EP0038314B1 - Wärmetauschereinheit zum Vorwärmen von Zementrohmehl - Google Patents

Wärmetauschereinheit zum Vorwärmen von Zementrohmehl Download PDF

Info

Publication number
EP0038314B1
EP0038314B1 EP81890016A EP81890016A EP0038314B1 EP 0038314 B1 EP0038314 B1 EP 0038314B1 EP 81890016 A EP81890016 A EP 81890016A EP 81890016 A EP81890016 A EP 81890016A EP 0038314 B1 EP0038314 B1 EP 0038314B1
Authority
EP
European Patent Office
Prior art keywords
hot gas
raw meal
mixing chamber
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81890016A
Other languages
English (en)
French (fr)
Other versions
EP0038314A1 (de
Inventor
Fritz Dipl.Ing.Dr. Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Original Assignee
Voestalpine AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3524179&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0038314(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voestalpine AG filed Critical Voestalpine AG
Publication of EP0038314A1 publication Critical patent/EP0038314A1/de
Application granted granted Critical
Publication of EP0038314B1 publication Critical patent/EP0038314B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/30Recirculation constructions in or with cyclones which accomplish a partial recirculation of the medium, e.g. by means of conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/12Construction of the overflow ducting, e.g. diffusing or spiral exits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers
    • F26B17/101Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers the drying enclosure having the shape of one or a plurality of shafts or ducts, e.g. with substantially straight and vertical axis
    • F26B17/102Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers the drying enclosure having the shape of one or a plurality of shafts or ducts, e.g. with substantially straight and vertical axis with material recirculation, classifying or disintegrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material

Definitions

  • the invention relates to a heat exchanger unit for preheating cement raw meal with a riser pipe receiving a hot gas flow, which serves as a mixing chamber for the raw meal supplied via a feed line with the hot gas flow and opens into a cyclone dust collector, which has a discharge line, preferably an immersion pipe, for discharging the above Hot gas flow largely freed from raw meal and has an outlet line for the separated raw meal below.
  • Rotary kilns are in themselves very well suited for the firing of cement clinker, but the processes of preheating and calcining the raw meal in such a rotary kiln are inevitably too slow and too complex, so that efforts are made to preheat and calcine the raw meal as far as possible outside the rotary kiln.
  • so-called calcinators are arranged upstream of the rotary kilns, in which the preheated raw meal is mixed with fuel in order to be able to supply the raw meal with the amount of heat required for expelling the carbon dioxide from the limestone component when the fuel is burned.
  • the hot exhaust gases from these calciners are used to preheat the raw meal, which allows the waste heat to be used accordingly.
  • the preheated cement raw meal is fed to the hot gas flow and mixed with it in order to obtain good heat transfer from the hot gas to the raw meal.
  • the hot gas loaded with the raw meal is then fed via a riser pipe to a cyclone dust collector as raw gas, from which the clean gas is drawn off at the top via an immersion pipe, while the separated raw meal emerges at the bottom via a corresponding line. It is of course not possible to separate the raw meal from the hot gas in a cyclone dust collector.
  • the hot gas stream cleaned except for a residual amount of raw meal is understood. Since the preheating in such a heat exchanger unit is not sufficient, several such heat exchanger units are usually connected in series, the hot gas cleaned from the raw meal from the cyclone dusting device downstream with respect to the raw meal flow being used to heat up the raw meal stream originating from an upstream cyclone dust collector.
  • a riser pipe is connected to the dip tube of the cyclone dust collector, which leads as a raw gas supply line in the respective upstream cyclone dust collector.
  • the outlet line of this cyclone dust collector for the separated raw meal usually ends as a down pipe in the raw gas supply line designed as a riser to the upstream cyclone dust collector, so that the raw meal is gradually heated.
  • the heat transfer from the hot gas to the raw meal occurs mainly in the area of the riser pipes, an intimate mixing between the hot gas flow and the raw meal being sought.
  • the risers therefore form mixing rooms in which this mixture takes place.
  • the efficiency of the known heat exchanger units remains comparatively low, so that several such heat exchanger units have to be connected in series in order to achieve the desired raw meal temperatures.
  • the arrangement of the jet pump ensures that the powdered iron ore does not come to a standstill in any part of the system due to the suction effect generated by the jet pump and is always kept in motion by the gas flow carrying it, so that the material is sintered and baked even at high temperatures Temperature is avoided. Due to the jet pump, a turbulent hot gas flow is again aimed at, which supports the tearing apart of brought together material particles and improves the mixture between the hot gas flow and the good particles. Nevertheless, the heat transfer falls short of expectations.
  • the invention is therefore based on the object of avoiding these deficiencies and of improving a heat exchanger unit of the type described at the outset in such a way that the heat transfer from the hot gas to the raw meal is improved, and a more economical efficiency can thus be ensured.
  • the invention solves the stated problem in that the riser pipe forms a diffuser which adjoins the mixing chamber at the top and converts the hot gas flow into a laminar flow.
  • the invention is based on the knowledge that the turbulent gas flow required for a good mixing of hot gas and raw meal has to be calmed down and converted into a laminar flow in order to create optimal reaction conditions.
  • the hot gas can be converted into a strictly ordered direct current in the diffuser, in which the heat exchange can take place quickly and undisturbed.
  • the laminar flow which is ensured by the diffuser and prevents wall detachment, can therefore actually be seen as a decisive improvement over the conventional heat exchanger units.
  • the shape and dimensioning of the diffuser can be determined very well in advance depending on the expected gas quantities and the temperature profile with the help of the Bernoullian flow equation. Based on the given conditions, it can be assumed that the opening angle of the diffuser can be between 12 and 20 ° without fear of a transition from the laminar flow to a turbulent flow.
  • the riser tube below the mixing chamber can form a nozzle which merges into the mixing chamber and which accelerates it accordingly of the hot gas flow and thus ensures rapid and good mixing of the raw meal with the hot gas in the mixing room.
  • the measure also serves the same purpose, in that the feed pipe of the raw meal, designed as a downpipe, opens into the lower third of the mixing room height.
  • the raw meal is supplied to the hot gas in countercurrent via the feed line and entrained by the hot gas in cocurrent. If the transition area from countercurrent to cocurrent is placed in the lower third of the mixing room height, particularly violent mixing can be ensured without the subsequent calming in the diffuser being endangered.
  • FIG. 1 shows a system for producing cement schematically in the block diagram
  • Fig. 2 shows a heat exchanger unit according to the invention in a simplified longitudinal section.
  • the raw meal to be treated is fed via a line 1 that can be shut off to a multi-stage heat exchanger which consists of three heat exchanger units 2, 3 and 4.
  • the raw meal emerging from the last heat exchanger unit 4 and preheated to approximately 800 to 850 ° C. is fed via a line 5 to a calciner 6, to which fuel can be supplied in order to generate additional quantities of heat.
  • This fuel is mixed with the preheated raw meal in the calciner 6, so that the amount of heat released when the fuel is burned can be released to the raw meal. This initiates the deacidification of the limestone, which ends when a temperature level of about 900 ° C is reached becomes.
  • the raw meal entrained in the hot exhaust gas stream passes from the calciner 6 into a cyclone sprayer 7, from where it is fed to the rotary kiln 8.
  • the hot exhaust gas which has largely been cleaned of the solids, passes from the cyclone sprayer 7 into a riser pipe 9, in which it is mixed with the raw meal originating from the heat exchanger unit 3.
  • the hot gas loaded with the raw meal ends in a cyclone sprayer 10 of the heat exchanger unit 4, from which the hot gas freed from the raw meal in turn is fed to a cyclone sprayer 12 of the heat exchanger unit 3 via a riser pipe 11 in which the hot gas is loaded with the raw meal from the heat exchanger unit 2 .
  • the process is repeated until the cooled hot gas is blown off via a fan 13.
  • the largely pre-calcined raw meal from the cyclone duster 7 is further heated in the rotary kiln 8 to approx. 1400 ° C. in order to initiate the chemical conversion of the raw material components to the clinker minerals, which firing process is exothermic.
  • the fired cement clinker is then cooled in the usual way to approximately ambient temperature, but the usual cooler provided for this purpose is not shown for reasons of clarity.
  • the exhaust gas from the rotary kiln 8 is at least partially passed via a line 14 through the housing 15 of a beater mill 16, in which the fuel supplied to the calciner 6 via a fuel feed 17 is comminuted.
  • the comminuted fuel is captured by the furnace exhaust gas and conveyed from below into the calciner 6, where the fuel is mixed with the raw meal from line 5 in the manner already described.
  • the amount of oxygen required for the combustion of the fuel is covered from the residual oxygen still contained in the furnace exhaust gas and preferably from the oxygen of the cooling air heated during clinker cooling, which can be fed to the calciner 6 via the feed lines 18 and 19.
  • the individual heat exchanger units according to FIG. 2 are designed in a special way, namely that the riser pipe 9, 11 of the individual heat exchanger units forms a diffuser 21, which adjoins the mixing chamber 20 upwards, before it is tangential in the Cyclone duster 10, 12 of the respective heat exchanger unit opens.
  • the raw meal which is fed into the hot gas stream via a feed line 22 designed as a downpipe in the lower third of the mixing space 20 formed by the riser pipe 9, 11 emerges and is intimately mixed with this, is passed with the hot gas flow through the diffuser 21, where the initially turbulent hot gas flow is calmed and converted into a laminar flow, which ensures a particularly good heat exchange between the hot gas and the raw meal.
  • the hot gas loaded with the raw meal passes into the respective cyclone sprayer 10, 12 of the corresponding heat exchanger unit, where the raw meal is separated and discharged via an outlet line which, when several heat exchanger units are connected in series, as feed line 22 of the raw meal into the subsequent heat exchanger unit serves.
  • the hot gas freed from the raw meal is drawn off from the cyclone dust collector via an immersion tube 23 and is used to heat the raw meal in an upstream heat exchanger unit 3.
  • the immersion tube 23 connects to a correspondingly designed riser pipe, in which the feed line 22 for the raw meal again opens .
  • the riser pipe 11 forms a nozzle 24 below the mixing chamber 20, which in the exemplary embodiment represents the transition between the immersion pipe 23 and the mixing chamber 20.
  • the arrangement of the nozzle 24 produces a flow which supports the mixing of hot gas and raw meal without the heat exchange being hindered because after the mixing space 20 the flow in the diffuser 21 is appropriately calmed down.
  • risers 9, 11 run vertically in the drawing, such a course does not necessarily have to be predetermined.
  • the riser pipes could be arranged at an incline and saved on overall height.
  • the feed lines 22 could open tangentially in the mixing space 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

  • Die Erfindung bezieht sich auf eine Wärmetauschereinheit zum Vorwärmen von Zementrohmehl mit einem einen Heissgasstrom aufnehmenden Steigrohr, das als Mischraum für das über eine Zuleitung zugeführte Rohmehl mit dem Heissgasstrom dient und in einem Zyklonentstauber mündet, der oben eine Abführleitung, vorzugsweise ein Tauchrohr, zum Abführen des weitgehend vom Rohmehl befreiten Heissgasstromes und unten eine Austrittsleitung für das abgeschiedene Rohmehl aufweist.
  • Drehrohröfen sind an und für sich für das Brennen von Zementklinker sehr gut geeignet, doch verlaufen die Vorgänge der Vorwärmung und der Kalzinierung des Rohmehls in einem solchen Drehrohrofen zwangsläufig zu langsam und zu aufwendig, so dass man bestrebt ist, das Vorwärmen und Kalzinieren des Rohmehls möglichst ausserhalb des Drehrohrofens durchzuführen. Zu diesem Zweck werden den Drehrohröfen sogenannte Kalzinatoren vorgeordnet, in denen das vorgewärmte Rohmehl mit Brennstoff gemischt wird, um beim Verbrennen des Brennstoffes dem Rohmehl die für das Austreiben des Kohlendioxids aus der Kalksteinkomponente erforderliche Wärmemenge zuführen zu können. Die heissen Abgase dieser Kalzinatoren werden, wie auch die heissen Ofenabgase, zum Vorwärmen des Rohmehls herangezogen, was eine entsprechende Ausnützung der anfallenden Abwärme erlaubt. Dabei wird dem Heissgasstrom das vorzuwärmende Zementrohmehl zugeführt und mit diesem vermischt, um einen guten Wärmeübergang vom Heissgas auf das Rohmehl zu erhalten. Das mit dem Rohmehl beladene Heissgas wird dann über ein Steigrohr einem Zyklonentstauber als Rohgas zugeführt, aus dem oben über ein Tauchrohr das Reingas abgezogen wird, während das abgeschiedene Rohmehl unten über eine entsprechende Leitung austritt. Selbstvertändlich ist ein rest-IosesAbscheiden des Rohmehlsausdem Heissgas in einem Zyklonentstauber nicht möglich. Wenn daher im folgenden von einem vom Rohmehl gereinigten Heissgasstrom die Rede ist, so wird damit der bis auf einer Restmenge an Rohmehl gereinigte Heissgasstrom verstanden. Da die Vorwärmung in einer solchen Wärmetauschereinheit nicht ausreicht, werden üblicherweise mehrere solcher Wärmetauschereinheiten hintereinander geschaltet, wobei das vom Rohmehl gereinigte Heissgas aus dem bezüglich des Rohmehldurchlaufes nachgeordneten Zyklonentstauber zum Aufwärmen des von einem vorgeordneten Zyklonentstaubers stammenden Rohmehlstromes dient. Zu diesem Zweck ist an das Tauchrohr der Zyklonentstauber jeweils eine Steigleitung angeschlossen, die als Rohgaszuleitung im jeweils vorgeordneten Zyklonentstauber mündet. Die Austrittsleitung dieses Zyklonentstaubers für das abgeschiedene Rohmehl endet üblicherweise als Falleitung in der als Steigleitung ausgebildeten Rohgaszuleitung zu dem vorgeordneten Zyklonentstauber, so dass das Rohmehl stufenweise erwärmt wird.
  • Wie sich gezeigt hat, tritt der Wärmeübergang vom Heissgas auf das Rohmehl hauptsächlich im Bereich der Steigrohre auf, wobei eine innige Vermischung zwischen dem Heissgasstrom und dem Rohmehl angestrebt wird. Die Steigrohre bilden demnach Mischräume, in denen diese Mischung vor sich geht. Trotzdem bleibt der Wirkungsgrad der bekannten Wärmetauschereinheiten vergleichsweise gering, so dass mehrere solcher Wärmetauschereinheiten hintereinandergeschaltet werden müssen, um die angestrebten Rohmehltemperaturen zu erreichen.
  • Um zu vermeiden, dass Teilchen feinpulvrigen Eisenerzes bei hohen Behandlungstemperaturen aneinander haften bleiben und sich zusammenballen, ist es bekannt (DE-B Nr. 1272324), an der Gutaustragsöffnung eines jeden auf einen in Strömungsrichtung des gasförmigen Strömungsmittels vorhergehenden Zyklon folgenden Zyklons eine durch Gas betriebene Strahlpumpe anzuordnen, deren Fangdüse sich in Strömungsrichtung erweitert und mit ihrem einen geringeren Durchmesser aufweisenden Teil unmittelbar mit der Gutaustragsöffnung des Zyklons und mit ihrem erweiterten Teil mit dem oberen Teil des in der Förderrichtung des Gutes folgenden Zyklons verbunden ist. Durch die Anordnung der Strahlpumpe wird erreicht, dass das pulverförmige Eisenerz wegen der durch die Strahlpumpe erzeugten Saugwirkung in keinem Teil der Anlage zum Stillstand kommt und durch den es tragenden Gasstrom stets in Bewegung gehalten wird, so dass das Sintern und Ausbacken des Materials auch bei hoher Temperatur vermieden wird. Auf Grund der Strahlpumpe wird wiederum eine turbulente Heissgasströmung angestrebt, die das Auseinanderreissen zusammengeführter Materialteilchen unterstützt und die Mischung zwischen dem Heissgasstrom und den Gutteilchen verbessert. Trotzdem bleibt der Wärmeübergang hinter den Erwartungen zurück.
  • Der Erfindung liegt somit die Aufgabe zugrunde, diese Mängel zu vermeiden und eine Wärmetauschereinheit der eingangs geschilderten Art so zu verbessern, dass der Wärmeübergang vom Heissgas auf das Rohmehl verbessert und damit ein güngstigerer Wirkungsgrad sichergestellt werden kann.
  • Die Erfindung löst die gestellte Aufgabe dadurch, dass das Steigrohr einen an den Mischraum nach oben anschliessenden, den Heissgasstrom in eine laminare Strömung überführenden Diffusor bildet.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass die für ein gutes Vermischen von Heissgas und Rohmehl erforderliche turbulente Gasströmung beruhigt und in eine laminare Strömung übergeführt werden muss, um optimale Reaktionsbedingungen zu schaffen. Durch die Anordnung eines an die Mischkammer angeschlossenen Diffusors kann das Heissgas mit dem Rohmehl nach der raschen und innigen Vermischung in einen streng geordneten Gleichstrom übergeführt werden, in dem der Wärmeaustausch ungestört und rasch vor sich gehen kann. Die durch den Diffusor gewährleistete, eine Wandablösung verhindernde laminare Strömung ist daher tatsächlich als entscheidende Verbesserung gegenüber den herkömmlichen Wärmetauschereinheiten anzusehen. Die Formgebung und Bemessung des Diffusors können in Abhängigkeit von den zu erwartenden Gasmengen und dem Temperaturverlauf mit Hilfe der Bernoullischen Strömungsgleichung schon im voraus sehr gut erfasst werden. So kann auf Grund der gegebenen Verhältnisse angenommen werden, dass der Öffnungswinkel des Diffusors zwischen 12 und 20° betragen kann, ohne dass ein Übergang der laminaren Strömung zu einer turbulenten Strömung befürchtet werden muss.
  • Um eine gleichmässige Verteilung des Rohmehls im Heissgasstrom zu erhalten, muss für eine gute Vermischung gesorgt werden, was wiederum entprechende Strömungsgeschwindigkeiten voraussetzt. Da die Austrittsgeschwindigkeit des vom Rohmehl befreiten Heissgasstromes aus dem Zyklonentstauber durch das Tauchrohr den Anforderungen hinsichtlich einer guten Vermischung im allgemeinen nicht entsprechen wird, kann in weiterer Ausbildung der Erfindung das Steigrohr unterhalb des Mischraumes eine in den Mischraum übergehende Düse bilden, die für eine entsprechende Beschleunigung des Heissgasstromes und damit für eine rasche und gute Vermischung des Rohmehls mit dem Heissgas im Mischraum sorgt.
  • Dem gleichen Zweck dient auch die Massnahme, die als Fallrohr ausgebildete Zuleitung des Rohmehls im unteren Drittel der Mischraumhöhe münden zu lassen. Das Rohmehl wird nämlich über die Zuleitung dem Heissgas im Gegenstrom zugeführt und vom Heissgas im Gleichstrom mitgerissen. Legt man den Übergangsbereich vom Gegenstrom in den Gleichstrom in das untere Drittel der Mischraumhöhe, so kann eine besonders heftige Durchmischung sichergestellt werden, ohne dass die anschliessende Beruhigung im Diffusor gefährdet wäre.
  • Wegen des durch die erfindungsgemässen Massnahmen bedingten raschen und innigen Warmeaustausches kann je Wärmetauschereinheit ein entsprechend höherer Wirkungsgrad erzielt werden, was die Möglichkeit der Einsparung einer der sonst erforderlichen Wärmetauschereinheiten eröffnet.
  • In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen Fig. 1 eine Anlage zum Herstellen von Zement schematisch im Blockschaltbild, und
    Fig. 2 eine erfindungsgemässe Wärmetauschereinheit im vereinfachten Längsschnitt.
  • Das zu behandelnde Rohmehl wird gemäss Fig.1 übereineabsperrbare Leitung 1 einem mehrstufigen Wärmetauscher zugeführt, der aus drei Wärmetauschereinheiten 2, 3 und 4 besteht. Das aus der letzten Wärmetauschereinheit 4 austretende, auf ca. 800 bis 850° C vorgewärmte Rohmehl wird über eine Leitung 5 einem Kalzinator 6 zugeführt, dem zur Erzeugung zusätzlicher Wärmemengen Brennstoff zuleitbar ist. Dieser Brennstoff wird mit dem vorgewärmten Rohmehl im Kalzinator 6 vermischt, so dass die beim Verbrennen des Brennstoffes frei werdende Wärmemenge an das Rohmehl abgegeben werden kann.-Dadurch wird die Entsäuerung des Kalksteins eingeleitet, die beim Erreichen eines Temperaturniveaus von etwa über 900° C beendet wird. Das mit dem heissen Abgasstrom mitgerissene Rohmehl gelangt aus dem Kalzinator-6 in einen Zyklonentstauber 7, von wo es dem Drehrohrofen 8 zugeleitet wird. Das weitgehend von den Feststoffen gereinigte heisse Abgas gelangt aus dem Zyklonentstauber 7 in ein Steigrohr 9, in dem es mit dem aus der Wärmetauschereinheit 3 stammenden Rohmehl vermischt wird. Das mit dem Rohmehl beladene Heissgas mündet in einem Zyklonentstauber 10 der Wärmetauschereinheit 4, von der das vom Rohmehl befreite Heissgas wiederum über ein Steigrohr 11, in der das Heissgas mit dem Rohmehl aus der Wärmetauschereinheit 2 beladen wird, einem Zyklonentstauber 12 der Wärmetauschereinheit 3 zugeleitet wird. Der Vorgang wiederholt sich, bis das abgekühlte Heissgas über ein Gebläse 13 abgeblasen wird.
  • Das weitgehend vorkalzinierte Rohmehl aus dem Zyklonentstauber 7 wird im Drehrohrofen 8 auf ca. 1400° C weiter erwärmt, um die chemische Umwandlung der Rohstoffkomponenten zu den Klinkermineralien einzuleiten, welcher Brennvorgang exotherm abläuft. Die gebrannten Zementklinker werden dann in üblicher Weise auf annähernd Umgebungstemperatur abgekühlt, wobei der hierfür vorgesehene, übliche Kühler jedoch aus Übersichtlichkeitsgründen nicht gezeigt ist.
  • Das Abgas aus dem Drehrohrofen 8 wird zumindest teilweise über eine Leitung 14 durch das Gehäuse 15 einer Schlägermühle 16 geleitet, in der der über eine Brennstoffaufgabe 17 zugeführte Brennstoff für den Kalzinator 6 zerkleinert wird. Der zerkleinerte Brennstoff wird vom Ofenabgas erfasst und von unten in den Kalzinator 6 gefördert, wo der Brennstoff in der bereits beschriebenen Weise mit dem Rohmehl aus der Leitung 5 vermischt wird. Die für die Verbrennung des Brennstoffes erforderliche Sauerstoffmenge wird aus dem noch im Ofenabgas enthaltenen Restsauerstoff und vorzugsweise aus dem Sauerstoff der bei der Klinkerkühlung erwärmten Kühlluft gedeckt, die über die Zuleitungen 18 und 19 dem Kalzinator 6 zugeführt werden kann.
  • Um einen guten Wärmeübergang von Heissgasstrom auf das Rohmehlzu erhalten, sind die einzelnen Wärmetauschereinheiten nach Fig. 2 in besonderer Weise ausgebildet, und zwar bildet das Steigrohr 9, 11 der einzelnen Wärmetauschereinheiten einen an den Mischraum 20 nach oben anschliessenden Diffusor 21, bevor es tangential im Zyklonentstauber 10, 12 der jeweiligen Wärmetauschereinheit mündet. Das Rohmehl, das über eine als Fallrohrausgebildete Zuleitung 22 im unteren Drittel des durch das Steigrohr 9,11 1 gebildeteten Mischraumes 20 in den Heissgasstrom austritt und mit diesem innig vermischt wird, wird mit dem Heissgasstrom durch den Diffusor 21 geleitet, wo die zunächst turbulente Heissgasströmung beruhigt und in eine laminare Strömung übergeführt wird, die einen besonders guten Wärmeaustausch zwischen dem Heissgas und dem Rohmehl sicherstellt. Aus dem Steigrohr 9, 11 gelangt das mit dem Rohmehl beladene Heissgas in den jeweiligen Zyklonentstauber 10, 12 der entsprechenden Wärmetauschereinheit, wo das Rohmehl abgeschieden und über eine Austrittsleitung abgeführt wird, die bei der Hintereinanderschaltung mehrerer Wärmetauschereinheiten als Zuleitung 22 des Rohmehls in die nachfolgende Wärmetauschereinheit dient. Das vom Rohmehl befreite Heissgas wird über ein Tauchrohr 23 aus dem Zyklonentstauber abgezogen und dient zum Erwärmen des Rohmehls in einer vorgeordneten Wärmetauschereinheit 3. Zu diesem Zweck schliesst das Tauchrohr 23 an ein entsprechend ausgebildetes Steigrohr an, in dem wieder die Zuleitung 22 für das Rohmehl mündet. Um eine für die gleichmässige Verteilung des Rohmehls im Heissgasstrom günstige Strömungsgeschwindigkeit zu erhalten, bildet das Steigrohr 11 unterhalb des Mischraumes 20 eine in den Mischraum übergehende Düse 24, die im Ausführungsbeispiel den Übergang zwischen dem Tauchrohr 23 und dem Mischraum 20 darstellt. Durch die Anordnung der Düse 24 wird eine die Durchmischung von Heissgas und Rohmehl unterstützende Strömung erzeugt, ohne dass dadurch der Wärmeaustausch behindert wird, weil ja im Anschluss an den Mischraum 20 für eine entsprechende Beruhigung der Strömung im Diffusor 21 gesorgt ist. Obwohl in der Zeichnung die Steigrohre 9, 11 vertikal verlaufen, muss ein solcher Verlauf nicht zwingend vorgegeben sein. So könnten beispielsweise die Steigrohre geneigt angeordnet vermeiden und an Bauhöhe zu sparen. Ebenso könnten die Zuleitungen 22 tangential im Mischraum 20 münden.

Claims (3)

1. Wärmetauschereinheit zum Vorwärmen von Zementrohmehl mit einem einen Heissgasstrom aufnehmenden Steigrohr (9, 11), das als Mischraum (20) für das über eine Zuleitung (22) zugeführte Rohmehl mit dem Heissgasstrom dient und in einem Zyklonentstauber (10, 12) mündet, der oben eine Abführleitung, vorzugsweise ein Tauchrohr (23), zum Abführen des vom Rohmehl weitgehend befreiten Heissgasstromes und unten eine Austrittsleitung für das abgeschiedene Rohmehl aufweist, dadurch gekennzeichnet, dass das Steigrohr (9, 11) einen an den Mischraum (20) nach oben anschliessenden, den Heissgasstrom in eine laminare Strömung überführenden Diffusor (21) bildet.
2. Wärmetauschereinheit nach Anspruch 1, dadurch gekennzeichnet, dass das Steigrohr (9,11) unterhalb des Mischraumes (20) eine in den Mischraum (20) übergehende Düse (24) bildet.
3. Wärmetauschereinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die als Fallrohr ausgebildete Zuleitung (22) des Rohmehls im unteren Drittel der Mischraumhöhe mündet.
EP81890016A 1980-04-10 1981-01-27 Wärmetauschereinheit zum Vorwärmen von Zementrohmehl Expired EP0038314B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT193480A AT364303B (de) 1980-04-10 1980-04-10 Waermetauschereinheit zum vorwaermen von zementrohmehl
AT1934/80 1980-04-10

Publications (2)

Publication Number Publication Date
EP0038314A1 EP0038314A1 (de) 1981-10-21
EP0038314B1 true EP0038314B1 (de) 1983-09-21

Family

ID=3524179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81890016A Expired EP0038314B1 (de) 1980-04-10 1981-01-27 Wärmetauschereinheit zum Vorwärmen von Zementrohmehl

Country Status (4)

Country Link
EP (1) EP0038314B1 (de)
AT (1) AT364303B (de)
DE (1) DE3160897D1 (de)
DK (1) DK160281A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016102385U1 (de) * 2016-05-04 2016-05-24 Outotec (Finland) Oy Zyklon und Tauchrohr zur Separation von Partikeln aus einem Gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1272324B (de) * 1960-02-08 1968-07-11 Yukio Nogiwa Zyklonenanlage zum Erhitzen von feinkoernigem Gut
DE1508576A1 (de) * 1966-04-13 1969-10-30 Kloeckner Humboldt Deutz Ag Gegenstrom-Querstromwaermetauscher

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2801161B2 (de) * 1978-01-12 1981-06-25 Babcock Krauss-Maffei Industrieanlagen GmbH, 8000 München Verfahren und Brennen von Sintergut aus karbonatischen Rohstoffen wie z.B. Zementklinker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1272324B (de) * 1960-02-08 1968-07-11 Yukio Nogiwa Zyklonenanlage zum Erhitzen von feinkoernigem Gut
DE1508576A1 (de) * 1966-04-13 1969-10-30 Kloeckner Humboldt Deutz Ag Gegenstrom-Querstromwaermetauscher

Also Published As

Publication number Publication date
DE3160897D1 (en) 1983-10-27
EP0038314A1 (de) 1981-10-21
DK160281A (da) 1981-10-11
AT364303B (de) 1981-10-12
ATA193480A (de) 1981-02-15

Similar Documents

Publication Publication Date Title
DE60032629T2 (de) Verfahren und vorrichtung zur verbrennung von restkohlenstoffen in flugasche
DE2527149C2 (de) Verfahren und Anlage zur wenigstens partiellen Kalzinierung vorerwärmten, pulverförmigen Rohmaterials
DE2411669C3 (de) Verfahren und Vorrichtung zum wenigstens partiellen Calcinieren eines vorerwärmten pulverförmigen Gutes
DE10260739B3 (de) Verfahren und Anlage zur Herstellung von Metalloxid aus Metallverbindungen
DE1592140A1 (de) Verfahren zur Herstellung von Aluminiumoxid aus Aluminiumhydroxid
DE2558506C2 (de) Verfahren zur thermischen Behandlung von staubförmigem Gut, insbesondere zum Brennen von Zement in mehreren Stufen
JPS6352933B2 (de)
DE2745425B2 (de) Verfahren und Vorrichtung zur Erzeugung von Kohlenstaub
DE2324519C3 (de) Verfahren und Vorrichtungen zur Wärmebehandlung von feinkörnigem Gut
JP3042850B2 (ja) 原料ミールからセメントクリンカを製造する方法及びその装置
DE2712239C2 (de) Verfahren und Vorrichtung zur Herstellung von alkaliarmem Zementklinker aus alkalihaltigem Rohmaterial
DE2744042C2 (de) Wärmetauscher zur thermischen Behandlung von feinkörnigem Gut
EP0027493B1 (de) Verfahren und Vorrichtung zur Gewinnung von Fluorwasserstoff aus fluorhaltigen Materialien durch Pyrohydrolyse
DE3725512C2 (de)
DE1207361B (de) Vorrichtung zum Dehydratisieren und Umkristallisieren von Aluminiumoxydhydrat zu alphlO
EP0038314B1 (de) Wärmetauschereinheit zum Vorwärmen von Zementrohmehl
DE2534438A1 (de) Verfahren und vorrichtung zur kalzinierung von zementmaterial
CH615271A5 (de)
RU2052746C1 (ru) Устройство для улавливания двуокиси серы из установки для мокрого производства клинкера
DE2509127A1 (de) Vorrichtung zum brennen von zementklinker und aehnlichen materialien
DE3037929C2 (de) Verfahren und Vorrichtung zum Kalzinieren von Zementrohmehl
DE2946991A1 (de) Anlage zur calzinierung von tonerde (aluminiumoxyd) u.ae. produkten
US4392890A (en) Cement clinker production
DE3409727C2 (de) Verfahren zum Brennen und Sintern von stückigem Gut, wie Kalkstein oder Dolomit
DE69513052T2 (de) Vorrichtung und verfahren zur herstellung von klinker aus wasserhaltigem schlammaus rohmaterialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19811030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3160897

Country of ref document: DE

Date of ref document: 19831027

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840109

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840112

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRUPP POLYSIUS AG

Effective date: 19840509

26 Opposition filed

Opponent name: METALLGESELLSCHAFT AG

Effective date: 19840616

Opponent name: KLOECKNER-HUMBOLDT-DEUTZ AG, KOELN C/O KHD HUMBOLD

Effective date: 19840616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19851001

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KRUPP POLYSIUS AG * 840616 KLOECKNER-HUMBOLDT-DEUT

Effective date: 19840509

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19851228

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST