EP0008770B1 - Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen - Google Patents

Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen Download PDF

Info

Publication number
EP0008770B1
EP0008770B1 EP79103191A EP79103191A EP0008770B1 EP 0008770 B1 EP0008770 B1 EP 0008770B1 EP 79103191 A EP79103191 A EP 79103191A EP 79103191 A EP79103191 A EP 79103191A EP 0008770 B1 EP0008770 B1 EP 0008770B1
Authority
EP
European Patent Office
Prior art keywords
pipe
cascades
additives
proportioning
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103191A
Other languages
English (en)
French (fr)
Other versions
EP0008770A1 (de
Inventor
Gerhard Dipl.-Ing. Kritzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apparatebau Rothemuehle Brandt and Kritzler GmbH
Original Assignee
Apparatebau Rothemuehle Brandt and Kritzler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apparatebau Rothemuehle Brandt and Kritzler GmbH filed Critical Apparatebau Rothemuehle Brandt and Kritzler GmbH
Publication of EP0008770A1 publication Critical patent/EP0008770A1/de
Application granted granted Critical
Publication of EP0008770B1 publication Critical patent/EP0008770B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof

Definitions

  • the invention relates to a plant for the separation of gaseous pollutants, such as hydrogen chloride, hydrogen fluoride and sulfur oxide, from flue gases, in particular from waste incineration plants, by reaction with dust-like additives, such as quicklime (CaO) or calcium carbonate (CaC0 3 ), and binding to them.
  • gaseous pollutants such as hydrogen chloride, hydrogen fluoride and sulfur oxide
  • dust-like additives such as quicklime (CaO) or calcium carbonate (CaC0 3 )
  • the system comprises a number of pipe cascades connected in series in the flow direction of the flue gases, which are connected by the interposition of cyclone separators, and pipe cascades in the flow sections, which are connected by interposition of cyclone separators, and metering tubes for additives attached in the flow sections of the pipe cascades, the last pipe cascade protruding metering pipe is provided with a feed line for fresh additives, while the other metering pipes are each connected to the downstream cyclone separator of the following pipe cascade - viewed in the direction of the gas flow.
  • a system for the separation of gaseous pollutants from flue gases of this type is already known from DE-A 2 615 828.
  • the additives are introduced into the flue gas stream in essentially horizontal sections of the pipe cascade, with each of these horizontal sections being followed by an essentially vertically arranged separator.
  • the additives collected in the separator are then fed back into the subsequent pipe cascade, as seen in the direction of the gas flow.
  • the additives are introduced into the essentially horizontal sections of the pipe cascade from below, namely by means of conveying devices with associated intermediate containers arranged between the individual separators and the pipe cascades to be fed by them.
  • Adding the additives into the essentially horizontal sections of the individual pipe cascades takes place - in the direction of the gas flow - in front of a venturi section, in order to achieve an intensive swirling between the additives and the gas flow and thus to react more quickly with the additives cause.
  • the known system for separating gaseous pollutants from flue gases has various disadvantages. On the one hand, it only works with an indirect counterflow effect between the gases and the additives, because the latter are practically added to the horizontal sections of the tube cascade in the direction of the gas flow. It is therefore also essential to equip each of the tube cascades in their essentially horizontal section with a venturi section in order to ensure the intensive mixing between the gas stream and the additives necessary for the reaction.
  • the invention has for its object to provide a system for the separation of gaseous pollutants from flue gases of the generic type, which can be set up with reduced construction costs, thereby safely preventing deposits of additives in the pipe cascades and finally the introduction of the additives in a simple manner guaranteed in the flue gas flow according to the real counterflow principle.
  • the metering tubes are arranged in vertical sections of the tube cascade and are connected to the outlet of the cyclone separator downstream of the next top tube cascade, and in that the odd-numbered tube cascades with the cyclone separators of the even-numbered tube cascades and the even-numbered ones Pipe cascades with the cyclone separators of the odd-numbered pipe cascades are arranged in a vertical axial alignment.
  • the introduction of the additives into the vertical sections of the pipe cascade according to the true countercurrent principle has the advantage on the one hand that they mix intensively with the gas flow even without the presence of venturi sections, thereby ensuring a quick and intensive reaction. On the other hand, it is also ensured that the additives which are not entrained by the gas flow immediately go down into the next cyclone, from where they then safely reach the vertical section of the cascade further upstream which is fed by the metering tube.
  • An advantageous further development feature for a separating system according to the invention also consists in the fact that the outlet of the cyclone separator downstream of the first pipe cascade is coupled via a lock to a conveying system, preferably a compressed air conveyor, which is connected to a storage container, which in turn connects the metering pipe, preferably the last pipe cascade assigned.
  • a conveying system preferably a compressed air conveyor
  • the entire system therefore requires only a single conveyor system for the return transport of the additives, while all the device parts which are useful for metering in the additives can be designed to be relatively simple.
  • the metering tube arranged downstream of the storage container has a fork pipe is connected on the one hand to the metering sluice of the storage container for fresh additives and on the other hand to a metering sluice of the storage container for the enriched additives.
  • the storage container for the enriched additives is not only provided with the metering lock, but also with a further extraction device, preferably with trigger slides or metering locks, in order thereby to enable the removal of largely used additives from the working cycle.
  • the metering locks can be formed by cellular wheel locks or double pendulum flaps.
  • the construction of the separating plant according to the invention can also be simplified in that the cyclone separators arranged downstream of the first to penultimate pipe cascade are working cyclones (reactors), while the cyclone separator arranged downstream of the last pipe cascade is a pure separator cyclone.
  • This separation plant has several, at least three pipe cascades 1, 2 ... 3, which are in flow communication with each other through intermediate cyclone separators 4 ... 5, which form working cyclones, while the uppermost pipe cascade in the exemplary embodiment, the pipe cascade 3, into a pure one Separation cyclone opens.
  • the lower pipe cascade 1 is connected to a flue gas supply line 7, while a suction 8 is connected to the immersion pipe 9 of the separating cyclone 6.
  • Each of the pipe cascades 1, 2 ... 3 has an essentially vertical flow path 1 ', 2', 3 ', to which a pipe bend 1 ", 2", 3 "is connected, which in turn enters the raw gas inlet 4', 5 ' , 6 'of the cyclone separator 4, 5, 6 opens.
  • the separating plant is expediently constructed in such a way that the upward flow paths 1 ' , 3 ' of the odd-numbered pipe cascades 1 and 3 with the cyclone separators 5 downstream of the even-numbered pipe cascades 2 and the upward flow paths 2 'of the even-numbered pipe cascades 2 with the odd-numbered pipe cascades 1 and 3 downstream cyclone separators 4 and 6 are arranged in the vertical alignment.
  • the outlet 4 ′′ of the cyclone separator 4 is connected at its lower end to a lock 12, for example a cellular wheel lock or a double pendulum flap, which is followed by a compressed air conveyor 13.
  • a lock 12 for example a cellular wheel lock or a double pendulum flap, which is followed by a compressed air conveyor 13.
  • the outlet 5 ′′ of the cyclone separator 5 is connected at its lower end to a lock 14, which can also be formed by a cellular wheel lock or a double pendulum flap.
  • a metering tube 15, which leads vertically into the tube cascade 1, can be attached to this lock 14 and is arranged coaxially with its upward flow path 1 '.
  • the lower end of the metering tube 15 is at a certain distance from the lower end of the upward flow path 1'.
  • the outlet 6 "of the cyclone separator 6 is also connected at its lower end to a lock 16, which in turn can be a cellular wheel lock or a double pendulum flap and works together with a metering tube 17 which is guided vertically into the tube cascade 2.
  • the metering tube 17 also extends coaxial to the upward flow path 2 'of the tube cascade and protrudes down to a point which is at a certain distance from the lower end of the dip tube 10.
  • a metering tube 18 is arranged coaxially with the upward flow path 3 'of the tube cascade 3, the lower end of which is at a certain distance from the lower end of the immersion tube 11 in the cyclone separator 5.
  • metering tube 18 Above the metering tube 18 is a fork tube 19, the branch 19 'of which is connected to a metering lock 20 and the branch 19' 'of which is connected to a metering lock 21.
  • metering locks 20 and 21 can also be designed as cellular wheel locks or double pendulum flaps.
  • the metering lock 20 is connected to the outlet funnel of a storage container 22, in which, for example, fresh cold fired (CaO) or potassium carbonate (CaC03 3 ) is filled.
  • a storage container 22 in which, for example, fresh cold fired (CaO) or potassium carbonate (CaC03 3 ) is filled.
  • the cellular wheel sluice 21 is connected to an outlet funnel 23 of a storage container 24, which also has a further outlet funnel 25.
  • the two discharge funnels 23 and 25 are assigned to the storage container 24 in such a way that they can only be loaded from a partial cross section of the storage container 24.
  • a discharge pipe 26 connects to the outlet funnel 25 and can be opened or closed optionally via a slide 27. Instead of the slide 27, a free outlet or a metering lock can also be provided. ⁇
  • the reservoir 24 is connected to the compressed air conveyor 13 via a pipe output 28.
  • the suction flue 8 forces the flue gas flowing into the flue gas supply line to a certain flow rate, which it maintains on its way through the pipe cascades 1, 2 ... 3 and the cyclone separators 4, 5 ... 6.
  • each of the metering tubes 15, 17, 18 quicklime or calcium carbonate is introduced into the tube cascades in quantities determined by the individual metering locks 20 and / or 21 such that it is distributed as evenly as possible in the flue gas stream.
  • the flue gas reacts with the additives in such a way that, for example, the chlorine it contains accumulates on the additives and is bound by them.
  • the metering locks 20 and / or 21 are set so that the additives in the flue gas reach a concentration between 100 and 500 g / m 3 and are therefore in a stoichiometric ratio of 40 to 200.
  • the reaction of the flue gases with the additives takes place on the one hand in the individual pipe cascades 1, 2 ... 3 and on the other hand also in the intermediate cyclone separators 4 and 5, i. H. the cyclone separators 4 and 5 form so-called working cyclones or reactors.
  • the last cyclone separator 6 arranged in the flow direction of the flue gases primarily has the task of separating the additives contained in the flue gases as soon as the flue gases leave the last pipe cascade 3.
  • Fresh additives from the storage container 22 are introduced into the last tube cascade 3 via the metering lock 20 and the metering tube 18 and, at the same time, additives that have already been enriched in a certain partial amount can also enter the tube cascade 3 via the metering lock 21 and the metering tube 18.
  • the additives separated from the flue gas behind the pipe cascade 3 in the cyclone separator 6 are again introduced into the previous pipe cascade into the pipe cascade 2 in the exemplary embodiment shown, via the metering lock 16 and the metering pipe 17.
  • the cascade-like structure of the separating system makes it possible in a simple manner to adapt it to different practical needs, simply by varying the number of pipe cascades and cyclone separators connected in series in the direction of flow of the flue gases.

Description

  • Die Erfindung betrifft eine Anlage zur Abscheidung von gasförmigen Schadstoffen, wie Chlorwasserstoff, Fluorwasserstoff und Schwefeloxyd, aus Rauchgasen, insbesondere von Müllverbrennungsanlagen, durch Reaktion mit staubförmigen Additiven, wie Branntkalk (CaO) oder Calciumcarbonat (CaC03), und Bindung an diese. Die Anlage umfasst dabei mehrere in Strömungsrichtung der Rauchgase hintereinandergeschaltete Strömstrecken aufweisende Rohrkaskaden, die durch Zwischenschaltung von Zyklonabscheidern verbunden sind sowie in den Durchströmstrecken aufweisende Rohrkaskaden, die durch Zwischenschaltung von Zyklonabscheidern verbunden sind sowie in den Durchströmstrecken der Rohrkaskaden angebrachte Dosierrohre für Additive, wobei das in die letzte Rohrkaskade hineinragende Dosierrohr mit einer Zuführleitung für frische Additive versehen ist, während die anderen Dosierrohre jeweils mit dem nachgeschalteten Zyklonabscheider der - in Richtung des Gasstromes gesehen - nachfolgenden Rohrkaskade verbunden sind.
  • Eine Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen dieser Gattung ist bereits durch die DE-A 2 615 828 bekannt. Bei dieser Anlage werden die Additive in im wesentlichen waagrechten Abschnitten der Rohrkaskaden in den Rauchgasstrom eingegeben, wobei jedem dieser waagrechten Abschnitte ein im wesentlichen senkrecht angeordneter Abscheider nachgeschaltet ist. Die im Abscheider gesammelten Additive werden dann wieder - gegen die Richtung des Gasstromes gesehen - in die nachfolgende Rohrkaskade eingegeben. In jedem Falle erfolgt die Eingabe der Additive in die im wesentlichen waagrechten Abschnitte der Rohrkaskaden von unten her, und zwar durch zwischen die einzelnen Abscheider und die von ihnen zu speisenden Rohrkaskaden angeordnete Fördervorrichtungen mit zugehörigen Zwischenbehältern. Die Eingabe der Additive in die im wesentlichen waagrechten Abschnitte der einzelnen Rohrkaskaden erfolgt dabei jeweils - in Richtung des Gasstromes gesehen - vor einer Venturistrecke, um dadurch eine intensive Verwirbelung zwischen den Additiven und dem Gasstrom zu erreichen und so eine schnellere Reaktion desselben mit den Additiven zu bewirken.
  • Die bekannte Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen hat jedoch verschiedene Nachteile. Einerseits arbeitet sie nämlich nur mit einem mittelbaren Gegenstromeffekt zwischen den Gasen und den Additiven, weil letztere praktisch in Richtung der Gasströmung in die waagrechten Abschnitte der Rohrkaskaden gegeben werden. Deshalb ist es auch unumgänglich, jede der Rohrkaskaden in ihrem im wesentlichen waagrechten Abschnitt mit einer Venturistrecke auszustatten, um die für die Reaktion notwendige intensive Vermischung zwischen dem Gasstrom und den Additiven sicherzustellen.
  • Abgesehen davon, dass der bauliche Aufwand für die einzelnen Rohrkaskaden durch die notwendigen Venturistrecken erhöht wird, liegt ein Nachteil auch noch darin, dass unerwünschte Ablagerungen von Additiven in den waagrechten Durchströmstrecken, und zwar hinter den Abstreifringen der Venturistrecken, nicht sicher vermieden werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen der gattungsgemässen Art zu schaffen, die mit vermindertem baulichen Aufwand errichtet werden kann, dabei Ablagerungen'von Additiven in den Rohrkaskaden sicher verhindert und schliesslich auf einfache Weise das Einbringen der Additive in den Rauchgasstrom nach dem echten Gegenstromprinzip gewährleistet.
  • Die Lösung dieser Aufgabe wird nach der Erfindung dadurch erreicht, dass die Dosierrohre in vertikalen Abschnitten der Rohrkaskaden angeordnet sind und dabei mit dem Auslauf des der nächstoberen Rohrkaskade nachgeschalteten Zyklonabscheiders in Verbindung stehen, und dass die ungeradzahligen Rohrkaskaden mit den Zyklonabscheidern der geradzahligen Rohrkaskaden sowie die geradzahligen Rohrkaskaden mit den Zyklonabscheidern der ungeradzahligen Rohrkaskaden in vertikaler Achsfluchtlage angeordnet sind.
  • Das Einbringen der Additive in die vertikalen Abschnitte der Rohrkaskaden nach dem echten Gegenstromprinzip hat einerseits den Vorteil, dass sie sich mit dem Gasstrom auch ohne das Vorhandensein von Venturistrecken intensiv vermischen und dadurch eine schnelle und intensive Reaktion gewährleisten. Andererseits wird aber auch sichergestellt, dass die vom Gasstrom nicht mitgerissenen Additive unmittelbar nach abwärts in den nächstunteren Zyklon gelangen, von wo aus sie dann sicher in den von dessen Dosierrohr gespeisten vertikalen Abschnitt der weiter stromaufwärts gelegenen Rohrkaskade gelangen.
  • Ein vorteilhaftes Weiterbildungsmerkmal für eine erfindungsgemässe Abscheideanlage besteht auch darin, dass der Auslauf des der ersten Rohrkaskade nachgeschalteten Zyklonabscheiders über eine Schleuse mit einem Fördersystem, vorzugsweise einem Druckluftförderer, gekoppelt ist, der mit einem Vorratsbehälter in Verbindung steht, welcher wiederum dem Dosierrohr vorzugsweise der letzten Rohrkaskade zugeordnet ist.
  • Die gesamte Anlage benötigt also nur ein einziges Fördersystem für den Rücktransport der Additive, während alle dem Zudosieren der Additive dienlichen Vorrichtungsteile verhältnismässig einfach ausgebildet sein können.
  • Als zweckmässig hat es sich nach der Erfindung ferner erwiesen, wenn das dem Vorratsbehälter nachgeordnete Dosierrohr über ein Gabelrohr einerseits mit der Dosierschleuse des Vorratsbehälters für frische Additive sowie andererseits mit einer Dosierschleuse des Vorratsbehälters für die angereicherten Additive in Verbindung steht.
  • Auf einfache Weise ist hierdurch nämlich die Möglichkeit gegeben, den vertikalen Abschnitt der letzten Rohrkaskade wahlweise mit frischen Additiven, mit bereits angereicherten Additiven oder aber mit einer Mischung aus frischen und angereicherten Additiven zu beschicken.
  • Nach einem anderen Merkmal der Erfindung ist vorgesehen, den Vorratsbehälter für die angereicherten Additive nicht nur mit der Dosierschleuse, sondern noch mit einem weiteren Abzugsorgan, vorzugsweise mit Abzugsschiebern oder Dosierschleusen, zu versehen, um dadurch das Entfernen weitgehend verbrauchter Additive aus dem Arbeitszyklus zu ermöglichen.
  • Nach einem weiterbildenden Erfindungsmerkmal können die Dosierschleusen durch Zellradschleusen oder Doppelpendelklappen gebildet werden.
  • Der Aufbau der erfindungsgemässen Abscheideanlage lässt sich schliesslich auch noch dadurch vereinfachen, dass die der ersten bis vorletzten Rohrkaskade nachgeordneten Zyklonabscheider Arbeitszyklone (Reaktoren) sind, während der der letzten Rohrkaskade nachgeordnete Zyklonabscheider ein reiner Abscheiderzyklon ist.
  • In der einzigen Figur der Zeichnung ist in schematischer Darstellung der grundsätzliche Aufbau einer Anlage zur Abscheidung gasförmiger Schadstoffe aus Rauchgasen gezeigt.
  • Diese Abscheideanlage weist mehrere, und zwar mindestens drei Rohrkaskaden 1, 2... 3 auf, die miteinander durch zwischengeschaltete Zyklonabscheider 4...5 in Strömungsverbindung stehen, welche Arbeitszyklone bilden, während die oberste Rohrkaskade im Ausführungsbeispiel die Rohrkaskade 3, in einen reinen Abscheidezyklon mündet.
  • Die untere Rohrkaskade 1 steht mit einer Rauchgaszuleitung 7 in Verbindung, während ein Saugzug 8 an das Tauchrohr 9 des Abscheidezyklons 6 angeschlossen ist.
  • Jede der Rohrkaskaden 1, 2...3 hat eine im wesentlichen vertikale Durchströmstrecke 1', 2', 3', an die sich ein Rohrkrümmer 1", 2", 3" anschliesst, der wiederum in den Rohgaseintritt 4', 5', 6' derZyklonabscheider4, 5, 6 mündet.
  • Während das untere Ende der aufrechten Durchströmstrecke T der Rohrkaskade 1 unmittelbar an die Rauchgaszuleitung 7 angeschlossen ist, stehen die Durchströmstrecken 2' bzw. 3' der übrigen Rophrkaskaden 2 ... jeweils mit Tauchrohr 10 bzw. 11 des vorgeordneten Zyklonabscheiders 4 ... 5 in Verbindung.
  • Die Abscheideanlage ist zweckmässigerweise so aufgebaut, dass die aufwärts gerichteten Durchströmstrecken 1', 3' der ungeradzahligen Rohrkaskaden 1 und 3 mit den den geradzahligen Rohrkaskaden 2 nachgeordneten Zyklonabscheidern 5 und die aufwärts gerichteten Durchströmstrecken 2' der geradzahligen Rohrkaskaden 2 mit den ungeradzahligen Rohrkaskaden 1 und 3 nachgeordneter Zyklonabscheidern 4 und 6 in vertikaler Achsfluchtlage angeordnet sind.
  • Der Auslauf 4" des Zyklonabscheiders 4 steht an seinem unteren Ende mit einer Schleuse 12, beispielsweise einer Zellradschleuse oder einer Doppelpendelklappe, in Verbindung, der ein Druckluftförderer 13 nachgeordnet ist.
  • Der Auslauf 5" des Zyklonabscheiders 5 ist an seinem unteren Ende mit einer Schleuse 14 verbunden, die ebenfalls durch eine Zellradschleuse oder eine Doppelpendelklappe gebildet werden kann. An diese Schleuse 14 sachliesst sich nach unten ein Dosierrohr 15 an, welches vertikal in die Rohrkaskade 1 hineingeführt ist und koaxial zu deren aufwärts gerichteter Durchströmstrecke 1' angeordnet ist. Das untere Ende des Dosierrohres 15 hat dabei einen gewissen Abstand vom unteren Ende der aufwärts gerichteten Durchströmstrecke 1'.
  • Auch der Auslauf 6" des Zyklonabscheiders 6 ist an seinem unteren Ende mit einer Schleuse 16 verbunden, die wiederum eine Zellradschleuse oder eine Doppelpendelklappe sein kann und mit einem Dosierrohr 17 zusammenarbeitet, welches vertikal in die Rohrkaskade 2 hineingeführt ist. Auch das Dosierrohr 17 erstreckt sich koaxial zur aufwärts gerichteten Durchströmstrecke 2' der Rohrkaskade und ragt bis zu einer Stelle herab, die einen gewissen Abstand vom unteren Ende des Tauchrohres 10 hat.
  • Koaxial zur aufwärts gerichteten Durchströmstrecke 3' der Rohrkaskade 3 ist ein Dosierrohr 18 angeordnet, dessen unteres Ende einen gewissen Abstand vom unteren Ende des Tauchrohres 11 im Zyklonabscheider 5 hat.
  • Oben schliesst sich an das Dosierrohr 18 ein Gabelrohr 19 an, dessen Zweigstück 19' mit einer Dosierschleuse 20 und dessen Zweigstück 19" mit einer Dosierschleuse 21 verbunden ist. Auch diese beiden Dosierschleusen 20 und 21 können als Zellradschleusen oder Doppelpendelklappen ausgeführt sein.
  • Die Dosierschleuse 20 steht mit dem Auslaufrichter eines Vorratsbehälters 22 in Verbindung, in welchen beispielsweise frischer Branntkalt (CaO) oder Caliumcarbonat (CaC033) eingefüllt ist.
  • Die Zellradschleuse 21 ist hingegen mit einem Auslauftrichter 23 eines Vorratsbehälters 24 verbunden, welcher noch einen weiteren Auslauftrichter 25 hat. Die beiden Auslauftrichter 23 und 25 sind dabei dem Vorratsbehälter 24 so zugeordnet, dass sie jeweils nur aus einem Teilquerschnitt des Vorratsbehälters 24 beschickt werden können. An den Auslauftrichter 25 schliesst sich ein Abzugsrohr 26 an, welches über einen Schieber 27 wahlweise geöffnet oder verschlossen werden kann. Anstelle des Schiebers 27 kann auch ein freier Auslauf oder eine Dosierschleuse vorgesehen sein. `
  • Der Vorratsbehälter 24 ist über eine Rohrleistung 28 mit dem Druckluftförderer 13 verbunden.
  • Durch den Saugzug 8 wird dem in die Rauchgaszuleitung einströmenden Rauchgas eine bestimmte Strömungsgeschwindigkeit aufgezwungen, die es auf seinem Weg durch die Rohrkaskaden 1, 2... 3 und die Zyklonabscheider 4, 5...6 beibehält.
  • Im Gegenstrom zur Bewegungsrichtung des Rauchgases wird durch jedes der Dosierrohre 15, 17, 18 Branntkalk oder Calciumcarbonat in durch die einzelnen Dosierschleusen 20 und/oder 21 bestimmten Mengen in die Rohrkaskaden so eingegeben, dass es sich möglichst gleichmässig im Rauchgasstrom verteilt. Dabei reagiert das Rauchgas mit den Additiven in der Weise, dass besipielsweise das darin enthaltene Chlor sich an die Additive anlagert und von diesen gebunden wird.
  • Die Dosierschleusen 20 und/oder 21 werden so eingestellt, dass die Additive im Rauchgas eine Konzentration zwischen 100 und 500 g/m3 erreichen und damit in einem stöchiometrischen Verhältnis von 40 bis 200 liegen.
  • Die Reaktion der Rauchgase mit den Additiven findet dabei einerseits in den einzelnen Rohrkaskaden 1, 2...3 und andererseits auch noch in den zwischengestalteten Zyklonabscheidern 4 und 5 statt, d. h. die Zyklonabscheider 4 und 5 bilden sogenannte Arbeitszyklone bzw. Reaktoren.
  • Der letzte in Strömungsrichtung der Rauchgase angeordnete Zyklonabscheider 6 hat vorwiegend die Aufgabe, die in den Rauchgasen enthaltenen Additive abzuscheiden, sobald die Rauchgase die letzte Rohrkaskade 3 verlassen.
  • Aus den vorstehend gemachten Darlegung ergibt sich deutlich, dass verfahrenstechnisch gesehen die Additive (Branntkalk und/oder Calciumcarbonat) an mehreren kaskadenartig aufeinander folgenden Stellen, nämlich innerhalb der Rohrkaskaden 1, 2... 3 in im wesentlichen aufwärts gerichtete Abschnitte 1', 2' ...3' des Rauchgasstromes eingegeben werden. Daran anschliessend werden dann jeweils hinter im wesentlichen waagrechten Strömungsstrecken 1", 2" ... 3" diese Additive durch Wirbelbildung in den Zyklonabscheidern 4, 5...6 wieder aus dem Rauchgasstrom abgeschieden. Die abgeschiedenen Additive werden dabei über die Ausläufe 4", 5" ... 6" abgeführt. Während die hinter der ersten Rohrkaskade 1 durch den Zyklonabscheider 4 aus dem Rauchgas entfernten Additive über die Schleuse 12 und den Druckluftförderer 13 in den Vorratsbehälter 24 gelangen, werden die hinter der Rohrkaskade 2 durch den Zyklonabscheider 5 aus dem Rauchgas entfernten Additive über die Schleuse 14 und das Dosierrohr 15 wieder in die vorhergehende Rohrkaskade 1 eingeführt.
  • In die letzte Rohrkaskade 3 werden frische Additive aus dem Vorratsbehälter 22 über die Dosierschleuse 20 und das Dosierrohr 18 eingeführt und gleichzeitig können auch in einer gewissen Teilmenge bereits angereicherte Additive aus dem Vorratsbehälter 24 über die Dosierschleuse 21 und das Dosierrohr 18 in die Rohrkaskade 3 gelangen.
  • Die hinter der Rohrkaskade 3 im Zyklonabscheider 6 vom Rauchgas getrennten Additive werden über die Dosierschleuse 16 und das Dosierrohr 17 nochmals in die vorhergehende Rohrkaskade im gezeigten Ausführungsbeispiel in die Rohrkaskade 2, eingeleitet.
  • Durch diese gewissermassen im Gegenstrom zur Rauchgasbewegung erfolgende Zudosierung der Additive wird also im stationären Betrieb der Abscheideanlage erreicht, dass die Additive dort den grössten Anreicherungsgrad aufweisen, wo auch die Rauchgase den grössten Schadstoffgehalt besitzen, während der Anreicherungsgrad der Additive, in Strömungsrichtung der Rauchgase betrachtet, entsprechend geringer ist und sich deshalb deren Reaktionsvermögen umgekehrt proportional zum Schadstoffgehalt der Rauchgase verhält.
  • Durch das mehrfache Einbringen der Additive an einer grösseren Anzahl von Stellen in den Rauchgasstrom wird deren Reaktions- und Bindungsvermögen auf einfache Weise optimal ausgenutzt, bis es praktisch erschöpft ist und dann aus dem Vorratsbehälter 24 durch das Abzugsrohr 26 entfernt werden können.
  • Der kaskadenartige Aufbau der Abscheideanlage macht es auf einfache Art und Weise möglich, diese auf unterschiedliche Bedürfnisse der Praxis abzustimmen, und zwar einfach dadurch, dass die Anzahl der in Strömungsrichtung der Rauchgase hintereinandergeschalteten Rohrkaskaden und Zyklonabscheider entsprechend variiert wird.
  • Abschliessend sei noch darauf hingewisen, dass die Ausbildung der Schleusen als Zellradschleusen oder Doppelpendelklappen auch noch insofern vorteilhaft ist, als mit ihrer Hilfe falsche Strömungswege für die Rauchgase unterbunden werden.

Claims (6)

1. Anlage zur Abscheidung von gasförmigen Schadstoffen, wie Chlorwasserstoff, Fluorwasserstoff und Schwefeloxyd, aus Rauchgasen, insbesondere von Müllverbrennungsanlagen, durch Reaktion mit staubförmigen Additiven, wie Branntkalk (CaO) oder Calciumcarbonat (CaC03), und Bindung an diese, bestehend aus mehreren in Strömungsrichtung der Rauchgase hintereinandergeschalteten Durchströmstrecken aufweisenden Rohrkaskaden (1, 2, ... 3), die durch Zwischenschaltung von Zyklonabscheidern (4,... 5) verbunden sind und aus in die Durchströmstrekken der Rohrkaskaden angebrachten Dosierrohren (15, 17, ... 18) für die Additive, wobei das in die letzte Rohrkaskade hineinragende Dosierrohr (18) mit. einer Zuführleitung (19) für frische Additive versehen ist, während die anderen Dosierrohre jeweils mit dem nachgeschalteten Zyklonabscheider der - in Richtung des Gasstromes gesehen - nachfolgenden Rohrkaskade verbunden sind.
dadurch gekennzeichnet,
dass die Dosierrohre (15, 17,... 18) in vertikalen Abschnitten (1', 2',... 3') der Rohrkaskaden (1, 2, ... 3) angeordnet sind und mit dem Auslauf (5", 6") des der nächstoberen Rohrkaskade (2, ... 3) nachgeschalteten Zyklonabscheiders (5, ... 6) in Verbindung stehen, und dass die ungeradzahligen Rohrkaskaden (1, 3) mit den Zyklonabscheidern (5) der geradzahligen Rohrkaskaden (2) sowie die geradzahligen Rohrkaskaden (2) mit den Zyklonabscheidern (4, 6) der ungeradzahligen Rohrkaskaden (1, 3) in vertikaler Achsfluchtlage angeordnet sind.
2. Abscheideanlage nach Anspruch 1,
dadurch gekennzeichnet,
dass der Auslauf (4") des der ersten Rohrkaskade (1) nachgeschalteten Zyklonabscheiders (4) über eine Schleuse (12) mit einem Fördersystem (13), vorzugsweise einem Druckluftförderer, gekoppelt ist, der mit einem Vorratsbehälter (24) in Verbindung steht, welcher wiederrum dem Dosierrohr (18) vorzugsweise der letzten Rohrkaskade (3) zugeordnet ist.
3. Abscheideanlage nach einem der Ansprüche 1 und 2,
dadurch gekennzeichnet,
dass das dem Vorratsbehälter (24) nachgeordnete Dosierrohr (18) über ein Gabelrohr (19) einerseits mit der Dosierschleuse (20) des Vorratsbehälters (2) für frische Additive sowie andererseits mit einer Dosierschleuse (21) des Vorratsbehälters (24) für die angereicherten Additive in Verbindung steht.
4. Abscheideanlage nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass der Vorratsbehälter (24) für die angereicherten Additive neben der Dosierschleuse (21) mit einem weiteren Abzugsorgan, vorzugsweise mit Abzugsschiebern (27) oder Dosierschleusen, versehen ist.
5. Abscheideanlagen nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die Dosierschleusen (12, 14, 16,20,21) durch Zellradschleusen oder Dopelpendelklappen gebildet sind.
6. Abscheideanlage nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die der ersten bis vorletzten Rohrkaskade (1, 2) nachgeordneten Zyklonabscheider (4, 5) Arbeitszyklone (Reaktoren) sind, während der der letzten Rohrkaskade (3) nachgeordnete Zyklonabscheider (1) ein reiner Abscheidezyklon ist.
EP79103191A 1978-09-12 1979-08-29 Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen Expired EP0008770B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2839541 1978-09-12
DE19782839541 DE2839541A1 (de) 1978-09-12 1978-09-12 Verfahren zur abscheidung von gasfoermigen schadstoffen, wie chlorwasserstoff, fluorwasserstoff und schwefeloxyd, aus rauchgasen, insbesondere von muellverbrennungsanagen, sowie abscheideanlage zur durchfuehrung des verfahrens

Publications (2)

Publication Number Publication Date
EP0008770A1 EP0008770A1 (de) 1980-03-19
EP0008770B1 true EP0008770B1 (de) 1981-12-30

Family

ID=6049196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103191A Expired EP0008770B1 (de) 1978-09-12 1979-08-29 Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen

Country Status (5)

Country Link
EP (1) EP0008770B1 (de)
JP (1) JPS5539298A (de)
BR (1) BR7905792A (de)
DE (2) DE2839541A1 (de)
DK (1) DK150704C (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226831A (en) * 1979-03-16 1980-10-07 Allis-Chalmers Corporation Apparatus for removal of sulfur from gas
DE3020248C2 (de) * 1980-05-28 1986-03-06 Deutsche Kommunal-Anlagen Miete GmbH, 8000 München Verfahren und Vorrichtung zur Abscheidung von gasförmigen und festen Schadstoffen aus den Reaktionsprodukten, die bei einem thermischen Prozeß, insbesondere der Pyrolyse von Abfallstoffen, anfallen
DE3218636A1 (de) * 1982-05-18 1983-11-24 Reith Hans Juergen Heizeinrichtung mit abgas-waermepumpe
DE3234796C2 (de) * 1982-09-20 1986-11-13 Dr. Goldberg & Partner Umwelttechnik GmbH, 8000 München Verfahren und Vorrichtung zum Abscheiden von gasförmigen Schadstoffen aus Rauchgasen mittels staubförmiger Additive
AT389652B (de) * 1983-03-12 1990-01-10 Cleve Urban Dipl Ing Verfahren zur abscheidung von in rauchgasen enthaltenen gasfoermigen schadstoffen
DE3340892A1 (de) * 1983-11-11 1985-05-23 L. & C. Steinmüller GmbH, 5270 Gummersbach Mehrstufiges verfahren zur einbindung von in rauchgasen enthaltener gasfoermiger schadstoffe
FR2565843A1 (fr) * 1984-06-18 1985-12-20 Geteba Procede et dispositif pour neutraliser des elements acides contenus dans des fumees provenant d'incinerateurs
DK158531C (da) * 1985-06-13 1990-10-29 Aalborg Vaerft As Fremgangsmaade til kontinuerlig drift af en cirkulerende fluidiseret bed-reaktor samt reaktor til anvendelse ved udoevelse af fremgangsmaaden
CH689633A5 (de) * 1995-01-10 1999-07-30 Von Roll Umwelttechnik Ag Verfahren zur Kuehlung und Reinigung von Rauchgasen.
TWI484125B (zh) * 2011-12-23 2015-05-11 Ind Tech Res Inst 迴流懸浮式煅燒爐系統及其使用方法
KR20130083687A (ko) * 2012-01-13 2013-07-23 한국에너지기술연구원 고온고압 오염가스 정제시스템
TWI516302B (zh) * 2013-12-11 2016-01-11 財團法人工業技術研究院 循環塔二氧化碳捕獲系統、碳酸化爐、煅燒爐及其使用方法
CN104474894B (zh) * 2014-11-20 2019-01-25 王在仕 一种旋风筒烟气干法催化脱硫装置及工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093465A (en) * 1959-05-08 1963-06-11 Pan American Petroleum Corp Method for treatment of gases
FR2139648B1 (de) * 1971-05-28 1973-08-10 Prat Daniel Poelman
DE2615828A1 (de) * 1976-04-10 1977-10-13 Heinz Hoelter Verfahren und vorrichtung zur gasreinigung
US4176943A (en) * 1976-10-18 1979-12-04 Ricoh Company, Ltd. Electrophotographic apparatus
DE7716772U1 (de) * 1977-05-27 1978-02-16 Hoelter, Heinz, 4390 Gladbeck Vorrichtung zur trockenen gasreinigung
DE2723958A1 (de) * 1977-05-27 1978-12-07 Heinz Hoelter Verfahren und vorrichtung zur trockenen gasreinigung

Also Published As

Publication number Publication date
EP0008770A1 (de) 1980-03-19
DK150704C (da) 1987-11-02
DK362779A (da) 1980-03-13
JPS5539298A (en) 1980-03-19
BR7905792A (pt) 1980-05-20
DE2839541A1 (de) 1980-03-20
DE2961696D1 (en) 1982-02-18
DK150704B (da) 1987-06-01

Similar Documents

Publication Publication Date Title
EP0008770B1 (de) Anlage zur Abscheidung von gasförmigen Schadstoffen aus Rauchgasen
EP0129273B1 (de) Verfahren zur Abtrennung von Schadstoffen aus Abgasen
EP0104335B2 (de) Verfahren zur Reinigung von Abgasen
DE3301688C2 (de) Waschturm für eine Anlage zur Entschwefelung von Rauchgas
DE3539347A1 (de) Verfahren und vorrichtung zum umsetzen in rauchgasen enthaltener gasfoermiger schwefelverbindungen, wie schwefeldioxid, in von den rauchgasen abzutrennende feste verbindungen
DE3308927A1 (de) Verfahren zur bindung von in rauchgasen enthaltenen gasfoermigen schadstoffen
DE2405669A1 (de) Vorrichtung zum reinigen von abgas oder abluft
DE2646130A1 (de) Druckluftfoerdereinrichtung
DE3609025A1 (de) Verfahren zur verringerung der so(pfeil abwaerts)2(pfeil abwaerts)-emission von mit fossilen brennstoffen befeuerten kesseln
DE3510669A1 (de) Vorrichtung zum beseitigen von schadstoffen aus rauchgasstroemen sowie verfahren zum betrieb der vorrichtung
DE2342814C2 (de)
DE2331156B2 (de) Vorrichtung zum Beseitigen von in Abgasen enthaltenen gasförmigen Schadstoffen
EP0490202A1 (de) Aktivkohle-Filter zum Abscheiden von Schadstoffen, wie z.B. Dioxinen und Furanen, aus Rauchgasen vor Eintritt in den Rauchgaskamin
DE1947229A1 (de) Aktivkohle-Austrags-Vorrichtung
DE3222218C2 (de) Vorzugsweise kubischer Reaktionsbehälter zur anaeroben Abwasserreinigung
DE817451C (de) Verfahren und Einrichtung zur Durchfuehrung von Reaktionen von Gasen mit feinkoernigen Stoffen
DE2931773A1 (de) System zum verringern des schwefeldioxidgehalts
DE2026620C3 (de) Vorrichtung zum Zuführen von pulverförmigem Material In die Waschflüssigkeit einer Gas-Reinfgungsanlage
DE102017005545A1 (de) Verfahren zum Entfernen schädlicher Inhaltsstoffe aus Abgasen
DE3415489C1 (de) Anlage für die Entschwefelung von Rauchgas hinter einer Kesselfeuerung
DE3339844C2 (de)
DE3335947A1 (de) Anlage zur entschwefelung von rauchgas
EP0875274B1 (de) Abgasreinigung und Verfahren zum Betreiben einer solchen Abgasreinigung
DE3039384C2 (de)
DE2623033A1 (de) Verfahren und vorrichtung zur reinigung von gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LU NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19811230

REF Corresponds to:

Ref document number: 2961696

Country of ref document: DE

Date of ref document: 19820218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820831

Ref country code: CH

Effective date: 19820831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970708

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970831

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971016

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

BERE Be: lapsed

Owner name: APPARATEBAU ROTHEMUHLE BRANDT & KRITZLER

Effective date: 19980831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT