EP0038113B1 - Kupplungssteueranlage - Google Patents
Kupplungssteueranlage Download PDFInfo
- Publication number
- EP0038113B1 EP0038113B1 EP81300565A EP81300565A EP0038113B1 EP 0038113 B1 EP0038113 B1 EP 0038113B1 EP 81300565 A EP81300565 A EP 81300565A EP 81300565 A EP81300565 A EP 81300565A EP 0038113 B1 EP0038113 B1 EP 0038113B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- engine speed
- clutch
- reference signal
- throttle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000001419 dependent effect Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/1819—Propulsion control with control means using analogue circuits, relays or mechanical links
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/02—Clutches
- B60W2510/0208—Clutch engagement state, e.g. engaged or disengaged
- B60W2510/0225—Clutch actuator position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/10—Accelerator pedal position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/02—Clutches
- B60W2710/021—Clutch engagement state
- B60W2710/022—Clutch actuator position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
Definitions
- This invention relates to a control system for a clutch of the transmission of an engine driven vehicle for starting the vehicle from a standing start.
- the present invention is concerned with the provision of an improved control system for the friction clutch of the transmission of an engine driven vehicle for starting the vehicle from a standing start.
- a control system for a friction clutch of the transmission of an engine driven vehicle for starting the vehicle from a standing start comprising an electrical engine speed sensor that produces an engine speed signal dependent on engine speed; a reference signal generator that produces a reference signal, logic means responsive to the engine speed signal and reference signal and producing a clutch actuation signal, a clutch actuator and a clutch actuator position control responsive to the clutch actuation signal characterised in that the reference signal is set to correspond to a desired engine speed signal, that the logic means is a comparator arranged to compare the engine speed signal with the reference signal or a modified reference signal derived from the reference signal and from at least one other parameter and produces an error signal indicative of the difference between the so compared signals; and further characterised by a clutch position transducer providing a clutch position signal and a comparator arranged to compare the error signal and clutch position signal and provide and supply to the clutch actuator control a clutch actuation signal dependent on the error signal and clutch position signal whereby from a standing start the state of engagement of the clutch controls
- the engine throttle when the engine throttle is opened to cause the vehicle to start from rest, the engine speed rises immediately to a level at which it is to be maintained during the period while the clutch is becoming engaged and the engine speed remains at this level until clutch engagement has been completed to the extent where no further clutch slip occurs.
- means are provided to adjust the reference signal depending upon the torque demand upon the engine of the vehicle so that as the vehicle torque demand increases the reference signal is caused to correspond with a higher engine speed.
- a throttle position sensor that produces a throttle signal indicative of throttle opening and a summing junction for summation of the throttle signal and reference signal to form a modified reference signal.
- a choke position indicator may provide a choke signal which varies according to the degree of choke and which is combined with the reference signal and throttle signal to produce the modified reference signal.
- the choke signal may be added to the reference signal prior to the reference signal being summed with the throttle signal.
- a switching circuit may be connected between the error signal and the throttle position signal so that when the switching circuit is energised by a pre-determined imbalance between the engine speed signal and the modified reference signal, the switching circuit output signal is then utilised to modify the throttle signal and cause the clutch actuator control to remain in the state corresponding to a fully engaged clutch until the engine speed signal drops to a given value.
- the throttle signal may vary with throttle opening such that maximum signal equates with no more than 50% throttle opening.
- a conventional motor car has the usual engine 11, clutch 13, gearbox 14, gearshift lever 15, throttle 16 and an inlet manifold 17.
- the engine speed is sensed by a transducer (not shown) which produces a signal S, representative of engine speed and a sensor 21 receives this signal and produces a voltage signal V 1 proportional to the engine speed.
- the voltage signal V referred to as the engine speed signal is fed to a comparator 23 which measures the difference between the voltage V, and a voltage signal V R which is obtained from a reference signal generator 34, which is for example a potentiometer across the vehicle battery.
- the reference signal V R can be set to be the same value as a signal obtained via the sensor 21 at a particular engine speed for example 1000 r.p.m.
- An error signal E which constitutes a clutch actuation signal is derived from the comparator 23 (constituting logic means) and is fed into a clutch position control 22 which controls the operation of an actuator 27.
- the actuator 27 operates the vehicle clutch 13 and is powered by means which may be pneumatic, hydraulic or electrical.
- the clutch position control 22 comprises an actuator position control 25, a clutch position transducer 42, and a comparator 45.
- the position transducer 42 is coupled to the actuator output and produces a clutch position voltage signal 43 representative of the position of the clutch. This signal 43 is fed into the comparator 45 for comparison with the clutch actuation signal constituted by the error signal E.
- the difference signal 24 from the comparator 45 is fed into the actuator position control 25.
- the actuator 27 may be connected to a vacuum source, for example, the inlet manifold 17 of an internal combustion engine 11, via solenoid valve 30, and non-return valve 40, causing the actuator 27 to move to engage the clutch.
- a vacuum source for example, the inlet manifold 17 of an internal combustion engine 11, via solenoid valve 30, and non-return valve 40, causing the actuator 27 to move to engage the clutch.
- the actuator 27 may be connected to atmosphere through solenoid valve 29 causing the actuator to move to release the clutch under the influence of an internal spring located in the actuator.
- the actuator position control 25 causes either valve 29 or 30, depending upon the polarity of the difference signal 24, to be switched on and off rapidly at a fixed rate.
- the open time of these valves 29 and 30 is dependent on the amplitude of the difference signal 24.
- the open time for either valve 29 or 30 determines the velocity of the actuator 27 in the appropriate direction so that the actuator velocity is proportional to the difference signal 24.
- the actuator 27 operates so as to equalise the position signal 43 and the error signal E and reduce the difference signal 24 to zero. Consequently the actuator takes up a position dictated by the error signal E.
- the error signal E determines the degree of engagement of the clutch.
- the clutch position control 22 operates the actuator 27 so as to vary the state of engagement of the clutch 13 with the engine 11 and thereby alter the engine speed to cause the engine speed signal V, to approach equivalence with the reference signal V R and make the error signal E approach zero.
- the clutch position control 22 causes the clutch actuator 27 to disengage the clutch by venting the actuator to atmosphere through valve 29.
- the position control 22 causes the disengagement speed to be reduced to a value lower than the original engagement speed so that engine speeds lower than the original engagement speeds are permissible when in higher gears.
- variable potentiometer 34 fitted to the vehicle throttle control 33 as the reference generator, so that as the throttle opening increases the reference signal also increases and becomes equivalent to a higher engine speed.
- the connection between the throttle control 33 and the reference signal potentiometer 34 is shown by dotted lines in the drawing.
- the reference signal to throttle opening curve is not necessarily linear, and is shaped to give a maximum value at 50% of throttle opening.
- Fig. 2 is illustrated a preferred control system that causes the reference signal to vary. Further the system operates so that once the clutch has engaged and the vehicle starts to move off then should the engine speed fall, say for example, because the vehicle is going up an incline, then the clutch will not be caused to disengage to equalise the reference and engine speed signals but will remain engaged below the reference until a predetermined minimum engine speed is reached.
- the comparator 113 is equivalent to the comparator 23 in Fig. 1 and receives an engine speed signal V, and an input signal V s and measures the difference between the two signals V, and V s to produce an error signal E.
- the error signal E is positive when V, is less than V s and becomes negative when V, exceeds V s .
- the error signal E from the comparator 113 is fed into a clutch position control which operates in a manner as previously described for Fig. 1.
- the vehicle engine speed is sensed by a sensor 111 that produces a voltage V, proportional to engine speed.
- the electrical circuit of the sensor is illustrated in detail in Fig. 3 but is basically a magnetic probe sensing the teeth on the engine flywheel and a transistor pump circuit.
- the input signal V s is derived from a difference amplifier 131 which adds together signals representing throttle opening and a fixed reference, V T and V R respectively.
- the throttle position is sensed by a transducer 127 which is a variable potentiometer that produces a signal V T proportional to the throttle opening.
- the signal V T can be a positive signal which has a value proportional to throttle opening i.e. small value at light throttle and large value at full throttle.
- the signal V T can be proportional to throttle closure i.e. at light throttle opening the signal is at a maximum and at full throttle opening the signal has a minimum value.
- the inverse relationship between the signal V T and the throttle opening is utilised because the signal V T is required in this form to control other functions in the vehicle gearbox.
- the throttle position transducer 127 is connected to a limiter 128 the action of which is to allow the throttle signal V T to vary only over a limited range say 10% to 50% of the throttle opening.
- the limiter 28 is disclosed in detail in Fig. 4 of the accompanying drawings.
- the signal V T is fed into an inverting input of a difference amplifier 131.
- the difference amplifier 131 also receives a reference signal voltage V R from a reference signal generator 114.
- the reference signal generator 114 is a potentiometer across the vehicle battery.
- the difference amplifier 131 acts as a summing junction to add the signals V, and V, together and produce a resultant input signal V ⁇ which is fed into the comparator 113.
- the throttle transducer signal V T is utilised to modify the speed of the engine at which the error signal E changes from positive to negative.
- V 1 must correspond to a high value of engine speed e.g. 1500 r.p.m. before the error signal is changed from positive to negative and therefore, the engine speed must be increased before the clutch is operated.
- a switching circuit 123 is connected between the error signal E and the throttle signal V T . When the negative value of error signal exceeds a pre- determined amount the switching circuit is actuated.
- the switching circuit is shown in detail in Fig. 4 of the accompanying drawings.
- the switching circuit 123 changes the throttle signal V T at a value corresponding to a light throttle opening. When in the unenergised state the switching circuit has no loading effect on the signal V T . Once the switching circuit has operated and the reference clamped to the light throttle value, the error signal increases, and consequently ensures that the reference remains clamped until the engine speed is reduced to that corresponding to the light throttle take-up value.
- a choke position indicator 129 produces a signal V c , preferably but not necessarily proportional to the degree of choke.
- the signal V c is combined with the reference signal V R prior to the reference signal being combined with the throttle position signal V T .
- the input signal V s is increased by the signal V c and the engagement speed for the clutch is increased to accommodate the higher idling speed of the engine.
- the clutch position control comprises a comparator 130 equivalent to comparator 45 in Fig. 1, that receives the error signal E and a signal from a travel transducer 132 responsive to the clutch position control.
- the signal from the comparator 130 is then fed into a phase-gain shaping network 133, introduced to ensure the system stability, a mark space ratio modulator and oscillator, 134 and 135 respectively, and then utilised via an output 138 to control a solenoid operated hydraulic valve 136.
- the hydraulic valve 136 controls the hydraulic pressure in a hydraulic actuator 137.
- the mark/space ratio of the signal fed into the solenoid valve 136 determines the hydraulic pressure in the actuator and hence the state of engagement of the clutch.
- the shaping network 133, oscillator 135, mark space ratio network 134 and output are shown in detail in Figs. 6 to 8 respectively.
- the electrical terminals on each component are numbered according to component to which they are connected, e.g. in Fig. 3 the terminal 113 connects the engine speed sensor 111 to the comparator 113.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Claims (7)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8005373 | 1980-02-18 | ||
GB8005373 | 1980-02-18 | ||
GB8035377 | 1980-11-04 | ||
GB8035377 | 1980-11-04 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0038113A2 EP0038113A2 (de) | 1981-10-21 |
EP0038113A3 EP0038113A3 (en) | 1983-05-04 |
EP0038113B1 true EP0038113B1 (de) | 1986-07-23 |
Family
ID=26274530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81300565A Expired EP0038113B1 (de) | 1980-02-18 | 1981-02-12 | Kupplungssteueranlage |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0038113B1 (de) |
AU (1) | AU548876B2 (de) |
BR (1) | BR8100920A (de) |
DE (1) | DE3174956D1 (de) |
ES (1) | ES499490A0 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7275455B2 (en) | 2001-09-12 | 2007-10-02 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Automatic gear system |
DE10037551B4 (de) * | 1999-09-11 | 2012-10-25 | Schaeffler Technologies AG & Co. KG | Getriebesystem |
DE10148083B4 (de) * | 2000-10-12 | 2014-02-13 | Schaeffler Technologies AG & Co. KG | Hydraulische Betätigungssysteme |
DE10055737B4 (de) * | 1999-11-20 | 2017-05-11 | Schaeffler Technologies AG & Co. KG | Kupplungsbetätigungssystem |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU552105B2 (en) * | 1981-02-24 | 1986-05-22 | Automotive Products Ltd. | Clutch control system |
JPH0729569B2 (ja) * | 1983-06-29 | 1995-04-05 | いすゞ自動車株式会社 | 自動クラッチ制御装置 |
CA1250642A (en) * | 1983-06-30 | 1989-02-28 | Toshihiro Hattori | Method of controlling the starting of a vehicle having automatic clutch |
JPH0686189B2 (ja) * | 1986-03-31 | 1994-11-02 | 富士重工業株式会社 | 車両用自動クラツチの制御装置 |
JP2527938B2 (ja) * | 1986-06-18 | 1996-08-28 | 富士重工業株式会社 | 車両用自動クラツチの制御装置 |
DE3624755C2 (de) * | 1986-07-22 | 1995-03-23 | Fichtel & Sachs Ag | Antriebseinrichtung für ein Kraftfahrzeug |
FR2645110B1 (fr) | 1989-03-30 | 1994-08-26 | Brunet Jacques | Dispositif permettant d'assurer le redressement d'un bateau |
GB9402252D0 (en) | 1994-02-05 | 1994-03-30 | Automotive Products Plc | Clutch control system |
GB9402729D0 (en) | 1994-02-12 | 1994-04-06 | Automotive Products Plc | Clutch control system |
GB9421324D0 (en) * | 1994-10-22 | 1994-12-07 | Automotive Products Plc | Clutch control system |
GB9505174D0 (en) | 1995-03-15 | 1995-05-03 | Automotive Products Plc | Vehicle transmissions |
EP0782675B1 (de) | 1995-07-26 | 2001-10-24 | Luk Leamington Limited | Gangschaltvorrichtung |
GB9602731D0 (en) | 1996-02-10 | 1996-04-10 | Ap Kongsberg Holdings Ltd | Transmission control systems |
GB2311570B (en) | 1996-03-27 | 1998-05-13 | Ap Kongsberg Holdings Ltd | Gear position sensor |
GB9626527D0 (en) * | 1996-12-20 | 1997-02-05 | Ap Kongsberg Holdings Ltd | Clutches |
GB2339606B (en) * | 1998-05-22 | 2003-03-26 | Kongsberg Techmatic Uk Ltd | Dual pump drive |
DE10080639B4 (de) | 1999-03-15 | 2017-03-02 | Schaeffler Technologies AG & Co. KG | Kupplungssteuervorrichtung zur automatischen Betätigung einer Kupplung während des Anfahrens |
GB2348932A (en) | 1999-04-14 | 2000-10-18 | Luk Getriebe Systeme Gmbh | Transmission system control which disengages a clutch at power-up |
GB9919179D0 (en) | 1999-08-16 | 1999-10-20 | Luk Getriebe Systeme Gmbh | Transmission systems |
GB2353835B (en) | 1999-09-04 | 2003-09-24 | Luk Lamellen & Kupplungsbau | Automated transmission systems |
FR2801355B1 (fr) | 1999-11-20 | 2006-09-15 | Luk Lamellen & Kupplungsbau | Systeme de commande d'embrayage |
GB0001364D0 (en) | 2000-01-24 | 2000-03-08 | Luk Getriebe Systeme Gmbh | Gear engagement mechanism |
DE10063501A1 (de) | 2000-01-24 | 2001-07-26 | Luk Lamellen & Kupplungsbau | Hydraulikeinrichtung |
GB0005185D0 (en) * | 2000-03-04 | 2000-04-26 | Luk Lamellen & Kupplungsbau | Gear engagement mechanisms |
GB0005186D0 (en) | 2000-03-04 | 2000-04-26 | Luk Lamellen & Kupplungsbau | Hydraulic actuation systems |
GB2368886A (en) | 2000-11-13 | 2002-05-15 | Luk Lamellen & Kupplungsbau | Automatic transmission with a hydraulic actuation system |
GB2369656A (en) | 2000-11-21 | 2002-06-05 | Luk Lamellen & Kupplungsbau | Automatic transmission hydraulic actuation system having an isolating valve which prevent leaks |
DE10159267B4 (de) * | 2000-12-14 | 2015-01-15 | Schaeffler Technologies Gmbh & Co. Kg | Verfahren zur Lageregelung eines Kupplungsaktuators |
GB2370865A (en) | 2000-12-27 | 2002-07-10 | Luk Lamellen & Kupplungsbau | A compliant link |
GB2372080B (en) | 2001-02-12 | 2004-09-29 | Luk Lamellen & Kupplungsbau | Hydraulic actuation systems |
GB2373553B (en) | 2001-03-21 | 2004-09-29 | Luk Lamellen & Kupplungsbau | Automated transmission systems |
GB2378489A (en) | 2001-07-31 | 2003-02-12 | Luk Lamellen & Kupplungsbau | Method of gear selection using current pulses in a hydraulic transmission system with actuators and valves |
GB2381880A (en) | 2001-11-10 | 2003-05-14 | Luk Lamellen & Kupplungsbau | A method of initiating a vehicle system |
GB2392968A (en) | 2002-09-14 | 2004-03-17 | Luk Lamellen & Kupplungsbau | Clutch control system for automatically controlling a friction clutch in a motor vehicle |
GB2397396B (en) * | 2003-01-18 | 2006-05-10 | Luk Lamellen & Kupplungsbau | Automated transmission systems |
JP3970864B2 (ja) * | 2004-04-20 | 2007-09-05 | 本田技研工業株式会社 | 接触機構の制御装置 |
US10228035B2 (en) | 2016-06-20 | 2019-03-12 | Kongsberg Automotive As | Velocity dependent brake for clutch actuator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3134470A (en) * | 1959-10-19 | 1964-05-26 | Elmeg | Clutch control system |
US4081065A (en) * | 1976-12-23 | 1978-03-28 | Smyth Robert Ralston | Controlled power clutch |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB718016A (en) * | 1949-10-05 | 1954-11-10 | Daimler Benz Ag | New or improved method of and means for regulating internal combustion engines |
FR1366732A (fr) * | 1960-05-05 | 1964-07-17 | Système de commande automatique d'accouplement et de mécanisme de changement de vitesse pour véhicules automobiles | |
FR1476022A (fr) * | 1966-03-22 | 1967-04-07 | Intomatic Basel A G | Embrayage automatique, plus particulièrement pour véhicules automobiles |
JPS499536B1 (de) * | 1969-07-18 | 1974-03-05 | ||
AU525952B2 (en) * | 1978-01-24 | 1982-12-09 | Lahive, John A. | Mechanical automatic transmission |
-
1981
- 1981-01-29 AU AU66722/81A patent/AU548876B2/en not_active Ceased
- 1981-02-12 DE DE8181300565T patent/DE3174956D1/de not_active Expired
- 1981-02-12 EP EP81300565A patent/EP0038113B1/de not_active Expired
- 1981-02-16 BR BR8100920A patent/BR8100920A/pt unknown
- 1981-02-17 ES ES499490A patent/ES499490A0/es active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3134470A (en) * | 1959-10-19 | 1964-05-26 | Elmeg | Clutch control system |
US4081065A (en) * | 1976-12-23 | 1978-03-28 | Smyth Robert Ralston | Controlled power clutch |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10037551B4 (de) * | 1999-09-11 | 2012-10-25 | Schaeffler Technologies AG & Co. KG | Getriebesystem |
DE10055737B4 (de) * | 1999-11-20 | 2017-05-11 | Schaeffler Technologies AG & Co. KG | Kupplungsbetätigungssystem |
DE10148083B4 (de) * | 2000-10-12 | 2014-02-13 | Schaeffler Technologies AG & Co. KG | Hydraulische Betätigungssysteme |
US7275455B2 (en) | 2001-09-12 | 2007-10-02 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Automatic gear system |
Also Published As
Publication number | Publication date |
---|---|
BR8100920A (pt) | 1981-08-25 |
AU548876B2 (en) | 1986-01-09 |
AU6672281A (en) | 1981-08-27 |
ES8205969A1 (es) | 1982-07-01 |
EP0038113A2 (de) | 1981-10-21 |
EP0038113A3 (en) | 1983-05-04 |
DE3174956D1 (en) | 1986-08-28 |
ES499490A0 (es) | 1982-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0038113B1 (de) | Kupplungssteueranlage | |
US4418810A (en) | Clutch control system | |
US4432445A (en) | Clutch control systems | |
US4403682A (en) | Clutch control apparatus | |
US5439428A (en) | Method and apparatus for robust automatic clutch control with pid regulation | |
US4653621A (en) | Control system for automatic clutch | |
US5630773A (en) | Method and apparatus for slip mode control of automatic clutch | |
US5378211A (en) | Clutch mode control logic | |
EP0645277A1 (de) | Berührpunkt-Erkennungsverfahren einer Kupplung | |
US5435795A (en) | Vehicle drivetrain control including CVT | |
EP0550222A2 (de) | Berührpunkt-Erkennung für Steuerungsgerät für automatische Kupplung | |
EP0601729A1 (de) | Steuerungsverfahren einer Brennkraftmaschine mit automatischer Kupplungssteuerung | |
US5628706A (en) | Method and arrangement for controlling the output power of a drive unit of a motor vehicle | |
EP0051004B1 (de) | Automatische Geschwindigkeitssteueranlage für schwere Fahrzeuge | |
US4936405A (en) | Multiple feedback loop control method and system for controlling wheel slip | |
KR900700318A (ko) | 차량구동용 동력장치 | |
US4413714A (en) | Clutch control system | |
US5154250A (en) | Automatic speed control system | |
US4389910A (en) | Motor vehicle power control means | |
JPH0460220A (ja) | 自動クラッチ式変速機の制御装置 | |
US4520694A (en) | Method of controlling engine operation in an automotive vehicle during gear change | |
SU1210655A3 (ru) | Электронна система управлени трансмиссией транспортного средства | |
GB2088007A (en) | Clutch Control Apparatus | |
US4947971A (en) | Control system for a clutch for a motor vehicle | |
US5020622A (en) | Multiple feedback loop control method and system for controlling wheel slip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19811207 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AUTOMOTIVE PRODUCTS PUBLIC LIMITED COMPANY |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3174956 Country of ref document: DE Date of ref document: 19860828 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19871103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000112 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |