EP0030821B1 - Elément d'échangeur de chaleur et échangeur de chaleur contenant de tels éléments - Google Patents

Elément d'échangeur de chaleur et échangeur de chaleur contenant de tels éléments Download PDF

Info

Publication number
EP0030821B1
EP0030821B1 EP80304365A EP80304365A EP0030821B1 EP 0030821 B1 EP0030821 B1 EP 0030821B1 EP 80304365 A EP80304365 A EP 80304365A EP 80304365 A EP80304365 A EP 80304365A EP 0030821 B1 EP0030821 B1 EP 0030821B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
core
tube
cores
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80304365A
Other languages
German (de)
English (en)
Other versions
EP0030821A1 (fr
Inventor
Gene A. Anders
Herbert J. Larson
Charles R. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US1980/001516 external-priority patent/WO1981001608A1/fr
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Publication of EP0030821A1 publication Critical patent/EP0030821A1/fr
Application granted granted Critical
Publication of EP0030821B1 publication Critical patent/EP0030821B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features

Definitions

  • This invention relates to a heat exchanger core, and, more particularly, to a core construction for increasing heat rejection and improving cooling.
  • Heat exchangers such as those used in earthmoving vehicles, must have sufficient capacity to cool the engine by the passage of air through and around the heat exchanger core. In the past, it has at times been necessary to use large fans operating at relatively high speeds to provide sufficient air flow through the heat exchanger core. Unfortunately large fans may use excessive power and cause vibration and noise which is undesirable. Current noise regulations, in fact, restrict the use of large noisy fans so that other means must be found to provide effective cooling without excessive noise.
  • the zig zag pattern increases the cooling capacity by increasing the radiator surface area exposed to the flow of air without increasing the frontal area of the radiator.
  • such folded or zig zag pattern cores have heretofore not been fully effectively utilized at or near their maximum cooling efficiency.
  • U.S. Patent Specification No. 4,034,804 illustrates one solution to this debris problem in the form of a fine gauze placed around the outside of each core. Another attempt to solve this problem is described in U.S. Patent Specification No. 4,116,265. This latter specification discloses gaps between converging, adjacent cores which are closed by movable plugs during normal use and which are opened when periodic debris purging is performed.
  • U.S. Patent Specification No. 4,076,072 discloses a zig zag pattern of cores which are spaced apart a short distance so as continually to permit debris that would normally pile up in the converging trough to go on through.
  • a heat exchanger core comprises a plurality of closely spaced fins having peripheral edges defining an air inlet surface, an air outlet surface, and first and second end surfaces, one of the first and second core end surfaces being provided with a first cover, and at least one tube extending through the fins spaced from the air inlet surface, wherein the first cover is spaced from the air inlet surface.
  • the core is positioned with the inlet surface oriented at between 10° and 40° to the direction of incident air flow, in use, with the first and second end surfaces offset in the air flow direction.
  • the or each tube may have an elongate cross-section the tube being positioned with the elongate dimension extending generally between the air inlet and the air outlet surface.
  • a heat exchanger has first and second such cores the cores being mounted in a generally "V" configuration with the first end surfaces of the cores at the apex of the "V".
  • Figure 1 shows a self-purging heat exchanger 10 having first, second and third cores 20, 25, 30 arranged in a zig zag or "V" pattern as viewed from the top. Air flow direction is as indicated by unnumbered arrows.
  • Each of the cores 20, 25, 30 is formed (see Figure 2) of a plurality of fins 40 having peripheral edges 45 and at least one cooling water tube 50 of elongate cross-section which extends through the fins 40.
  • each of the cores, 20, 25, 30 has an air inlet surface 60, an outlet surface 65, and first and second end surfaces 70, 75, all of which are defined by the peripheral edges 45.
  • the tubes 50 are spaced from the inlet surface 60.
  • the cores 20, 25, are angularly oriented to each other in a generally "V" configuration with an included angle of generally between 20° and 80° for efficient cooling and space utilization.
  • the inlet surface 60 of each core 20, 25 is positioned generally at an angle between 10° and 40° with the flow of air approaching the inlet surface.
  • the first end surfaces 70 of the cores 20 and 25 are adjacent to one another.
  • a small gap 90 will generally be present between the first end surfaces 70 of the cores 20, 25.
  • the gap 90 is generally sized to allow debris, but not too much air, to flow therethrough.
  • a gap 90' will generally be present between the frame member 95 and the first end surface 70 of the core 30.
  • gap 90' will generally have a size approximately equal to that of the gap 90.
  • Each core 20, 25, 30 has a pair of covers 80, 85 which are substantially parallel to the tubes 50 and are connected over the edges 45 of the fins 40 which define the respective first 70 and second 75 end surfaces of the respective cores 20, 25, 30.
  • the leading edge of each tube 50 and the covers 80, 85 are spaced from the inlet surface 60 substantially the same distance in order to provide efficient cooling without excessive turbulence and also to facilitate sliding and rolling of debris toward the bottom of the 'V'.
  • the covers, for example 80 generally have a dimension "D2" approximately equal to the dimension "D1" of each tube 50.
  • each of the outermost tubes 50 and adjacent covers 80, 85 is substantially equal to half the spacing between adjacent parallel tubes 50.
  • the outermost tubes 50 are cooled substantially to the same degree as are any of the other tubes 50.
  • the tubes 50 and the covers 80, 85 are spaced substantially the same distance from the outlet surface 65 in each of the respective cores 20, 25, 30 to provide efficient cooling.
  • each core 20' has a pair of covers, one of which 80' is shown formed of a plurality of tabs 88.
  • the tabs 88 form extensions of the fins beyond the respective first and second end surfaces 70, 75 of the respective cores.
  • each tab 88 is bent over in the same direction and generally parallel to the respective tubes 50.
  • Each of the tabs 88 generally has a tab dimension "D3" approximately equal to the dimension "D1" of each tube 50 and the spacings of the tabs 88 from the inlet surface 60 is substantially equal to the spacing of the tube 50 from the inlet surface 60.
  • the covers of this example function substantially the same as the above described covers 80, 85.
  • air approaches the heat exchanger 10 from the direction shown by the arrows in Figure 1.
  • the air then passes through inlet surfaces 60, through air ducts formed between adjacent tubes 50 and adjacent fins 40, and then out the outlet surfaces 65.
  • Air passing via inlet surfaces 60 adjacent the first and second end surfaces 70, 75 passes through air ducts formed between respective covers 80, 85, a nearest tube 50, and adjacent fins 40 and out the outlet surfaces 65.
  • Improved heat exchanger cores provide much improved cooling of the tubes nearest the end surfaces, of the core. This, in turn, provides a larger (approximately 5% in one example) cooling capacity for the entire heat exchanger assembly.
  • cover 85 By spacing cover 85 from the inlet surface, cover 85 does not block air flow to the adjacent tube 50.
  • any debris passing through the gap 90 does not hang up thereon and is readily purged from the radiator.
  • there are a pair of the cores in a "V" configuration and when there is a gap 90 between the pair of cores, debris is readily purged from the assembly.
  • Such heat exchanger cores as are disclosed herein are useful as cores for radiators such as those used in vehicles, particularly earthmoving vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (13)

1. Noyau d'échangeur de chaleur (20) comprenant un certain nombre d'ailettes très rapprochées (40) ayant des bords périphériques (45) qui délimitent une surface d'entrée d'air (60), une surface de sortie d'air (65), et une première et une seconde surfaces terminales (70, 75), l'une des première et seconde surfaces terminales (70, 75) du noyau étant munie d'un premier couvercle (80, 85); et au moins un tube (50) traversant les ailettes (40) et étant espacé de la surface d'entrée d'air (60), caractérisé en ce que le premier couvercle est espacé de la surface d'entrée d'air (60).
2. Noyau d'échangeur de chaleur (20) selon la revendication 1, caractérisé en ce que le noyau (20) est disposé de telle sorte que la surface d'entrée forme un angle compris entre 10° et 40° avec la direction du courant d'air incident, en utilisation, la première et la seconde surfaces terminales étant décalées dans la direction d'écoulement de l'air.
3. Noyau d'échangeur de chaleur (20) selon la revendication 1 ou la revendication 2, dans lequel l'autre des première et seconde surfaces terminales (70, 75) est munie d'un second couvercle (85, 80), caractérisé en ce que le second couvercle est espacé de la surface d'entrée d'air (60).
4. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le ou chaque couvercle (80, 85) est séparé de la surface d'entrée d'air (60) par une distance sensiblement égale à celle qui sépare le tube (50) de la surface d'entrée (60).
5. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou chaque tube (50) est espacé de la surface de sortie d'air (65), le ou chaque couvercle (80, 85) étant séparé de la surface de sortie d'air (65) par une distance sensiblement égale à celle qui sépare le tube (50) de la surface de sortie (65).
6. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu un certain nombre de tubes sensiblement parallèles (50); et en ce que la distance entre le ou chaque couvercle (80, 85) et l'un des tubes les plus proches (50) est sensiblement égale à la moitié de la distance entre deux tubes adjacents (50).
7. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou chaque couvercle (80, 85) a une largeur (D2) sensiblement égale à la grande dimension (D1) de la section droite du ou de chaque tube (50), le ou chaque couvercle (80, 85) étant sensiblement parallèle à un tube adjacent respectif (50).
8. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou chaque couvercle (80') est formé d'un certain nombre de pattes (88) qui sont formées par des prolongements des ailettes au-delà des bords périphériques (45) au niveau des première et seconde surfaces terminales respectives (70, 75) du noyau et qui sont rabuttues dans un plan sensiblement parallèle à un tube adjacent respectif (50).
9. Noyau d'échangeur de chaleur (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou chaque tube (50) a une section droite de forme allongée, le tube étant disposé de telle sorte que sa grande dimension se trouve généralement entre la surface d'entrée d'air et la surface de sortie d'air.
10. Noyau d'échangeur de chaleur selon la revendication 8 et la revendication 9, caractérisé en ce que chaque patte a une dimension (D3) sensiblement égale à la grande dimension (D1) de la section droite du ou de chaque tube.
11. Echangeur de chaleur (10) comportant un premier (20) et un second (25) noyaux d'échangeur de chaleur selon l'une quelconque des revendications précédentes, les noyaux (20, 25) étant montés suivant une configuration générale en "V", les premières surfaces terminales des noyaux se trouvant au sommet de ce "V".
12. Echangeur de chaleur (10) selon la revendication 11, caractérisé en ce que l'échangeur de chaleur comprend au moins trois noyaux d'échangeur de chaleur montés en zigzag de telle sorte que les premières surfaces terminales (70) et les secondes surfaces terminales (75) des noyaux adjacents sont tour à tour adjacentes l'une à l'autre.
13. Echangeur de chaleur (10) selon la revendication 11 ou la revendication 12, caractérisé par un espace libre (90) entre les premières surfaces terminales adjacentes (70) des noyaux adjacents (20, 25).
EP80304365A 1979-12-03 1980-12-03 Elément d'échangeur de chaleur et échangeur de chaleur contenant de tels éléments Expired EP0030821B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
WOPCT/US79/01060 1979-12-03
US7901060 1979-12-03
WOPCT/US80/01516 1980-11-07
PCT/US1980/001516 WO1981001608A1 (fr) 1979-12-03 1980-11-07 Noyau d'echangeur de chaleur avec couvercles extremes

Publications (2)

Publication Number Publication Date
EP0030821A1 EP0030821A1 (fr) 1981-06-24
EP0030821B1 true EP0030821B1 (fr) 1983-05-11

Family

ID=26761510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80304365A Expired EP0030821B1 (fr) 1979-12-03 1980-12-03 Elément d'échangeur de chaleur et échangeur de chaleur contenant de tels éléments

Country Status (2)

Country Link
EP (1) EP0030821B1 (fr)
BR (1) BR8008910A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303416B4 (de) * 2003-01-29 2006-02-16 Voith Turbo Gmbh & Co. Kg Wärmetauscherbaueinheit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921278A (en) * 1932-07-27 1933-08-08 Fred M Young Radiator
US2602650A (en) * 1951-04-12 1952-07-08 Marcotte Louis Philippe Fin type radiator
US3538984A (en) * 1967-05-17 1970-11-10 Paul Leopold Kaesermann Heat exchanger unit
FR2200888A5 (fr) * 1972-09-27 1974-04-19 Philips Nv
FR2250089A1 (fr) * 1973-10-31 1975-05-30 Philips Nv
FR2259341A1 (en) * 1974-01-28 1975-08-22 Von Roll Ag Finned tube central heating radiator - tips of fins are bent parallel to tube to improve heat radiation
US3907032A (en) * 1971-04-27 1975-09-23 United Aircraft Prod Tube and fin heat exchanger
WO1980001105A1 (fr) * 1978-11-24 1980-05-29 Caterpillar Tractor Co Echangeur de chaleur auto purgeur
WO1980001104A1 (fr) * 1978-11-24 1980-05-29 Caterpillar Tractor Co Echangeur de chaleur ayant des tubes inclines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116265A (en) * 1977-06-24 1978-09-26 Caterpillar Tractor Co. Heat exchanger having controllable cleaning means

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921278A (en) * 1932-07-27 1933-08-08 Fred M Young Radiator
US2602650A (en) * 1951-04-12 1952-07-08 Marcotte Louis Philippe Fin type radiator
US3538984A (en) * 1967-05-17 1970-11-10 Paul Leopold Kaesermann Heat exchanger unit
US3907032A (en) * 1971-04-27 1975-09-23 United Aircraft Prod Tube and fin heat exchanger
FR2200888A5 (fr) * 1972-09-27 1974-04-19 Philips Nv
FR2250089A1 (fr) * 1973-10-31 1975-05-30 Philips Nv
FR2259341A1 (en) * 1974-01-28 1975-08-22 Von Roll Ag Finned tube central heating radiator - tips of fins are bent parallel to tube to improve heat radiation
WO1980001105A1 (fr) * 1978-11-24 1980-05-29 Caterpillar Tractor Co Echangeur de chaleur auto purgeur
WO1980001104A1 (fr) * 1978-11-24 1980-05-29 Caterpillar Tractor Co Echangeur de chaleur ayant des tubes inclines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A high-performance radiator" by Asselman, Mulder and Meijer, page 866, presented at the 1972 Intersociety Energy Conversion Engineering Conference *

Also Published As

Publication number Publication date
BR8008910A (pt) 1981-10-20
EP0030821A1 (fr) 1981-06-24

Similar Documents

Publication Publication Date Title
US3645330A (en) Fin for a reversible heat exchanger
JP2786702B2 (ja) 複式一体型熱交換器
US4676304A (en) Serpentine-type heat exchanger having fin plates with louvers
US4958681A (en) Heat exchanger with bypass channel louvered fins
CA1281026C (fr) Echangeur thermique a chambre sous pression
US6543527B1 (en) Metallic cooling fin for a heat exchanger, especially for a motor vehicle
EP0632878B1 (fr) Tube d'echangeur thermique
US4657070A (en) Air-cooled vapor condensers
DE112014002177T5 (de) Lamellenstützstrukturen für Ladeluftkühler
JP2006521530A (ja) 熱交換器用切欠窓付きインナーフィン
US4401154A (en) Heat exchanger core with end covers
KR19990021475A (ko) 핀형 열교환기
EP0030821B1 (fr) Elément d'échangeur de chaleur et échangeur de chaleur contenant de tels éléments
JP2003106794A (ja) 排気熱交換装置
CA1141371A (fr) Faisceau echangeur de chaleur a fermetures en bout
EP0020375B1 (fr) Echangeur de chaleur ayant des tubes inclines
JP6292335B2 (ja) 熱交換器
US4763726A (en) Heat exchanger core and heat exchanger employing the same
JPH01256795A (ja) フィン付熱交換器
JP3261932B2 (ja) 空気調和機
JPH0221550Y2 (fr)
CN212227839U (zh) 翅片及散热件
JPH03204595A (ja) 凝縮器
JPS6247029Y2 (fr)
JP2690272B2 (ja) 熱交換素子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801212

AK Designated contracting states

Designated state(s): BE DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3063193

Country of ref document: DE

Date of ref document: 19830616

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840911

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840915

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;CATERPILLAR INC.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19871231

BERE Be: lapsed

Owner name: CATERPILLAR INC.

Effective date: 19871231

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118