EP0030338B1 - Isolierter elektrischer Leiter für Wicklungen von Transformatoren und Drosselspulen - Google Patents

Isolierter elektrischer Leiter für Wicklungen von Transformatoren und Drosselspulen Download PDF

Info

Publication number
EP0030338B1
EP0030338B1 EP80107450A EP80107450A EP0030338B1 EP 0030338 B1 EP0030338 B1 EP 0030338B1 EP 80107450 A EP80107450 A EP 80107450A EP 80107450 A EP80107450 A EP 80107450A EP 0030338 B1 EP0030338 B1 EP 0030338B1
Authority
EP
European Patent Office
Prior art keywords
conductor
winding
glue joint
conductors
material adapted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107450A
Other languages
English (en)
French (fr)
Other versions
EP0030338A1 (de
Inventor
Bo Göran Dipl.-Ing. Persson
Erich Dr.Rer.Nat. Spicar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7910171A external-priority patent/SE445690B/sv
Priority claimed from SE8007350A external-priority patent/SE452218B/sv
Application filed by ASEA AB filed Critical ASEA AB
Priority to AT80107450T priority Critical patent/ATE12556T1/de
Publication of EP0030338A1 publication Critical patent/EP0030338A1/de
Application granted granted Critical
Publication of EP0030338B1 publication Critical patent/EP0030338B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • Y10S174/25Transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/30High voltage cable, e.g. above 10kv, corona prevention having insulation with a particular dimension or geometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Definitions

  • the invention relates to an insulated electrical conductor for windings of transformers and inductors according to the preamble of claim 1.
  • Such an electrical conductor is known from FR-A-1511784.
  • the spacer element In the electrical conductor known from FR-A-1511784, intended for a transformer, the spacer element consists of an insulating tape loosely inserted between the two partial conductors, which protrudes with its lateral edges beyond the broad sides of the partial conductors and also partially on the narrow sides of the partial conductors lies.
  • the reason for dividing the conductor into two partial conductors in the conductor according to FR-A-1511784 is to reduce the current displacement occurring in the transformer and the associated increased copper losses.
  • the use of a loose intermediate layer between the two partial conductors instead of two completely insulated partial conductors has the purpose in the known conductor to make do with a single winding process instead of three separate winding processes in the manufacture of the conductor.
  • Such conductors are made up of a plurality of lacquered partial conductors with a substantially rectangular cross section, which are arranged in parallel in at least two rows in a common surrounding insulation, usually paper wrapping.
  • a subconductor can be arranged in each row, one broad side of which lies opposite a broad side of an adjacent subconductor.
  • Each coated partial conductor can be provided with a coating made of a resin which is uncured or semi-hardened, so that the partial conductors can be moved against one another when they are processed into a winding. The uncured or semi-cured resin is cured only after the winding has taken its final shape, and usually in connection with the drying of the winding.
  • FR-A-1076646 describes a high-voltage winding for a rotating electrical machine with a grooved armature.
  • the winding consists of a bundle of a large number of rectangular partial conductors which adjoin one another with their broad sides in the slot of the machine and lie one above the other.
  • An intermediate layer is inserted between the partial conductors either during the winding process of the coil or after the coil has been completely wound. The intermediate layer only appears after the coil has been wound.
  • a conductor which has not yet been processed and which consists of two partial conductors is therefore never present during the entire manufacturing process of the known coil.
  • the entire stack of the partial conductors separated by intermediate layers is then sheathed together by the coil or slot insulation, which insulates the entire winding from the armature iron.
  • the intermediate layers between the partial conductors are glued to them.
  • the purpose of this bonding is to give the coil consisting of many turns or conductors sufficient dimensional stability for further processing.
  • a winding for a transformer a winding for a rotating machine is pressed into its final shape after winding has taken place, the complicated shape of the winding heads in particular having to be produced. Corresponding deformation does not take place in a transformer coil after its winding.
  • the invention has for its object to develop an insulated electrical conductor of the type mentioned, which is equal to a conductor of the same shape in terms of its mechanical strength against short-circuit forces despite the division into two partial conductors, which consists of a single solid conductor.
  • the invention is based on the knowledge that it is constructed from two partial conductors
  • Conductor is possible to use non-insulated partial conductors, provided that an insulating layer is present between the two partial conductors, which ensures that the partial conductors of the winding have no electrical contact with one another. Since the conductor consists of only two partial conductors, the partial conductors essentially retain their original mutual position during bending and similar changes in shape.
  • the possibility of using non-insulated partial conductors is extremely important in terms of costs, given the large conductor lengths used in transformer construction. This also gives you a high fill factor.
  • the insulating layer forms a glue joint between the partial conductors in the finished winding, so that after the partial conductors have been joined together, the conductor behaves mechanically essentially as a uniform solid conductor, which means a high resistance to kinking, while in electrical terms it is like a conductor consisting of two insulated sub-conductors behaves, which means low additional losses.
  • the two partial conductors are electrically connected in parallel. This is achieved in that they are electrically connected to one another at the ends of a coil made of the conductor for a transformer or a choke coil.
  • the insulation surrounding the conductor may be of a known type and may consist of a spiral and overlapped tape made of cellulose paper or polymer film, e.g. a film made of polyethylene glycol terephthalate, polycarbonate, polyimide, polyamideimide, polypropene, polymethylpentene or polysulfone.
  • the insulation can include also consist of a wrap with yarn from one of the materials mentioned.
  • suitable substances for the material that can be made to form the glue line include: curable resins such as epoxy resins, polyamides modified epoxy resins, uretane resins, isocyanate modified ester resins, uretane resin modified epoxy resins and certain types of rubber (e.g. Lein 4684 from Du Pont, USA) as well as thermoplastic resins (melt glues) such as polyethylene glycol terephthalate, polyamide and polycarbonate.
  • curable resins such as epoxy resins, polyamides modified epoxy resins, uretane resins, isocyanate modified ester resins, uretane resin modified epoxy resins and certain types of rubber (e.g. Lein 4684 from Du Pont, USA) as well as thermoplastic resins (melt glues) such as polyethylene glycol terephthalate, polyamide and polycarbonate.
  • the material forming the glue joint can preferably be applied as a separate film between the partial conductors. It is also possible to apply the material in such a way that
  • the spacer element made of insulating material in the material forming the glue joint has the task of keeping the two partial conductors at a distance and of preventing electrical contact between them. This is particularly important when gluing, if the material for the glue joint is liquid or soft. Although the partial conductors are connected in parallel at the ends of the winding, the magnetic fluxes encompassed by each partial conductor are somewhat different, so that a voltage occurs between the partial conductors during operation, which requires the insulation between them.
  • Suitable spacer elements are solid films or paper, felt or fabric made of fiber material, such as fibers made of cellulose, polyethylene glycol terephthalate, polyamide, polyvinyl acetate, polyacrylonitrile, polypropene and glass.
  • the fibers can mechanically by felting or melting or with an adhesive.
  • the spacer element can be provided with continuous pores or holes which are filled with a material forming the glue joint.
  • the paper, felts or fabrics used can preferably be loose or wide-meshed. It is also possible to use conventional powdery fillers, e.g. Powder made of chalk, mica, quartz or aluminum oxide or known fibrous fillers, e.g. Fibers made of cellulose, glass or the other fiber materials mentioned above for paper, felts and fabrics.
  • the glue-capable material has already been converted into a winding in the gluing state before the conductor is formed.
  • This has the advantage that the conductor can be produced using a strong and controlled pressure on the partial conductor, so that the glue joint between the partial conductors has the same properties at all points and the partial conductors are thoroughly anchored to one another.
  • the mechanical and electrical properties can be checked before it is processed into a winding. Since the partial conductors are anchored to one another in their final bearing, i.e. they do not change their mutual position during forming into a winding and the subsequent treatment (no mutual displacement), the conductor can be processed into a winding with predeterminable properties without difficulty.
  • the gluable material is only converted into the glued state after the conductor has assumed its final shape when it is processed into a winding.
  • the glue joint is then preferably created when the winding dries, which is heated sufficiently so that the material provided for the glue joint forms the joint between the partial conductors. Because the broad sides of the partial conductors and the insulating layer arranged between them run essentially in the axial direction of the winding, the outer partial conductor is stretched more than the inner one. This creates a radial pressure on the insulating layer in the winding, which has a favorable effect on the formation of a mechanically firm joint.
  • the low-voltage winding is constructed as a cylinder winding and the high-voltage winding as a disk winding.
  • the conductor according to the invention can also be used for other types of windings.
  • the conductor shown in Figure 1 consists of two rectangular partial conductors 10 and 11, the broad sides of which are designated 10a and 11 and the narrow sides of which are 10b and 11b.
  • the two partial conductors each have a broad side 10a or 11a side by side. In the sense of the figure, each partial conductor has a width of 2 mm and a height of 12 mm.
  • An insulating layer 12, which contains a spacer element 13, lies between the adjacent broad sides of the two partial conductors.
  • the partial conductors and the insulating layer 12 together form the conductor 8.
  • the conductor is surrounded by a winding 17 made of spirally wound paper tape.
  • Layer 12 serves to form a glue joint in the arrangement according to FIG. 2.
  • two rectangular, non-insulated partial conductors 10 and 11 made of copper with cross-sectional dimensions of 2 ⁇ 12 mm with opposite broad sides of supply rolls 18 and 19 are guided through a braking device 20, which the partial conductors are subjected to by friction during further processing keeps stretched.
  • the partial conductors are then passed through a device 21 with a plurality of deflecting rollers, in which the partial conductors are cold worked in order to increase the hardness of the copper.
  • the partial conductors are passed through a device 22, which consists of felt-clad nozzles or an ultrasonic bath with degreasing liquid can exist.
  • a 0.15 mm thick and 12 mm wide spacer 13 in the form of a loose and very porous felt which consists of a mixture of polyvinyl acetate fibers and polyamide fibers, which are connected with an acrylate binder, which has a basis weight of 30 * g / M2 and which is also impregnated with a polyamide-modified epoxy resin, is guided between the partial conductors 10 and 11 by the supply roller 24 via a plurality of deflection rollers, not shown.
  • the partial conductors then pass together with the spacer element a high-frequency coil 25, through the field of which the partial conductors are heated.
  • the partial conductors and the spacer After the partial conductors and the spacer have passed a guide device 26, in which the partial conductors are aligned laterally with respect to one another by vertical guide rollers, they arrive in a rolling device 27 with a plurality of horizontal pairs of rollers 28, where the partial conductors are pressed against one another and thereby joined together so that the glue (which corresponds to layer 12 in FIG. 1) is heated in the spacer element 13 by the partial conductors and hardened into a glue joint.
  • the conductor begins to cool and is then cooled further in the cooling device 29 before the assembled conductor arrives at a spinning machine 30, where a wrapping 17 (FIG. 1) is spun around the conductor from paper.
  • the wound conductor is then wound on a roll 31.
  • the conductor is used in low voltage windings and with modified conductor dimensions in high voltage windings of transformers according to Fig. 3-5.
  • the essential parts of the transformer shown in FIGS. 3-5 include a high-voltage bushing 41, a low-voltage bushing 42, a transformer tank 43, press flanges 44, an insulated support 45 for the low-voltage connection 46, intermediate layers 47 made of wood, a low-voltage winding 48, a high-voltage winding 49 , an iron core 50, intermediate layers 51 made of pressboard, conductor 52 in the high-voltage winding and insulating cylinder 53 made of pressboard.
  • the conductor of the low voltage winding has the cross section shown in Figure 1, i.e. it consists of two sub-conductors 10 and 11 surrounded by the winding 17, which are joined together by a glue joint formed from the layer 12 and containing the spacer element 13.
  • the conductors 52 of the high-voltage winding which can be connected in parallel or in series, each consist of two rectangular partial conductors 54 and 55 (FIG. 5), the cross sections of which have the dimensions 1.5 ⁇ 10 mm and a glue joint is arranged between their broad sides made of an insulating layer 56 of the same type as layer 12, ie including a spacer 13 (not shown in Fig. 5) is constructed.
  • the conductor insulation 57 consists of several turns of paper tape, which is wound spirally and overlapped.
  • the high-voltage winding 49 is preferably an interleaved disk coil winding, the number of conductors of a disk being significantly greater than three, as is shown for the sake of clarity in the winding in FIGS. 4 and 5.
  • the insulating layer 12 in the conductor according to FIG. 1 is made of a hardenable resin and contains a 0.15 mm thick and 12 mm wide spacer element 13 in the form of the loose (coarse-mesh) and porous described at the beginning Felt with a basis weight of 30 g / m 2 .
  • the hardenable resin with which the spacer element is impregnated is an epoxy resin which is mixed with dicyandiamide as the hardener, 3 parts by weight of hardener being used per 100 parts by weight of epoxy resin.
  • the insulating layer, which is dry, is loosely arranged as a separate tape between the partial conductors and is therefore not glued to the partial conductors 10 and 11.
  • the conductor is surrounded by a winding 17 made of paper tape wound in a spiral.
  • the conductor is used in the low-voltage winding and with modified cross-sectional dimensions (for example 1.5 x 10 mm) in the high-voltage winding in transformers according to FIGS. 3 to 5.
  • the glue joint is formed first after the conductor has been processed into a winding.
  • the hardening of the hardenable resin in the insulating layers 12 and 56 takes place with the formation of a mechanically firm glue joint? between the partial conductors when the winding is dried at approx. 130 ° C for approx. 12 hours. Because the conductors in both the low-voltage winding and the high-voltage winding are arranged such that the flat sides of the partial conductors and the insulating layer run in the axial direction of the winding, the outer partial conductor of the conductor is stretched more than the inner partial conductor. As a result, the insulating layer is exposed to radial pressure.
  • the transformer tank 43 is filled with transformer oil after drying.

Description

  • Die Erfindung betrifft einen isolierten elektrischen Leiter für Wicklungen von Transformatoren und Drosselspulen gemäß dem Oberbegriff des Anspruches 1. Ein solcher elektrischer Leiter ist bekannt aus der FR-A-1511784.
  • Bei dem aus der FR-A-1511784 bekannten, für einen Transformator bestimmten elektrischen Leiter besteht das Distanzelement aus einem zwischen die beiden Teilleiter lose eingelegten isolierenden Band, welches mit seinen seitlichen Rändern über die Breitseiten der Teilleiter hinausragt und auch teilweise an den Schmalseiten der Teilleiter liegt. Der Grund für die Aufteilung des Leiters in zwei Teilleiter besteht bei dem Leiter gemäß der FR-A-1511784 darin, die im Transformator auftretende Stromverdrängung und die damit verbundenen erhöhten Kupferverluste herabzusetzen. Die Verwendung einer losen Zwischenlage zwischen den beiden Teilleitern anstelle zweier vollständig isolierter Teilleiter hat bei dem bekannten Leiter den Zweck, bei der Herstellung des Leiters mit einem einzigen Wickelvorgang anstelle von drei getrennten Wickelvorgängen auszukommen.
  • Die bei dem Leiter nach der FR-A-1511784 erzielte Herabsetzung der Stromverdrängung durch die Aufteilung in zwei Teilleiter wird mit dem Nachteil erkauft, daß die mechanische Stabilität des Leiters durch die Aufteilung erheblich herabgesetzt wird. Bei einem Kurzschluß in Transformatoren werden starke Stromkräfte auf die Wicklung ausgeübt, die zu einem Knicken der Wicklung führen können, wenn diese nicht in sich ausreichend mechanisch fest ist oder gut verspannt und abgestützt ist.
  • Eine Möglichkeit, die Knickfestigkeit einer Wicklung und damit die Widerstandsfähigkeit gegen Kurzschlußkräfte zu steigern, besteht darin, die Dicke des Leiters zu erhöhen, aus dem die Wicklung aufgebaut ist. Eine Erhöhung der Dicke des Leiters führt jedoch wieder zu größeren Zusatzverlusten und zu eventuellen Erwärmungsproblemen dergestalt, daß hohe örtliche Temperaturen in der Wicklung auftreten. Außerdem wird die Wicklung in elektrischer Hinsicht überdimensioniert und erfordert mehr Raum.
  • Es ist bekannt, die Zusatzverluste durch Verwendung kontinuierlich transponierter Leiter beim Aufbau von Transformatorwicklungen zu verringern. Solche Leiter sind aus mehreren lakkierten Teilleitern mit im wesentlichen rechteckigem Querschnitt aufgebaut, die in einer gemeinsamen umgebenden Isolierung, normalerweise einer Papierumspinnung, parallel in mindestens zwei Reihen angeordnet sind. In jeder Reihe kann ein Teilleiter angeordnet sein, dessen eine Breitseite einer Breitseite eines benachbarten Teilleiters gegenüber liegt. Jeder lackierte Teilleiter kann mit einem Überzug aus einem Harz versehen sein, das ungehärtet oder halbgehärtet ist, so daß die Teilleiter bei ihrer Verarbeitung zu einer Wicklung gegeneinander beweglich sind. Das ungehärtete oder halbgehärtete Harz wird erst gehärtet, nachdem die Wicklung ihre endgültige Form bekommen hat und normalerweise im Zusammenhang mit dem Trocknen der Wicklung. Aufgrund der vielen Teilleiter und der Dicke des Leiters läßt sich ein solcher Leiter schlecht wickeln, und es ist nicht möglich, ihn für komplizierte Wicklungen, wie z.B. verschachtelte Scheibenspulenwicklungen, zu verwenden wegen der dort erforderlichen Übergänge zwischen benachbarten Scheiben. Kontinuierlich transponierte Leiter werden daher normalerweise nur für Wicklungen verwendet, die eine verhältnismäßig kleine Windungszahl haben, die sich in einer Lage auf einem Isolierzylinder aufbringen läßt, wie beispielsweise bei Regelwicklungen.
  • Die FR-A-1076646 beschreibt eine Hochspannungswicklung für eine rotierende elektrische Maschine mit genutetem Anker. Die Wicklung besteht aus einem Bündel einer Vielzahl von rechteckförmigen Teilleitern, die in der Nut der Maschine mit ihren Breitseiten aneinandergrenzen und übereinander liegen. Entweder während des Wickelvorganges der Spule oder nachdem die Spule fertig gewickelt ist, wird zwischen die Teilleiter eine Zwischenlage eingelegt. Die Zwischenlage erscheint also erst, nachdem die Spule gewickelt worden ist. Ein noch nicht verarbeiteter Leiter, der aus zwei Teilleitern besteht, ist also während des gesamten Herstellungsvorganges der bekannten Spule nie vorhanden. Der gesamte Stapel der durch Zwischenlagen getrennten Teilleiter wird dann gemeinsam von der Spulen- oder Nutisolation ummantelt, welche die gesamte Wicklung gegenüber dem Ankereisen isoliert. Nachdem die Spule gemäß der FR-A-1076646 fertig gewickelt worden ist, werden die Zwischenlagen zwischen den Teilleitern mit diesen verklebt. Mit diesem Verkleben wird bezweckt, der aus vielen Windungen oder Leitern bestehenden Spule für die weitere Verarbeitung eine ausreichende Formstabilität zu geben. Im Gegensatz zu einer Wicklung für einen Transformator wird eine Wicklung für eine rotierende Maschine nach erfolgtem Wickeln in ihre endgültige Form gepreßt, wobei insbesondere die komplizierte Form der Wickelköpfe hergestellt werden muß. Eine entsprechende Verformung findet bei einer Transformatorspule nach ihrer Wicklung nicht statt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen isolierten elektrischen Leiter der eingangs genannten Art zu entwickeln, der trotz Aufteilung in zwei Teilleiter hinsichtlich seiner mechanischen Festigkeit gegenüber Kurzschlußkräften einem Leiter gleicher Form ebenbürtig ist, der aus einem einzigen massiven Leiter besteht.
  • Zur Lösung dieser Aufgabe wird ein elektrischer Leiter nach dem Oberbegriff des Anspruches 1 vorgeschlagen, der erfindungsgemäß die im kennzeichnenden Teil des Anspruches 1 genannten Merkmale hat.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen genannt.
  • Die Erfindung gründet sich auf die Erkenntnis, daß es bei einem aus zwei Teilleitern aufgebauten Leiter möglich ist, nicht isolierte Teilleiter zu verwenden, vorausgesetzt, daß zwischen den beiden Teilleitern eine isolierende Schicht vorhanden ist, die sicherstellt, daß die Teilleiter der Wicklung keinen elektrischen Kontakt miteinander haben. Da der Leiter aus nur zwei Teilleitern besteht, behalten die Teilleiter beim Biegen und ähnlichen Formänderungen ihre ursprüngliche gegenseitige Lage im wesentlichen bei. Die Möglichkeit der Verwendung nicht isolierter Teilleiter ist angesichts der im Transformatorbau verwendeten großen Leiterlängen hinsichtlich der Kosten außerordentlich wichtig. Außerdem erhält man hierdurch einen hohen Füllfaktor. Die isolierende Schicht bildet gemäß der Erfindung in der fertigen Wicklung eine Leimfuge zwischen den Teilleitern, so daß der Leiter nach dem Zusammenfügen der Teilleiter sich mechanisch im wesentlichen wie ein einheitlicher massiver Leiter verhält, was eine hohe Knickfestigkeit bedeutet, während er sich in elektrischer Hinsicht wie ein aus zwei gegeneinander isolierten Teilleitern bestehender Leiter verhält, was niedrige Zusatzverluste bedeutet.
  • Die beiden Teilleiter sind elektrisch paralelgeschaltet. Dies wird dadurch erreicht, daß sie an den Enden einer aus dem Leiter hergestellten Spule für einen Transformator oder eine Drosselspule elektrisch miteinander verbunden werden.
  • Die den Leiter umgebende Isolierung kann bekannter Art sein und aus einem spiralförmig und überlappt gewickelten Band aus Zellulosepapier oder aus Polymerfilm bestehen, wie z.B. einem Film aus Polyäthylenglykolterephtalat, Polykarbonat, Polyimid, Polyamidimid, Polypropen, Polymethylpenten oder Polysulfon. Die Isolierung kann u.a. auch aus einer Umwicklung mit Garn aus einem der genannten Materialien bestehen.
  • Als Beispiel für geeignete Substanzen für das Material, das dazu gebracht werden kann, die Leimfuge zu bilden, können genannt werden: Härtbare Harze wie Epoxyharze, mit Polyamiden modifizierte Epoxyharze, Uretanharze, mit Isocyanaten modifizierte Esterharze, mit Uretanharz modifizierte Epoxyharze und gewisse Gummiarten (z.B. Lein 4684 von Du Pont, USA) sowie thermoplastische Harze (Schmelzleime), wie Polyäthylenglykolterephtalat, Polyamid und Polykarbonat. Das die Leimfuge bildende Material kann vorzugsweise als ein separater Film zwischen den Teilleitern angebracht werden. Es ist auch möglich, das Material derart anzubringen, daß es auf wenigstens einer der beiden benachbarten Breitseiten der Teilleiter eine fest haltende Schicht bildet, beispielsweise durch Bestreichen eines der Teilleiter mit einer Lösung des Materials.
  • Das Distanzelement aus Isoliermaterial in dem die Leimfuge bildenden Material hat die Aufgabe, die beiden Teilleiter auf Distanz zu halten und einen elektrischen Kontakt zwischen diesen zu verhindern. Diese ist insbesondere beim Leimen wichtig, wenn das Material für die Leimfuge flüssig oder weich ist. Obwohl die Teilleiter an den Enden der Wicklung parallelgeschaltet sind, sind die von jedem Teilleiter umfaßten magnetischen Flüsse etwas unterschiedlich, so daß bei Betrieb zwischen den Teilleitern eine Spannung auftritt, welche die Isolierung zwischen ihnen erforderlich macht. Geeignete Distanzelemente sind massive Filme oder Papier, Filz oder Gewebe aus Fasermaterial, wie Fasern aus Zellulose, Polyäthylenglykolterephtalat, Polyamid, Polyvinylazetat, Polyakrylnitril, Polypropen und Glas. Im Papier oder im Filz können die Fasern u.a. auf mechanischem Wege durch Verfilzung oder durch Schmelzung oder mit einem Klebstoff miteinander verbunden werden. Das Distanzelement kann mit durchgehenden Poren oder Löchern versehen sein, die mit einem die Leimfuge bildenden Material gefüllt sind. Das verwendete Papier, die Filze oder Gewebe können vorzugsweise locker oder grobmaschig sein. Es ist auch möglich, als Distanzelement konventionelle pulverförmige Füllmittel, wie z.B. Pulver aus Kreide, Glimmer, Quarz oder Aluminiumoxyd oder bekannte fibröse Füllmittel, wie z.B. Fasern aus Zellulose, Glas oder die übrigen oben für Papier, Filze und Gewebe genannten Fasermaterialien, zu verwenden.
  • Entsprechend einer Ausführungsform der Erfindung ist das leimfähige Material bereits vor der Formung des Leiters zu einer Wicklung in den leimenden Zustand übergeführt worden. Dies hat den Vorteil, daß der Leiter unter Anwendung eines kräftigen und kontrollierten Druckes auf den Teilleiter hergestellt werden kann, so daß die Leimfuge zwischen den Teilleitern an allen Stellen gleiche Eigenschaften erhält und die Teilleiter gründlich miteinander verankert werden. Bei einem solchen Leiter können die mechanischen und elektrischen Eigenschaften vor seiner Verarbeitung zu einer Wicklung geprüft werden. Da die Teilleiter in ihrer endgültigen Lager miteinander verankert sind, sie also ihre gegenseitige Lage beim Formen zu einer Wicklung und der nachfolgenden Behandlung nicht ändern (kein gegenseitiges Verschieben), kann der Leiter ohne Schwierigkeiten zu einer Wicklung mit vorausbestimmbaren Eigenschaften verarbeitet werden.
  • Gemäß einer anderen Ausführungsform der Erfindung wird das leimfähige Material erst dann in den leimenden Zustand übergeführt, nachdem der Leiter bei seiner Verarbeitung zu einer Wicklung seine endgültige Form angenommen hat. Die Schaffung der Leimfuge erfolgt dann vorzugsweise beim Trocknen der Wicklung, wobei diese ausreichend erhitzt wird, damit das für die Leimfuge vorgesehene Material die Fuge zwischen den Teilleitern bildet. Dadurch, daß die Breitseiten der Teilleiter und die zwischen ihnen angebrachte isolierende Schicht im wesentlichen in Achsrichtung der Wicklung verlaufen, wird der äußere Teilleiter stärker gedehnt als der innere. Dadurch kommt auf die isolierende Schicht in der Wicklung ein radialer Druck zustande, der sich günstig auf die Bildung einer mechanisch festen Fuge auswirkt.
  • Anhand der in den Figuren gezeigten Ausführungsbeispiele soll die Erfindung näher erläutert werden. Es zeigt
    • Fig. 1 ein Ausführungsbeispiel eines Leiters gemäß der Erfindung im Querschnitt,
    • Fig. 2 schematisch eine Vorrichtung zur Herstellung eines Leiters gemäß der Erfindung,
    • Fig. 3 schematisch einen Leistungstransformator, von dem alle für das Verständnis der vorliegenden Erfindung wichtigen Teile im Prinzip dargestellt sind, wobei jedoch der Anschaulichkeit halber nur eine Niederspannungswicklung und eine Hochspannungswicklung mit den zugehörigen Durchführungen gezeigt sind,
    • Fig. 4 den Wicklungsteil des Transformators in größerem Maßstab,
    • Fig. 5 in vereinfachter Darstellung (nur drei Windungen) eine Scheibenspule im Querschnitt, aus denen die Hochspannungswicklung aufgebaut ist.
  • Bei dem in den Figuren 3 bis 5 gezeigten Transformator ist die Niederspannungswicklung als Zylinderwicklung und die Hochspannungswicklung als Scheibenwicklung aufgebaut. Der Leiter nach der Erfindung ist jedoch auch für andere Wicklungsarten verwendbar.
  • Der in Figur 1 gezeigte Leiter gemäß der Erfindung besteht aus zwei rechteckigen Teilleitern 10 und 11, deren Breitseiten mit 10a und 11 und deren Schmalseiten mit 10b und 11b bezeichnet sind. Die beiden Teilleiter liegen mit je einer Breitseite 10a bzw. 11a nebeneinander. Jeder Teilleiter hat im Sinne der Figur eine Breite von 2 mm und eine Höhe von 12 mm. Zwischen den benachbarten Breitseiten der beiden Teilleiter liegt eine isolierende Schicht 12, die ein Distanzelement 13 enthält. Die Teilleiter sowie die isolierende Schicht 12 bilden zusammen den Leiter 8. Der Leiter ist von einer Umwicklung 17 aus spiralförmig gewickeltem Papierband umgeben. Die Schicht 12 dient zur Bildung einer Leimfuge in der Anordnung gemäß Figur 2.
  • Bei der Herstellung des Leiters nach Figur 1 werden zwei rechteckige, nichtisolierte Teilleiter 10 und 11 aus Kupfer mit Querschnittsabmessungen von 2 x 12 mm mit einander gegenüberliegenden Breitseiten von Vorratsrollen 18 und 19 durch eine Bremsvorrichtung 20 geführt, welche die Teilleiter während der weiteren Verarbeitung durch Reibung gestreckt hält. Danach werden die Teilleiter zunächst durch eine Vorrichtung 21 mit mehreren Umlenkwalzen geführt, in denen die Teilleiter kaltbearbeitet werden, um die Härte des Kupfers zu steigern.Anschließend werden die Teilleiter zwecks Reinigung durch eine Vorrichtung 22 geführt, die aus filzbekleideten Düsen oder einem Ultraschallbad mit Entfettungsflüssigkeit bestehen kann. Ein 0,15 mm dikkes und 12 mm breites Distanzelement 13 in Form eines lockeren und sehr porösen Filzes, der aus einer Mischung von Polyvinylazetatfasern und Polyamidfasern besteht, welche mit einem Akrylatbindemittel verbunden sind, der ein Flächengewicht von 30*g/M2 hat und der außerdem mit einem polyamidmodifizierten Epoxyharz imprägniert ist, wird von der Vorratsrolle 24 über mehrere nicht dargestellte Umlenkrollen zwischen die Teilleiter 10 und 11 geführt. Die Teilleiter passieren danach zusammen mit dem Distanzelement eine Hochfrequenzspule 25, durch deren Feld die Teilleiter erhitzt werden. Nachdem die Teilleiter und das Distanzelement eine Führungsvorrichtung 26 passiert haben, in welcher die Teilleiter durch vertikale Führungswalzen in seitlicher Richtung zueinander ausgerichtet werden, gelangen sie in eine Walzvorrichtung 27 mit mehreren horizontalen Walzenpaaren 28, wo die Teilleiter gegeneinandergedrückt und dadurch zusammengefügt werden, daß der Leim (der der Schicht 12 in Figur 1 entspricht) im Distanzelement 13 von den Teilleitern erhitzt wird und zu einer Leimfuge erhärtet. Während dieses Prozesses beginnt der Leiter abzukühlen und wird dann in der Kühlvorrichtung 29 weiter gekühlt, bevor der zusammengefügte Leiter zu einer Umspinnungsmaschine 30 gelangt, wo aus Papier eine Umwicklung 17 (Fig. 1) um den Leiter gesponnen wird. Der umsponnene Leiter wird danach auf eine Rolle 31 gewickelt. Der Leiter wird in Niederspannungswicklungen und mit modifizierten Leiterabmessungen in Hochspannungswicklungen von Transformatoren gemäß Fig. 3-5 verwendet.
  • Zu den wesentlichen Teilen des in den Figuren 3-5 gezeigten Transformators gehören eine Hochspannungsdurchführung 41, eine Niederspannungsdurchführung 42, ein Transformatorkessel 43, Preßflansche 44, eine isolierte Abstützung 45 für den Niederspannungsanschluß 46, Zwischenlagen 47 aus Holz, eine Niederspannungswicklung 48, eine Hochspannungswicklung 49, ein Eisenkern 50, Zwischenlagen 51 aus Preßspan, Leiter 52 in der Hochspannungswicklung und Isolierzylinder 53 aus Preßspan.
  • Der Leiter der Niederspannungswicklung hat den in Figur 1 gezeigten Querschnitt, d.h. er besteht aus zwei von der Unwicklung 17 umgebenen Teilleitern 10 und 11, die durch eine aus der Schicht 12 gebildete Leimfuge, die das Distanzelement 13 enthält, zusammengefügt sind.
  • Die Leiter 52 der Hochspannungswicklung, die parallel oder in Reihe geschaltet sein können, bestehen aus je zwei rechteckigen Teilleitern 54 bzw. 55 (Fig. 5), deren Querschnitte die Abmessungen 1,5 x 10 mm haben und zwischen deren Breitseiten eine Leimfuge angeordnet ist, die aus einer isolierenden Schicht 56 derselben Art wie die Schicht 12, d.h. einschließlich eines Distanzelementes 13 (in Fig. 5 nicht dargestellt), aufgebaut ist. Die Leiterisolierung 57 besteht aus mehreren Windungen Papierband, das spiralförmig und überlappt gewickelt ist. Die Hochspannungswicklung 49 ist vorzugsweise eine Verschachtelte Scheibenspulenwicklung, wobei die Leiterzahl einer Scheibe bedeutend größer als drei ist, wie dies der Deutlichkeithalber bei der Wicklung in den Figuren 4 und 5 dargestellt ist.
  • Entsprechend einer alternativen Ausführungsform ist die isolierende Schicht 12 im Leiter nach Fig. 1 aus einem härtbaren Harz aufgebaut und enthält ein 0,15 mm dickes und 12 mm breites Distanzelement 13 in Form des anfangs beschriebenen lockeren (grobmaschigen) und porösen Filzes mit einem Flächengewicht von 30 g/m2. Das härtbare Harz, mit dem das Distanzelement imprägniert ist, ist ein Epoxyharz, das mit Dicyandiamid als Härter versetzt ist, wobei 3 Gewichtsteile Härter auf 100 Gewichtsteile Epoxyharz verwendet werden. Die isolierende Schicht, die trokken ist, ist als ein separates Band lose zwischen den Teilleitern angeordnet und somit nicht auf die Teilleiter 10 und 11 geleimt. Der Leiter ist wie in den vorgenannten Fällen mit einer Umwicklung 17 aus spiralförmig gewickeltem Papierband umgeben. Der Leiter wird in der Niederspannungswicklung und mit modifizierten Querschnittsabmessungen (z.B. 1,5 x 10 mm) in der Hochspannungswicklung in Transformatoren nach Figur 3 bis 5 verwendet.
  • Bei dieser alternativen Ausführungsform wird die Leimfuge erste gebildet, nachdem der Leiter zu einer Wicklung verarbeitet worden ist. Das Aushärten des härtbaren Harzes in den isolierenden Schichten 12 und 56 erfolgt dabei unter Bildung einer mechanisch festen Leimfug? zwischen den Teilleitern, wenn die Wicklung bei ca. 130°C ca. 12 Stunden lang getrocknet wird. Dadurch, daß die Leiter sowohl in der Niederspannungswicklung wie in der Hochspannungswicklung so angeordnet sind, daß die Flachseiten der Teilleiter und die isolierende Schicht in axialer Richtung der Wicklung verlaufen, wird der äußere Teilleiter des Leiters stärker gedehnt als der innere Teilleiter. Dies hat zur Folge, daß die isolierende Schicht einem radialen Druck ausgesetzt wird.
  • Der Transformatorkessel 43 wird in beiden beschriebenen Ausführungsformen nach dem Trocknen mit Transformatorenöl gefüllt.

Claims (10)

1. Isolierter elektrischer Leiter (8; 52) für Wicklungen von Transformatoren und Drosselspulen, welcher Leiter aus zwei im Querschnitt im wesentlichen rechteckförmigen, nicht isolierten Teilleitern (10, 11; 54, 55) aufgebaut ist, die mit ihren Breitseiten (10a, 11a) nebeneinander liegen, wobei zwischen den beiden genannten Breitseiten ein Distanzelement (13) aus Isoliermaterial angeordnet ist, dadurch gekennzeichnet, daß zwischen den genannten Breitseiten (10a, 11a) eine Leimfuge aus isolierendem leimfähigen Material vorhanden ist, in der das Distanzelement (13) liegt.
2. Leiter nach Anspruch 1, dadurch gekennzeichnet, daß das leimfähige Material vor der Formung des Leiters zu einer Wicklung in den leimenden Zustand übergeführt worden ist.
3. Leiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das leimfähige Material unter Einschluß des Distanzelementes (13) ein in bezug auf die Teilleiter selbständiger Film ist.
4. Leiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das leimfähige Material eine auf mindestens einer der beiden benachbarten Breitseiten der Teilleiter angeordnete Schicht bildet.
5. Leiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Distanzelement (13) aus einem bandförmigen Material mit durchgehenden Poren oder Löchern besteht.
6. Leiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Distanzelement (13) aus einem in dem leimfähigen Material angeordneten pulverförmigen oder fibrösen Füllmittel besteht.
7. Leiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das leimfähige Material ein härtbares Harz ist.
8. Leiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das leimfähige Material durch Erhitzen in den leimenden Zustand übergeführt werden kann.
9. Aus einem Leiter nach einem der Ansprüche 1 oder 3 bis 8 gewickelte Transformator- oder Drosselspule, dadurch gekennzeichnet, daß das leimfähige Material erst nach Formung der Spule in den leimenden Zustand übergeführt worden ist.
10. Spule nach Anspruch 9, dadurch gekennzeichnet, daß die Wicklung (48, 49) eine im wesentlichen zylindrische Form hat und daß die Flachseiten (10a, 11 a) der Teilleiter (10, 11; 54, 55) und die isolierende Schicht (12; 52) im wesentlichen in axialer Richtung der Wicklung verlaufen.
EP80107450A 1979-12-11 1980-11-28 Isolierter elektrischer Leiter für Wicklungen von Transformatoren und Drosselspulen Expired EP0030338B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80107450T ATE12556T1 (de) 1979-12-11 1980-11-28 Isolierter elektrischer leiter fuer wicklungen von transformatoren und drosselspulen.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE7910171 1979-12-11
SE7910171A SE445690B (sv) 1979-12-11 1979-12-11 Med omgivande isolering forsedd ledare for formning av lindningar till transformatorer och andra induktiva apparater
SE8007350 1980-10-20
SE8007350A SE452218B (sv) 1980-10-20 1980-10-20 Med omgivande isolering forsedd ledare vilken er formad till en lindning for en transformator eller annan induktiv apparat

Publications (2)

Publication Number Publication Date
EP0030338A1 EP0030338A1 (de) 1981-06-17
EP0030338B1 true EP0030338B1 (de) 1985-04-03

Family

ID=26657410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107450A Expired EP0030338B1 (de) 1979-12-11 1980-11-28 Isolierter elektrischer Leiter für Wicklungen von Transformatoren und Drosselspulen

Country Status (6)

Country Link
US (1) US4552990A (de)
EP (1) EP0030338B1 (de)
BR (1) BR8008058A (de)
CA (1) CA1170732A (de)
DE (1) DE3070426D1 (de)
NO (1) NO803716L (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150405A (ja) * 1983-02-10 1984-08-28 Toshiba Corp 常電導コイルおよびその製造方法
GB8916332D0 (en) * 1989-07-17 1989-08-31 Gec Alsthom Ltd Transformer winding conductor
US5393933A (en) * 1993-03-15 1995-02-28 Goertz; Ole S. Characteristic impedance corrected audio signal cable
DE4438187A1 (de) * 1994-10-26 1996-05-02 Abb Management Ag Elektrischer Leiter für Wicklungen mit verteiltem Überspannungsschutz
DE59701100D1 (de) * 1996-09-30 2000-03-09 Asta Elektrodraht Ges M B H Oe Mehrfachparallelleiter für wicklungen elektrischer maschinen und geräte
SE9704423D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Roterande elektrisk maskin med spolstöd
SE9704422D0 (sv) 1997-02-03 1997-11-28 Asea Brown Boveri Ändplatta
US6080935A (en) * 1998-07-21 2000-06-27 Abb Power T&D Company Inc. Folded insulated foil conductor and method of making same
SE516548C2 (sv) 1999-05-27 2002-01-29 Abb Ab Roterande elektrisk maskin där lindningen utgörs av en högspänningskabel med reducerade virvelströmsförluster
WO2001075908A1 (en) * 2000-04-03 2001-10-11 Abb Power T & D Company Inc. Dry type semi-conductor cable distribution transformer
FR2843975B1 (fr) 2002-09-04 2008-11-14 Kermel Fibres et fibrides, leur procede d'obtention, articles obtenus a partir de ces fibres et/ou fibrides.
EP1420507B1 (de) * 2002-11-16 2008-01-09 Minebea Co., Ltd. Miniaturmotor mit dauermagnetischem Läufer
MX2011002323A (es) * 2008-09-03 2011-04-05 Usg Interiors Inc Modulo electricamente conductor.
US9208924B2 (en) * 2008-09-03 2015-12-08 T+Ink, Inc. Electrically conductive element, system, and method of manufacturing
MX2011002175A (es) * 2008-09-03 2011-04-07 Usg Interiors Inc Cinta electricamente conductora para paredes y techos.
EP2325849B1 (de) * 2009-11-19 2014-01-08 Essex Europe Drillleiter
JP6048910B2 (ja) * 2011-11-14 2016-12-21 住友電気工業株式会社 リアクトル、コイル成形体、コンバータ、及び電力変換装置
CN105580089A (zh) * 2013-09-06 2016-05-11 古河电气工业株式会社 扁平电线及其制造方法以及电气设备
JP6325549B2 (ja) * 2013-09-06 2018-05-16 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器
JP6200480B2 (ja) * 2015-11-20 2017-09-20 古河電気工業株式会社 集合電線およびその製造方法並びに電気機器
JP6822252B2 (ja) * 2017-03-22 2021-01-27 三菱マテリアル株式会社 コイル及びその製造方法
RU210354U1 (ru) * 2021-10-29 2022-04-11 Акционерное общество "Москабельмет" (АО "МКМ") Провод обмоточный подразделенный с прямоугольными медными жилами

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB720076A (en) * 1951-12-13 1954-12-15 Oerlikon Maschf Method of insulating a high tension dynamo-electric machine winding
CH295499A (de) * 1951-12-13 1953-12-31 Oerlikon Maschf Verfahren zur Herstellung von Hochspannungs-Wicklungsisolationen für elektrische Maschinen.
FR1076646A (fr) * 1952-05-03 1954-10-28 Oerlikon Maschf Isolement pour faisceaux de conducteurs électriques
FR1226319A (fr) * 1958-06-05 1960-07-11 Westinghouse Electric Corp Isolation électrique à base de polyhaloéthylène
GB1103764A (en) * 1963-12-17 1968-02-21 Pirelli General Cable Works Improvements in or relating to composite conductors for heavy current windings
GB1156133A (en) * 1966-04-22 1969-06-25 Parsons C A & Co Ltd Improvements in and relating to Insulated Electrical Conductors
US3543205A (en) * 1968-08-05 1970-11-24 Westinghouse Electric Corp Electrical windings
US3723797A (en) * 1970-06-05 1973-03-27 Asea Ab Insulated coil for arrangement in a slot in the stator or rotor of an electrical machine
BE793219A (fr) * 1971-12-22 1973-06-22 Westinghouse Electric Corp Rubans de frettage
DE2208029B2 (de) * 1972-02-17 1976-06-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Hochspannungsfeste isolierung fuer wicklungsleiter grosser elektrischer maschinen
US3757029A (en) * 1972-08-14 1973-09-04 Thomas & Betts Corp Shielded flat cable
JPS5232062B2 (de) * 1972-12-25 1977-08-19
US3819443A (en) * 1973-01-15 1974-06-25 Sun Chemical Corp Method for making multifinned shielding tapes
JPS5913123B2 (ja) * 1973-03-05 1984-03-28 株式会社フジクラ 転位電線
DE2330786C3 (de) * 1973-06-16 1978-11-23 Transformatoren Union Ag, 7000 Stuttgart Wicklung aus Doppelscheibenspulen für den Wirkwiderstand von Filterkreisdrosseln
US3828120A (en) * 1973-10-23 1974-08-06 Anaconda Co Flexible flat power cable
DE2402149A1 (de) * 1974-01-17 1975-07-24 Transformatoren Union Ag Drilleiter zur herstellung von wicklungen fuer transformatoren, drosselspulen und dgl.
SE398570B (sv) * 1976-04-26 1977-12-27 Asea Ab Sett att applicera ett band av isolermaterial i lengsriktningen av en i huvudsak rektanguler elektrisk ledare och anordning for genomforande av settet
US4204087A (en) * 1976-11-22 1980-05-20 Westinghouse Electric Corp. Adhesive coated electrical conductors
US4109375A (en) * 1976-11-22 1978-08-29 Westinghouse Electric Corp. Method of making adhesive coated electrical conductors
US4259141A (en) * 1977-04-22 1981-03-31 Asea Aktiebolag Apparatus for application of a tape of insulating material in the longitudinal direction of a substantially rectangular electrical conductor
JPS53141401A (en) * 1977-05-16 1978-12-09 Hitachi Ltd Conductor for electric machinery

Also Published As

Publication number Publication date
EP0030338A1 (de) 1981-06-17
US4552990A (en) 1985-11-12
NO803716L (no) 1981-06-12
DE3070426D1 (en) 1985-05-09
CA1170732A (en) 1984-07-10
BR8008058A (pt) 1981-06-23

Similar Documents

Publication Publication Date Title
EP0030338B1 (de) Isolierter elektrischer Leiter für Wicklungen von Transformatoren und Drosselspulen
DE974705C (de) Glimmerpapierisolation fuer elektrische Leiter
DE3346031A1 (de) Spulenisolationsverfahren fuer elektrische maschinen
DE2258336A1 (de) Spule zum einlegen in die nuten einer elektrischen maschine
EP2390885B1 (de) Verfahren zur Herstellung von Wicklungen für einen Trockentransformator
DE1084369B (de) Verfahren zur Herstellung einer eine Ober- und Unterspannungswicklung enthaltenden Wicklungsanordnung fuer Transformatoren
WO1992016955A1 (de) Verfahren zum herstellen einer giessharzspule, sowie eine giessharzspule
DE3244823A1 (de) Elektroblech zur herstellung von lamellierten eisenkernen fuer statische oder dynamische elektrische maschinen
EP0133220A2 (de) Elektrischer Leiter
DE2051883B2 (de) Wicklung fuer trockentransformatoren und verfahren zu ihrer herstellung
WO2010006670A1 (de) Wicklung für einen transformator
DE2100629B2 (de) Verfahren zur Herstellung einer einlagigen Wicklung und Vorrichtung zur Durchführung des Verfahrens
EP1371124B1 (de) Verfahren zum herstellen eines leiterstabes
DE2818193C2 (de) Verfahren zur Herstellung einer imprägnierbaren Glimmerisolierfolie
EP0092018B1 (de) Drosselspule, insbesondere trockenisolierte Drosselspule ohne Eisenkern
DE1665075B1 (de) Verfahren zur Isolierung eines elektrischen Gegenstandes
DE1488664B2 (de) Verfahren zur Herstellung eines glok kenförmigen Rotors fur eine elektrische Radialluftspaltmaschine
DE102010060832A1 (de) Verbundwerkstoff als Isolator in Transformatoren und Motoren
DE4445423B4 (de) Verfahren zum Herstellen von Wicklungen für einen Trockentransformator
EP0172494B1 (de) Verfahren zur Herstellung in Giessharz eingebetteter Wicklungen für Transformatoren
DE3214171A1 (de) Starkstromtransformator oder drosselspule
DE2151753B2 (de) Spule zum Einlegen In Nuten eines Stators oder Rotors einer elektrischen Maschine
DE2402149A1 (de) Drilleiter zur herstellung von wicklungen fuer transformatoren, drosselspulen und dgl.
DE1438284C (de) Isolierter Feldpol
DE10323099A1 (de) Verfahren zum Herstellen einer Wicklung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT

Designated state(s): AT BE CH DE FR GB IT

17P Request for examination filed

Effective date: 19811119

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI

Designated state(s): AT BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 12556

Country of ref document: AT

Date of ref document: 19850415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3070426

Country of ref document: DE

Date of ref document: 19850509

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891016

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19891027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891103

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891129

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891130

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901128

Ref country code: AT

Effective date: 19901128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901130

Ref country code: CH

Effective date: 19901130

Ref country code: BE

Effective date: 19901130

BERE Be: lapsed

Owner name: ASEA A.B.

Effective date: 19901130

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST