EP0024548B1 - Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat - Google Patents

Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat Download PDF

Info

Publication number
EP0024548B1
EP0024548B1 EP80104347A EP80104347A EP0024548B1 EP 0024548 B1 EP0024548 B1 EP 0024548B1 EP 80104347 A EP80104347 A EP 80104347A EP 80104347 A EP80104347 A EP 80104347A EP 0024548 B1 EP0024548 B1 EP 0024548B1
Authority
EP
European Patent Office
Prior art keywords
furnace
cooling elements
wall
furnace according
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80104347A
Other languages
English (en)
French (fr)
Other versions
EP0024548A3 (en
EP0024548A2 (de
Inventor
Friedrich Megerle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Publication of EP0024548A2 publication Critical patent/EP0024548A2/de
Publication of EP0024548A3 publication Critical patent/EP0024548A3/de
Application granted granted Critical
Publication of EP0024548B1 publication Critical patent/EP0024548B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements

Definitions

  • the invention relates to a furnace system, in particular for melting ore concentrate, with furnace walls, in particular furnace partitions, which are composed of individual metal cooling elements arranged one above the other in bars and through which coolant flows.
  • the furnace walls that come into contact with the hot, aggressive gases and the hot metal or slag bath must be lined fire-proof and cooled.
  • the dividing wall which is immersed in the melting bath from above and extends over the entire width of the furnace, for separating the melt collecting space from the settling stove is a hollow wall provided with cooling channels. If the known furnace partition wall, which extends over the entire width of the furnace, consists of a single piece, the partition wall would practically no longer be transportable and mountable due to its weight and size. Thermal stresses in the partition could not balance each other out.
  • the furnace wall were bricked and would function as a partition wall immersed in a molten bath, this cannot be practiced taking into account the wear caused by the aggressive slag melt. It goes without saying that such a wall should be cooled and should also be self-supporting.
  • the furnace wall is made up of cooling elements made of cast iron or copper arranged one above the other, into which cooling pipes through which cooling water flows horizontally one above the other are poured and which have U-shaped deflecting elements attached to their ends form a coiled tube coil.
  • the metallic cooling elements In order for the furnace wall to be tight and stable, the metallic cooling elements must be directly connected to each other, which is not easy with the known cooling elements due to their wide joints and, after the individual cooling elements have been connected, leads to a rigid wall construction that cannot adequately compensate for thermal stresses.
  • individual recesses for receiving refractory bricks for thermal protection of the inner wall of the furnace have to be worked into the known metallic cooling elements in an expensive manner.
  • the invention has for its object to avoid these disadvantages and to create a furnace system, the walls, in particular thermally highly stressed partition walls have high strength despite existing cooling channels and can still compensate for thermal stresses, are easy to install and have other advantages.
  • the individual metallic, bar-shaped cooling elements have a low weight compared to a one-piece cooling wall, as a result of which transport and assembly are very simplified. Due to the shape and structure of the bar-shaped cooling elements, in particular through their connecting webs, thermal stress compensation of the furnace partition wall is possible, especially with different thermal loads on both sides of the wall, while at the same time niches are formed by the connecting webs in the furnace wall, which are ideally suited for use with refractory Material to be filled out.
  • the cooling elements can each have the shape of a one-piece T-bar, the T-bars lying one above the other with their legs.
  • the formation of the metallic and provided with cooling channels cooling elements in the form of a T-beam brings with it the particular advantage that, when such cooling elements are placed one on top of the other, two furnace partitions are obtained simultaneously, namely a front beam wall and a leg beam wall, the front beam wall being the partition wall immersed in the melt Separation of the melting or flue gas duct and settling stove and the thigh beam wall running transversely to the front beam wall can form the partition between the melting shaft and flue gas duct of a pyrometallurgical furnace system.
  • the bar-shaped cooling elements according to the invention do not have to extend over the entire height of a furnace partition wall, but only need to be present in the thermally particularly stressed lower wall area, so that the cooling elements according to the invention are particularly suitable as a support or support structure that is strong enough to accommodate them Masonry with integrated cooling elements ment to be able to build a tubular membrane wall as a boiler wall or another wall.
  • Figures 3 to 5 are briefly explained. These show a pyrometallurgical furnace system, which is to serve, for example, for the melting of fine-grained sulfidic lead ore concentrate, with a common housing 10, in which a floating melting shaft 11, an exhaust gas shaft 12 and a settling point 13 for further treatment of the melt are arranged.
  • the sulfidic ore concentrate is blown into the vertical smelting shaft 11 from above with a stream of technically pure oxygen.
  • the ore concentrate is roasted and melted in the smelting shaft with instantaneous heating to high temperature in a fraction of a second, even while it is still in suspension.
  • the combustion of the sulfide sulfur and possibly other oxidizable components in the oxygen atmosphere usually already provides enough heat to allow the roasting and melting process to proceed autogenously.
  • the melt collects in the melt collecting space 14, while the exhaust gas, together with the dust formed, is drawn off upward through the exhaust duct 12.
  • a primary slag forms on the collected melt in the collecting space 14.
  • the melt flows under the lower edge of a vertical partition wall 15 which dips into the molten bath or slag bath from above into the settling stove 13. In the settling furnace 13, the melt is reduced and it is given the opportunity to separate into lead and secondary slag that forms, which are tapped separately from the settling furnace.
  • the slag bath surface 16 and the lead bath surface 17 are of the same height in the melt collecting chamber 14 and in the settling hearth 13.
  • the partition 15 prevents the mixing of gases of the oxidation zone and the reduction zone and it enables an independent atmosphere to be maintained in both zones.
  • the smelting shaft 11 and the exhaust gas shaft 12 are separated from one another by the furnace partition 18. Through the space between the slag bath level 16 and the lower edge of the furnace partition 18, the exhaust gas is drawn from the smelting shaft 11 into the exhaust shaft 12.
  • the two vertical furnace partition walls 15 and 15a and 18, which are perpendicular to one another, are subject to very high thermal loads and must be cooled.
  • these two furnace partitions consist of metallic cooling elements 19, 20, 21 etc. provided with coolant channels, each of which has the shape of a one-piece T-bar and with their legs lying one above the other.
  • the end beam wall forms the partition wall 15a immersed in the melt for separating the melting or exhaust gas shaft 11 or 12 and the settling point 13, and the leg beam wall running transversely to the end beam wall forms the partition wall 18 between the melting shaft 11 and the exhaust shaft 12.
  • the bar-shaped cooling elements each have a web 22, 23, 24, etc., projecting up and down along their central longitudinal axes, by means of which adjacent cooling elements are connected by welding, as can clearly be seen in FIG. 6.
  • the cooling elements When viewed in cross section, the cooling elements have a coolant channel on each side of the vertical central longitudinal plane. Overall, the T-bar-shaped cooling elements have three continuous coolant channels, of which one channel 25 runs along the front bar and the other two channels 26, 27 each through one half of the front bar and through the adjoining leg beam arranged transversely thereto.
  • the T-bar-shaped cooling elements are made of copper and the three water-carrying pipes 25, 26, 27, which are also made of copper, are cast into the copper elements.
  • the cooling elements can also consist of steel or another metal, depending on which ore concentrate is melted in the furnace.
  • the cooling water flow through the three coolant channels 25, 26 and 27 is clearly indicated by the arrows in FIG.
  • the wall unit constructed from the T-beams is supported in a self-supporting manner only at the three ends of the beams. Connection pipelines are connected to the coolant channels 25, 26, 27 at all three end points of the T-bar-shaped cooling elements.
  • the connecting pipelines 28 and 29 are embedded in the refractory material of the thermally less stressed furnace outer walls 30, 31, 32, so that the thermally highly stressed furnace partition walls 15a, 18 are correspondingly strongly cooled as a result of the metallic cooling beam material, while the furnace adjoining the furnace partition walls outer walls, which are less exposed to heat, are correspondingly less strongly cooled due to the absence of the metallic chilled beam material in these outer walls of the furnace.
  • the heat flow from the furnace walls can be adjusted individually depending on the heat load of the walls by more or less strong accumulation of metallic chilled beam material in the wall.
  • the spaces between adjacent cooling elements 19, 20, 21 are filled with refractory material 33.
  • the gaps can also be bricked up with refractory bricks.
  • the outer surfaces of the furnace partition walls can still be protected by a fire-resistant coating. From Fig. 7 it can still be seen that in the outer wall 30 of the furnace, the space between the cooling tubes lying one above the other is filled with refractory bricks 34, while the remaining spaces are filled with refractory material.
  • the advantages which can be achieved with the invention consist mainly in the fact that the individual metallic bar-shaped cooling elements are light in weight in comparison to a one-piece cooling wall, as a result of which transport and assembly are very simplified (type of modular principle). Due to the shape and structure of the cooling elements, in particular through their connecting webs, thermal stress compensation of the furnace partition walls is possible, especially with different thermal loads on both sides of the walls.
  • the bar-shaped cooling elements according to the invention do not need to extend over the entire height of a furnace partition, but only over the lower, particularly stressed area, so that the furnace wall construction according to the invention is ideally suited as a support structure or supporting structure that is strong enough to have masonry on it integrated cooling elements, to build a tubular membrane wall as a boiler wall or another wall.
  • the end beam wall which extends over the entire furnace width of e.g. B. extends 8 m self-supporting, kept stable in the critical central region of the thigh beam wall extending transversely to the front beam wall, whereby the overall stability of the furnace construction is improved.
  • the heat dissipation through the furnace partition can be adjusted by the height of the connecting webs and thus by the distance between the individual bar-shaped cooling elements; For example, the distance between the cooling elements from the underside of the wall to the top of the wall can become wider in accordance with the thermal and mechanical loads on the furnace wall that decrease from bottom to top.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

  • Die Erfindung betrifft eine Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat, mit Ofenwänden, insbesondere Ofentrennwänden, die aus einzelnen balkenförmig übereinander angeordneten und von Kühlmittel durchströmten metallischen Kühlelementen zusammengesetzt sind.
  • Bei einer bekannten pyrometallurgischen Ofenanlage (US-PS 3,555,164) wird feinkörniges Erzkonzentrat in einem Schmeizaggregat in einer sauerstoffreichen Gasatmosphäre kontinuierlich geröstet und geschmolzen. In einer Schmelzkammer werden die Schmelze und das gebildete Gas sowie Staub voneinander getrennt. Gas und Staub werden in einem zur Schmelzkammer benachbarten Abgasschacht abgezogen, während die am Boden der Schmelzkammer gesammelte Schmelze und Schlacke unter einer von oben in das Schmelzbad eintauchenden Ofentrennwand hindurch in einen Absetzherd zur Weiterbehandiung der Schmelze und Entfernung der Schlacke eintreten.
  • Die mit den heißen aggresiven Gasen sowie mit dem heißen Metall- bzw. Schlackenbad in Berührung kommenden Ofenwände müssen unbedingt feuerfest ausgekleidet und gekühlt sein. Bei der bekannten Ofenanlage ist zum Beispiel die von oben in das Schmelzbad eintauchende und sich über die gesamte Ofenbreite erstreckende Trennwand zur Trennung des Schmelzesammelraums vom Absetzherd eine hohle, mit Kühlkanälen versehene Wand. Besteht die bekannte Ofentrennwand, die sich über die gesamte Ofenbreite erstreckt, aus einem einzigen Stück, so wäre die Trennwand infolge ihres Gewichts und ihrer Größe praktisch nicht mehr transport-und montierfähig. Wärmespannungen in der Trennwand könnten sich nicht ausgleichen. Wäre die Ofenwand dagegen gemauert und würde die Funktion einer in ein Schmelzbad eintauchenden Trennwand übernehmen, so kann dies unter Berücksichtigung des Verschleißes durch die aggresive Schlackenschmelze nicht praktiziert werden. Es versteht sich von selbst, daß eine solche Wand gekühlt und außerdem in selbsttragender Konstruktion ausgeführt sein müßte.
  • . Bei einem anderen bekannten Schmelzofen (DE-OS 2 354 570) ist die Ofenwand aus übereinander angeordnetem, aus Gußeisen oder Kupfer bestehenden Kühlelementen aufgebaut, in die von Kühlwasser durchströmte horizontal übereinanderliegende Kühlrohre eingegossen sind, die mit an ihren Enden angebrachten U-förmigen Umlenkorganen eine hin- und hergewundene Rohrschlange bilden. Damit die Ofenwand dicht und stabil wird, müssen die metallischen Kühlelemente unmittelbar fest miteinander verbunden werden, was bei den bekannten Kühlelementen Infolge ihrer breiten Stoßstellen nicht einfach ist und nach der Verbindung der einzelnen Kühlelemente zu einer steifen Wandkonstruktion führt, die Wärmespannungen nicht ausreichend ausgleichen kann. Außerdem müssen in die bekannten metallischen Kühlelemente auf kostspieligem Wege einzelne Ausnehmungen zur Aufnahme von feuerfesten Steinen zum thermischen Schutz der Ofeninnenwandung eingearbeitet werden.
  • Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu vermeiden und eine Ofenanlage zu schaffen, deren Wände, insbesondere thermisch hoch belasteten Trennwände trotz vorhandener Kühlkanäle ein hohe Festigkeit aufweisen und doch Wärmespannungen ausgleichen können, einfach montierbar sind sowie noch weitere Vorteile aufweisen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in Abhängigkeit von der Wärme Belastung zumindest ein Teil der metallischen Kühlelemente entlang deren Mittellängsachsen je einen nach oben und unten vorspringenden Steg aufweist, mittels denen benachbarte Kühleiemente verbunden sind, insbesondere durch Schweißung.
  • Erfindungsgemäß haben die einzelnen metallischen balkenförmigen Kühlelemente im Vergleich zu einer einstückigen Kühlwand ein geringes Gewicht, wodurch Transport und Montage sehr vereinfacht sind. Durch Form und Aufbau der balkenförmigen Kühlelemente, insbesondere durch deren Verbindungsstege ist ein Wärmespannungsausgleich der Ofentrennwand möglich, besonders bei unterschiedlicher Wärmebelastung an beiden Seiten der Wand, während gleichzeitig durch die Verbindungsstege in der Ofenwand Nischen gebildet werden, die sich geradezu ideal dazu eignen, mit feuerfestem Material ausgefüllt zu werden.
  • Nach einem besonderen Merkmal der Erfindung können die Kühlelemente jeweils die Form eines einstückigem T-Balkens haben, wobei die T-Balken mit ihren Schenkeln übereinander liegen. Die Ausbildung der metallischen und mit Kühlkanälen versehenen Kühlelemente in Form eines T-Balkens bringt den besonderen Vorteil mit sich, daß man beim Aufeinandersetzen derartiger Kühlelemente gleichzeitig zwei Ofentrennwände erhält, nämlich eine Stirnbalkenwand und eine Schenkelbalkenwand, wobei die Stirnbalkenwand die in die Schmelze eintauchende Trennwand zur Trennung von Schmelz- bzw. Abgasschacht und Absetzherd und die quer zur Stirnbalkenwand verlaufende Schenkelbalkenwand die Trennwand zwischen Schmelzschacht und Abgasschacht einer pyrometallurgischen Ofenanlage bilden können.
  • Die erfindungsgemäßen balkenförmigen Kühlelemente müssen sich nicht über die gesamte Höhe einer Ofentrennwand erstrecken, sondern brauchen nur im thermisch besonders beanspruchten unteren Wandbereich vorhanden sein, so daß die erfindungsgemäßen Kühlelementen besonders geeignet sind als Unterstützungs- bzw. Tragkonstruktion, die fest genug ist, um darauf ein Mauerwerk mit eingebundenen Kühlelementen, eine Rohrmenbranwand als Kesselwand oder eine andere Wand aufbauen zu können.
  • Die Erfindung und deren weiteren Vorteile werden anhand des in den Figuren schematisch dargestellten Ausführungsbeispieles näher erläutert. Es zeigt :
    • Figur 1 in perspektivischer Darstellung zwei rechtwinklig zueinander angeordnete Ofentrennwände, die aus geradlinigen balkenförmigen Kühlelementen und aus T-balkenförmigen Kühlelementen aufgebaut sind,
    • Figur 2 die Draufsicht auf ein T-balkenförmiges Kühlelement,
    • Figur 3 einen Horizontalschnitt durch eine pyrometallurgische Ofenanlage längs der Linie 111-111 der Fig. 4,
    • Figur4 einen Vertikalschnitt durch die Ofenanlage längs der Linie IV-IV der Fig. 3,
    • Figur 5 einen Vertikalschnitt längs der Linie V-V der Fig. 3,
    • Figur 6 in vergrößerter Darstellung die Einzelheit VI der Fig. 4,
    • Figur 7 in vergrößerter Darstellung die Einzelheit VII der Fig. 5.
  • Zunächst werden die Figuren 3 bis 5 kurz erläutert. Diese zeigen eine pyrometallurgische Ofenanlage, die zum Beispiel zur Erschmelzung von feinkörnigem sulfidischem Bleierzkonzentrat dienen soll, mit einem gemeinsamen Gehäuse 10, in welchem ein Schwebeschmelzschacht 11, ein Abgasschacht 12 und ein Absetzherd 13 zur Weiterbehandlung der Schmelze angeordnet sind. In den vertikalen Schmelzschacht 11 wird von oben das sulfidische Erzkonzentrat mit einem Strom technisch reinen Sauerstoffs eingeblasen.
  • Das Erzkonzentrat wird im Schmelzschacht bei momentaner Erhitzung auf hohe Temperatur in Bruchteilen von Sekunden, noch während es sich im Schwebezustand befindet, geröstet und geschmolzen. Die Verbrennung des Sulfidschwefels und gegebenenfalls anderer oxidierbarer Bestandteile in der Sauerstoffatmosphäre liefert meist bereits genügend Wärme, um den Röst-und Schmelzvorgang autogen ablaufen zu lassen. Die Schmelze sammelt sich im Schmelzesammelraum 14, während das Abgas zusammen mit gebildetem Staub nach oben durch den Abgasschacht 12 abgezogen wird. Im Sammelraum 14 bildet sich auf der gesammelten Schmelze eine Primärschlacke. Die Schmelze fließt unter der Unterkante einer vertikalen, von oben in das Schmelzbad bzw. Schlackenbad eintauchenden Trennwand 15 in den Absetzherd 13 ein. Im Absetzherd 13 wird die Schmelze reduziert und sie erhält Gelegenheit, sich in Blei und sich bildende Sekundärschlacke zu trennen, welche aus dem Absetzherd getrennt abgestochen werden.
  • Die Schlackenbadoberfläche 16 und die Bleibadoberfläche 17 stehen im Schmelzesammelraum 14 und im Absetzherd 13 gleich hoch. Die Trennwand 15 verhindert die Vermischung von Gasen der Oxidationszone und der Reduktionszone und sie ermöglicht, daß in beiden Zonen eine voneinander unabhängige Atmosphäre aufrechterhalten werden kann.
  • Durch die Ofentrennwand 18 sind Schmelzschacht 11 und Abgasschacht 12 voneinander getrennt. Durch den Zwischenraum zwischen dem Schlackenbadspiegel 16 und der Unterkante der Ofentrennwand 18 zieht das Abgas vom Schmelzschacht 11 in den Abgasschacht 12 ab.
  • Die beiden senkrecht zueinander stehenden vertikalen Ofentrennwände 15 bzw. 15a und 18 sind thermisch sehr hoch belastet und müssen unbedingt gekühlt sein. Diese beiden Ofentrennwände bestehen gemäß dem die Erfindung erläuternden Ausführungsbeispiel aus metallischen, mit Kühlmittelkanälen versehenen Kühlelementen 19, 20, 21 usw., die jeweils die Form eines einstückigen T-Balkens haben und mit ihren Schenkeln übereinanderliegen. Bei den übereinander angeordneten T-balkenförmigen Kühlelementen 19, 20, 21 usw. bildet die Stirnbalkenwand die in die Schmelze eintauchende Trennwand 15a zur Trennung von Schmelz- bzw. Abgasschacht 11 bzw. 12 und Absetzherd 13 und die quer zur Stirnbalkenwand verlaufende Schenkelbalkenwand bildet die Trennwand 18 zwischen Schmelzschacht 11 und Abgasschacht 12. Die balkenförmigen Kühlelemente weisen entlang deren Mittellängsachsen je einen nach oben und unten vorspringenden Steg 22, 23, 24 usw. auf, mittels denen benachbarte Kühlelemente durch Schweißung verbunden sind, deutlich zu sehen in Fig. 6.
  • Die Kühlelemente haben zu beiden Seiten der vertikalen Mittellängsebene im Querschnitt betrachtet je einen Kühlmittelkanal. Insgesamt weisen die T-balkenförmigen Kühlelemente drei durchgehende Kühlmittelkanäle auf, von denen ein Kanal 25 längs des Stirnbalkens und die zwei anderen Kanäle 26, 27 durch je eine Stirnbalkenhälfte und durch den sich daran anschließenden, quer dazu angeordneten Schenkelbalken verlaufen.
  • Im vorliegenden Fall bestehen die T-balkenförmigen Kühlelemente aus Kupfer und die ebenfalls aus Kupfer bestehenden drei wasserführenden Rohre 25, 26, 27 sind in die Kupferelemente eingegossen. Die Kühlelemente können aber auch aus Stahl oder aus einem anderen Metall bestehen, je nachdem welches Erzkonzentrat in der Ofenanlage geschmolzen wird. Die Kühlwasserführung jeweils durch die drei Kühlmittelkanäle 25, 26, und 27 ist durch die Pfeile in Fig. deutlich angezeigt. Wie insbesondere aus Fig. 3 klar hervorgeht, ist die aus den T-Balken aufgebaute Wandeinheit freitragend nur an den drei Balkenendstellen gelagert. An die Kühlmittelkanäle 25, 26, 27 sind an allen drei Endstellen der T-balkenförmigen Kühlelemente Anschlußrohrleitungen angeschlossen. Die Anschlußrohrleitungen 28 und 29 sind im feuerfesten Material der thermisch weniger belasteten Ofenaußenwände 30, 31, 32 eingebettet, so daß die thermisch hochbelasteten Ofentrennwände 15a, 18 infolge des metallischen Kühlbalkenmaterials entsprechend stark gekühlt sind, während die an die Ofentrennwände anschließenden Ofenaußenwände, die weniger wärmebelastet sind, infolge des Fehlens des metallischen Kühlbalkenmaterials in diesen Ofenaußenwänden entsprechend weniger stark gekühlt werden. Der Wärmeabfluß aus den Ofenwänden kann also je nach Wärmebelastung der Wände durch mehr oder weniger starke Anhäufung von metallischem Kühlbalkenmaterial in der Wand individuell eingestellt werden.
  • Die Zwischenräume zwischen benachbarten Kühlelementen 19, 20, 21, sind mit feuerfestem Material 33 ausgefüllt. Die Zwischenräume können auch mit feuerfesten Steinen ausgemauert sein. Die Außenflächen der Ofentrennwände können noch durch eine feuerfeste Bestampfung geschützt sein. Aus Fig. 7 geht noch hervor, daß in der Ofenaußenwand 30 der Zwischenraum zwischen übereinanderliegenden Kühlrohren mit feuerfesten Steinen 34 ausgefüllt ist, während die übrigen noch verbleibenden Zwischenräume mit feuerfestem Material ausgestampft sind.
  • Die mit der Erfindung erzielbaren Vorteile bestehen hauptsächlich darin, daß die einzelnen metallischen balkenförmigen Kühlelemente ein geringes Gewicht haben im Vergleich zu einer einstückigen Kühlwand, wodurch Transport und Montage sehr vereinfacht sind (Art Baukastenprinzip). Durch Form und Aufbau der Kühlelemente, insbesondere durch deren Verbindungsstege, ist ein Wärmespannungsausgleich der Ofentrennwände möglich, besonders bei unterschiedlicher Wärmebelastung an beiden Seiten der Wände. Die erfindungsgemäßen balkenförmigen Kühlelemente brauchen sich nicht über die gesamte Höhe einer Ofentrennwand zu erstrecken, sondern nur über deren unteren, besonders belasteten Bereich, so daß die erfindungsgemäße Ofenwandkonstruktion ideal als Unterstützungskonstruktion bzw. Tragkonstruktion geeignet ist, die fest genug ist, um darauf ein Mauerwerk mit eingebundenen Kühlelementen, eine Rohrmembranwand als Kesselwand oder eine andere Wand aufbauen zu können. Bei aus T-balkenförmigen Kühlelementen aufgebauten Ofentrennwänden ist die Stirnbalkenwand, die sich über die gesamte Ofenbreite von z. B. 8 m freitragend erstreckt, im kritischen mittleren Bereich von der quer zur Stirnbalkenwand verlaufenden Schenkelbalkenwand stabil gehalten, wodurch die Ofenkonstruktion in ihrer Stabilität insgesamt verbessert wird. Durch die Höhe der Verbindungsstege und damit durch den Abstand der einzelnen balkenförmigen Kühlelemente voneinander kann die Wärmeabführung durch die Ofentrennwand eingestellt werden ; so kann zum Beispiel der Abstand der Kühlelemente voneinander von der Wandunterseite zur Wandoberseite hin weiter werden entsprechend der von unten nach oben abnehmenden thermischen sowie auch mechanischen Belastung der Ofenwand.

Claims (8)

1. Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat, mit Ofenwänden, insbesondere Ofentrennwänden, die aus einzelnen balkenförmig übereinander angeordneten und von Kühlmittel durchströmten metallischen Kühlelementen zusammengesetzt sind, dadurch gekennzeichnet, daß in Abhängigkeit von der Wärmebelastung zumindest ein Teil der metallischen Kühlelemente entlang deren Mittellängsachsen je einen nach oben und unten vorspringenden Steg (22, 23, 24) aufweist, mittels denen benachbarte Kühlelemente verbunden sind, insbesondere durch Schweißung.
2. Ofenanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Kühlelemente (20) zu beiden Seiten der vertikalen Mittellängsebene im Querschnitt betrachtet je einen Kühlmediumkanal (25 bzw. 26 bzw. 27) aufweisen.
3. Ofenanlage nach Anspruch 1, dadurch gekennzeichnet, daß die Zwischenräume zwischen benachbarten Kühlelementen (19, 20, 21) mit feuerfestem Material (33) ausgefüllt sind.
4. Ofenanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die metallischen Kühlelemente (19, 20, 21) jeweils die Form eines einstückigen T-Balkens haben und mit ihren Schenkeln übereinanderliegen.
5. Ofenanlage nach Anspruch 4, dadurch gekennzeichnet, daß die T-balkenförmigen Kühlelemente (19, 20, 21) wenigstens die Tragkonstruktion für zwei Ofentrennwände einer pyrometallurgischen Ofenanlage bilden, wobei die Stirnbalkenwand die in die Schmelze eintauchende Trennwand (15a) zur Trennung von Schmelz- bzw. Abgasschacht (11 bzw. 12) und Absetzherd (13) und die quer zur Stirnbalkenwand verlaufende Schenkelbalkenwand die Trennwand (18) zwischen Schmelzschacht (11) und Abgasschacht (12) bilden.
6. Ofenanlage nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, daß die aus den T-Balken aufgebaute Wandeinheit freitragend nur an den drei Balkenendstellen gelagert ist.
7. Ofenanlage nach Anspruch 4, dadurch gekennzeichnet, daß die T-balkenförmigen Kühlelemente drei Kühlmediumkanäle aufweisen, von denen ein Kanal (25) längs des Stirnbalkens und die zwei anderen Kanäle (26, 27) durch je eine Stirnbalkenhälfte und durch den sich daran anschließenden, quer dazu angeordneten Schenkelbalken verlaufen.
8. Ofenanlage nach Anspruch 7, dadurch gekennzeichnet, daß sich an die Kühlmediumkanäle (25, 26, 27) an allen drei Endstellen der T-balkenförmigen Kühlelemente Rohrleitungen (28, 29) anschließen, die wenigstens zum Teil im feuerfesten Material der thermisch weniger belasteten Ofenaußenwände (30, 31, 32) eingebettet sind.
EP80104347A 1979-09-01 1980-07-24 Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat Expired EP0024548B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2935394 1979-09-01
DE19792935394 DE2935394A1 (de) 1979-09-01 1979-09-01 Ofenanlage, insbesondere zum schmelzen von erzkonzentrat

Publications (3)

Publication Number Publication Date
EP0024548A2 EP0024548A2 (de) 1981-03-11
EP0024548A3 EP0024548A3 (en) 1981-03-18
EP0024548B1 true EP0024548B1 (de) 1983-12-07

Family

ID=6079826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80104347A Expired EP0024548B1 (de) 1979-09-01 1980-07-24 Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat

Country Status (8)

Country Link
US (1) US4337927A (de)
EP (1) EP0024548B1 (de)
AU (1) AU6145180A (de)
CA (1) CA1150503A (de)
DE (2) DE2935394A1 (de)
IN (1) IN154848B (de)
SU (1) SU1048992A3 (de)
ZA (1) ZA805394B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2517420A1 (fr) * 1981-11-27 1983-06-03 Inst Ochistke T Plaque de refroidissement pour four metallurgique
DE3427088C2 (de) * 1984-07-18 1987-05-07 Korf Engineering GmbH, 4000 Düsseldorf Vorrichtung zum Abkühlen eines heißen Produktgases
DE8709886U1 (de) * 1987-07-18 1988-11-17 Reining-Heisskühlung, 4330 Mülheim Kühlelement für metallurgische Öfen
DE4431293A1 (de) * 1994-09-02 1996-03-07 Abb Management Ag Ofengefäß für einen Gleichstrom-Lichtbogenofen
EP1069389A4 (de) * 1999-02-03 2001-04-25 Nippon Steel Corp Wasserkühlungspanel für ofenwand und ofenabdeckung eines lichtbogenofens
DE102016107284A1 (de) * 2016-04-20 2017-10-26 Kme Germany Gmbh & Co. Kg Kühlplatte für ein Kühlelement für metallurgische Öfen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US475614A (en) * 1892-05-24 Fore-hearth
DE193548C (de) *
US2554836A (en) * 1948-05-14 1951-05-29 Pennsylvania Engineering Corp Skimming device for bessemer converters, large ladles, and the like
DE1027704B (de) * 1955-01-07 1958-04-10 Mont Kessel Herpen & Co Komman Kuehlbalken fuer Feuerungs- und Ofenanlagen
US2914398A (en) * 1957-08-09 1959-11-24 Aluminum Lab Ltd Recovery of aluminum in subhalide distillation
US3555164A (en) * 1967-02-17 1971-01-12 Vladimir Nikolaevich Kostin Method of processing ores and concentrates containing rare metals and a unit for effecting said method
US3632235A (en) * 1969-06-09 1972-01-04 Carl A Grenci Cryogenic pump system
JPS49118635U (de) * 1973-02-08 1974-10-11
CH563835A5 (de) * 1972-06-16 1975-07-15 Charmilles Sa Ateliers
SE7703568L (sv) * 1977-03-28 1978-09-29 Asea Ab Sett och anordning vid rajernsframstellning

Also Published As

Publication number Publication date
SU1048992A3 (ru) 1983-10-15
EP0024548A3 (en) 1981-03-18
DE3065824D1 (en) 1984-01-12
ZA805394B (en) 1981-08-26
DE2935394A1 (de) 1981-03-26
EP0024548A2 (de) 1981-03-11
CA1150503A (en) 1983-07-26
US4337927A (en) 1982-07-06
AU6145180A (en) 1981-03-05
IN154848B (de) 1984-12-15

Similar Documents

Publication Publication Date Title
DE2203360B2 (de) Ofenwagen
DE2854306A1 (de) Gekuehlter lichtbogenofenmantel
DE1950006C3 (de) Ofen für die Floatglas-Herstellung
EP0024548B1 (de) Ofenanlage, insbesondere zum Schmelzen von Erzkonzentrat
EP1218549B1 (de) Metallurgischer ofen mit kupferkühlplatten
DE3249495C2 (de) Kühlplatte für Schachtöfen, insbesondere Hochöfen
DE19505339C2 (de) Verfahren und Vorrichtung zum Suspensionsschmelzen
DE2942121C2 (de) Gekühlte Ofenwand, insbesondere Ofentrennwand, einer Ofenanlage zum Schmelzen von Erzkonzentrat
DE2808686A1 (de) Gasdichte ofenwand fuer einen industrieofen
WO2002084192A1 (de) Kühlelement zur kühlung eines metallurgischen ofens
DE2705745C2 (de) Gekühlter Tragbalken für Wärmöfen
DE2335162C3 (de) Elektrolichtbogenofen zum Schmelzen von Metallen
EP0081779B1 (de) Wanderrost für eine Feuerungsanlage
DE2915771A1 (de) Schacht zur waermebehandlung von gut, zum beispiel zum schmelzen von erzkonzentrat
EP0837144A1 (de) Wandkühlelement für Schachtöfen
DE2638132C2 (de) Ofenanlage zur pyrometallurgischen Behandlung von feinkörnigen Erzkonzentraten
EP3156733A1 (de) Mobile festbrennstofffeuerungsanlage
DE10148686C1 (de) Brennvorrichtung
DE10133973B4 (de) Rost und Verfahren zum Aufbau eines Rostes bestehend aus untereinander formschlüssig verbundenen Lamellenkörpern
DE2639378C3 (de) Wassergekühlter Deckel eines Lichtbogenofens
DE3231736A1 (de) Isolier-formteile fuer die ummantelung von gekuehlten rohren in feuerungsanlagen
EP0518280B1 (de) Gleichschrittofen für die Wärmebehandlung von stückigem Gut
EP0106792B1 (de) Ofenanordnung zum Schmelzen und Warmhalten von Metall
EP0947775A2 (de) Zweiteiliger Halter für Steinplatten
DE33242C (de) Dampfkessel mit Unterkesseln, welche durch Querkessel verbunden sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19810630

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3065824

Country of ref document: DE

Date of ref document: 19840112

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840607

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841205

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19850731

BERE Be: lapsed

Owner name: KLOCKNER-HUMBOLDT-DEUTZ A.G.

Effective date: 19850731

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860328

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80104347.2

Effective date: 19860729