DE2241502C3 (de) Verfahren und Vorrichtung zum Agglomerieren verglasbarer Chargen zu bandartigen Gebilden
EP0151900B1 (fr) Procédé de fabrication d'un câble longitudinalement étanche
DE3048074C2 (fr)
DE60004541T2 (de) Vorrichtung und verfahren zur ausgabe von polyurethanschaummaterial
DE2142879C3 (de) Putz- und Mauermörtel, sowie Verfahren zu seiner Herstellung
DE2833568A1 (de) Faeden
EP0888400B1 (fr) Composition de polyurethanne contenant des microspheres creuses enrobees
DE1471517C3 (de) Verfahren zur Herstellung eines frostbeständigen Injektionsmörtels
DE4039505A1 (de) Verfahren zur herstellung schuettfaehiger packmaterialkoerper aus staerke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19811030

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 9121

Country of ref document: AT

Date of ref document: 19840915

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910424

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910527

Year of fee payment: 11

Ref country code: BE

Payment date: 19910527

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910531

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910823

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920504

Ref country code: AT

Effective date: 19920504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920531

Ref country code: CH

Effective date: 19920531

Ref country code: BE

Effective date: 19920531

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19920531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920504

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81103352.1

Effective date: 19921204