EP0000403B1 - Complexes métalliques de diphosphines, procédé pour leur préparation, les catalyseurs d'hydrogénation obtenus à partir de ces complexes et un procédé d'hydrogénation utilisant ces catalyseurs - Google Patents

Complexes métalliques de diphosphines, procédé pour leur préparation, les catalyseurs d'hydrogénation obtenus à partir de ces complexes et un procédé d'hydrogénation utilisant ces catalyseurs Download PDF

Info

Publication number
EP0000403B1
EP0000403B1 EP19780100422 EP78100422A EP0000403B1 EP 0000403 B1 EP0000403 B1 EP 0000403B1 EP 19780100422 EP19780100422 EP 19780100422 EP 78100422 A EP78100422 A EP 78100422A EP 0000403 B1 EP0000403 B1 EP 0000403B1
Authority
EP
European Patent Office
Prior art keywords
formula
compound
hydrogenation
metal
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780100422
Other languages
German (de)
English (en)
Other versions
EP0000403A1 (fr
Inventor
John Melvin Townsend
Donald Herman Valentine, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/816,235 external-priority patent/US4120870A/en
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of EP0000403A1 publication Critical patent/EP0000403A1/fr
Application granted granted Critical
Publication of EP0000403B1 publication Critical patent/EP0000403B1/fr
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • B01J31/2414Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5027Polyphosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the invention relates to complexes of Group Ib and Ilb metals of chiral chelating bis-phosphines, a process for their preparation and their use. It also relates to soluble catalyst systems which are useful for the enantioselective hydrogenation of prochiral olefins and which are accessible by reacting the complexes with a salt or complex of a Group VIII metal and asymmetric hydrogenations carried out using these catalyst systems.
  • the catalyst components made in accordance with the present invention are solid and have the advantage of obviating the need for lengthy cleaning techniques to obtain a highly purified chiral chelating bis-phosphine.
  • compounds of the formula wherein R 3 and R 4 , C 1 ⁇ C 20 alkyl, or mononuclear or polynuclear aryl, namely phenyl, naphthyl, anthryl, phenanthryl or azulyl, Y 'carbon, Q 1 and Q 2 are methylene or oxygen, P phosphorus, Ar substituted or unsubstituted aryl, namely phenyl, naphthyl, anthryl, phenanthryl or azulyl, M is a metal from group Ib or IIb, X halide, perchlorate, tetra (fluoro or chloro) borate, hexa (fluoro or chloro) phosphate or hexa (fluoro or chloro ) antimonate or tetraphenylborate, n is 0 or 1, with the proviso that if n 0, Q 1 and Q 2 are methylene and the dashed line
  • Preferred compounds of the formula I are those in which Q 1 and Q 2 are each oxygen. Further preferred are compounds in which Ar is m-tolyl, phenyl or 3,5-dimethylphenyl, and also those in which M is copper.
  • the compounds of formula I can be made by reacting a compound of formula wherein Q 1 , Q 2 , R 3 , R 4 , Y ', Ar and n have the above meanings, with a compound of the formula MX. wherein M, X, r and s have the above meanings.
  • a process for the preparation of a hydrogenation catalyst composition which is characterized in that a compound of the formula wherein the substituents have the meanings given above, or their dimer or oligomer with a salt or a complex of a metal from group VIIIb as defined.
  • the complex is preferably an olefin complex.
  • Another aspect of the invention relates to asymmetric hydrogenation.
  • the invention relates to homogeneous hydrogenations, catalyzed by the complexes of salts of metals from groups Ib and IIb with chiral tertiary phosphines of the formula I in combination with complexes from metals from group VIIIb, the hydrogenation proceeding enantioselectively and leading to optically active compounds.
  • the invention also relates to a process for the preparation of compounds of the formula provided, wherein R is alkyl, alkenyl, aryl, substituted or unsubstituted indolyl with substituents from the group lower alkyl and halogen, S substituted amino and T lower alkyl, aryl, carboxy, lower alkoxycarbonyl or carboxamido, by enantioselective hydrogenation of compounds of the formula wherein R, S and T are as defined above, the hydrogenation taking place in a solvent medium in the presence of the hydrogenation catalyst according to the invention.
  • the optically active compounds produced by the process according to the invention are in the form of a mixture of enantiomers with an excess shot obtained on either R or S enantiomers. The enantiomer in excess is determined by the chiral phosphine used and the isomeric form of the substrate, ie E or Z.
  • These new chiral phosphines containing Group Ib and Ilb metal is not limited to hydrogenations.
  • These catalyst components can be used to make catalysts to effect other reactions, such as enantioselective hydrosilylations, hydroformylations, and hydroesterifications, when combined with suitable complexes of Group VIII metals.
  • chiral chelating bis-phosphine refers to a compound having two achiral phosphorus centers separated by a 4 carbon chain that is chiral.
  • lower alkyl refers to an alkyl group with a straight or branched chain of 1 to 6 carbon atoms. Examples of such groups are methyl, ethyl, propyl, isopropyl and 3-methylbutyl.
  • alkyl refers to an alkyl group having 1 to 20 carbon atoms.
  • aryl includes mononuclear aryl groups such as phenyl and multinuclear aryl groups such as naphthyl, anthryl, phenanthryl and azulyl.
  • substituted aryl includes those "aryl” groups which are substituted in one or more positions by lower alkyl, nitro, halogen or an electron-donating group such as lower alkoxy, amino or mono- or di-lower alkylamino .
  • lower alkenyl refers to an alkenyl group with a straight or branched chain with 2 to 6 carbon atoms. Examples of such hydrocarbon groups are vinyl, propenyl, butenyl, hexenyl and 3-methylbut-2-enyl.
  • alkenyl refers to an alkenyl group having 2 to 20 carbon atoms.
  • lower alkanol refers to an alkanol with a straight or a branched chain with 1 to 7 carbon atoms. Examples of such alkanols are methanol, ethanol, propanol and isopropanol.
  • lower acyl refers to acyl groups having 1 to 6 carbon atoms, such as formyl, acetyl and butyryl.
  • halo include chlorine, fluorine, bromine and iodine.
  • acylamido refers to amido groups having 1 to 6 carbon atoms, such as formamido, acetamido and propionamido.
  • lower alkoxycarbonyl refers to carbonyl groups with attached lower alkoxy radicals having 1 to -6 carbon atoms.
  • lower carboxylate refers to carboxyl groups having 2 to 7 carbon atoms, e.g. Acetate, propionate and benzoate.
  • enantiomeric excess refers to a numerical value, expressed as a percentage, that indicates the predominance of one enantiomer relative to the other, e.g. Excess of the R enantiomer expressed as a percent of the R enantiomer minus percent of the S enantiomer.
  • R and S enantiomer refer to the configuration of the substituents on the asymmetric carbon atom in optically active organic compounds, as prescribed in the usual IUPAC nomenclature.
  • the wedges (A) indicate that the substituent is above the molecular level
  • the dashed lines (---) indicate that the substituents are below the molecular level
  • the wavy lines ( ⁇ ) indicate that the Substituents can be either above or below the molecular level.
  • metal from group VIIIb means rhodium, ruthenium, osmium, palladium, platinum, iridium, iron, cobalt and nickel.
  • the metal salts or metal complexes of rhodium are particularly preferred.
  • metal of group Ib and llb means copper, silver, gold, zinc, cadmium and mercury.
  • Suitable rhodium salts or complexes are, for example, RhCl 3 .nH 2 0, Rh (acetylacetonate 3 , [RhZ (olefin) 2 ] 2 and [RhZ (diolefin)] 2 ' where Z is halogen, lower alkoxycarboxylate or lower alkyl derivatives of Acetylacetone, preferably acetylacetone itself, means "olefin” as used herein means an olefinic compound such as ethylene, propylene and "diolefin” as used herein means a diolefinic compound such as 1,5-hexadiene, 1,5-cyclooctadiene
  • Preferred rhodium salts or complexes are, for example, ⁇ , ⁇ '- dichloro - bis - [bis (olefin) rhodium (l)], for example, ⁇ , ⁇ ' - dichloro - bis - [1,5
  • the invention also relates to a process for the preparation of a compound of the formula which consists in having a compound of formula wherein R 5 and R 8 are methyl or ethyl, preferably both ethyl, reduced with NaBH 4 .
  • a preferred starting material is the tosylate of compound VII.
  • the ditosylate in the scheme above. which can be prepared by known methods is treated with a halogenating agent to form the corresponding halide.
  • the resulting halide is then treated with an alkali metal diaryl phosphide, preferably di-m-tolyl phosphide, to form the crude chiral chelating bisphosphine.
  • the chelating bis-phosphine is then treated with a salt of a Group Ib or IIb metal to form the compound of the formula.
  • the ditosylate can be halogenated by treatment with an alkali metal halide. This reaction is generally carried out in a polar solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF) or acetone.
  • a polar solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF) or acetone.
  • the resulting dihalide is then treated with an alkali metal diaryl phosphide, e.g. Di-m-tolylphosphide treated to give the chiral chelating bis-diarylphosphine of Formula II.
  • This reaction generally takes place in a solvent, preferably liquid ammonia or an ethereal solvent, such as diethyl ether or tetrahydrofuran. This reaction generally takes place at a temperature of -33 ° C to + 50 ° C.
  • the resulting chiral chelating bisphosphine II is then reacted with a salt of a metal from group Ib or Ilb, preferably with copper (I) chloride, preferably in a lower alkanol as solvent, preferably ethanol.
  • a salt of a metal from group Ib or Ilb preferably with copper (I) chloride, preferably in a lower alkanol as solvent, preferably ethanol.
  • solvent preferably ethanol
  • the ditosylate as the starting material, its alcohol precursor can be used, a compound of formula VI, which can be converted directly into the dihalide by treatment with conventional halogenating agents such as thionyl chloride, phosphorus trihalide or phosphorus pentanalogenide. The dihalide can then be further reacted to compound I as described above.
  • conventional halogenating agents such as thionyl chloride, phosphorus trihalide or phosphorus pentanalogenide.
  • the dihalide can then be further reacted to compound I as described above.
  • Compound VI in which Q 1 and Q 2 are oxygen, can be prepared from the methyl or ethyl ester of tartaric acid.
  • the methyl or ethyl ester of tartaric acid is produced in a conventional manner.
  • the aforementioned esters are then converted to a compound of formula V, wherein R 1 and R 2 are methyl or ethyl, in which the esters are treated with acetone dimethyl or diethyl acetal.
  • Compound VI is then made by reducing a compound V.
  • the reducing agents which can be used for the conversion of the compound V into the compound VI include LiAIH 4 , NaBH 4 and NaAlH 2 [OCH 2 CH 2 ⁇ O ⁇ CH 3 l 2 (vitrides).
  • Preferred reducing agents are LiAIH 4 and NaBH 4 .
  • the latter is the reducing agent of choice when R 1 and R 2 in formula V are ethyl. This is particularly the case when Q 1 and Q 2 are oxygen and R 3 and R 4 are methyl.
  • the alcohol of compound VI then obtained can be further reacted to form compound I as described above.
  • the compound of formula I is then reacted with one of the complexes of a Group VIII metal, preferably with rhodium complexes as mentioned above, to form the new asymmetrically hydrogenating catalyst according to the invention.
  • This hydrogenation catalyst is generally formed in situ and not isolated, although, if desired, it can be isolated and stored for later use.
  • the molar ratio of the compound of formula I to the source of a Group VIII metal salt, which is reacted to form the complex catalysts used herein, is generally adjusted to provide the optimal Group VIII III phosphine: metal ratio.
  • this preferred ratio is 2: 1 (i.e. one mole of chiral chelating diphosphine per g-atom of rhodium).
  • ratios from 2: 1 to 10: 1 can be used. Higher ratios can be used, but this does not result in any particular advantages.
  • the phosphine: metal Group VIIIb ratio may vary from 1: 1 to about 10: 1.
  • the molar ratio of the substrate of formula IV to catalyst can preferably vary from about 1: 1 to about 5000: 1, although ratios> 5000: 1 can also be used.
  • the preferred solvents used in the asymmetric hydrogenation process disclosed herein can be selected from lower alkanols alone or lower alkanols in combination with aromatic hydrocarbons or saturated alkanes or cycloalkanes or lower alkanols in combination with water.
  • the lower alkanols have already been defined.
  • aromatic hydrocarbons refers to benzene, toluene, xylene and the like, although any inert aromatic hydrocarbon can be used.
  • saturated alkanes or cycloalkanes refers to pentane, hexane, heptane, cyclohexane and the like, although any inert saturated alkane or cycloalkane having 5 to 20 hydrocarbon atoms can be used.
  • the temperature can be between about -30 ° C and about 150 ° C, preferably about 0 ° C and about 50 ° C.
  • the pressure can be between about 0.14 and about 35 kg / cm 2 , preferably about 0.14 and 7.0 kg / cm 2 (2-500, preferably 2-100 psi).
  • the process according to the invention is particularly useful for the formation of tryptophans of the formula adapt, wherein R 7 is hydrogen, lower alkyl, especially methyl or halogen, which are useful as nutritional sweeteners.
  • R 7 is hydrogen, lower alkyl, especially methyl or halogen, which are useful as nutritional sweeteners.
  • the above tryptophans are obtained by asymmetric hydrogenation on a compound of the formula wherein R 7 is as defined above.
  • This process can also be applied to the asymmetric hydrogenation of the substrates disclosed in DE-OS 2 727 671.
  • the enantiomeric excess was calculated according to the following equation: Enantiomeric excess of R enantiomers (in percent) wherein the parameter (R / S) was determined by quantitative liquid chromatographic analysis of diastereometric dipeptide derivatives of the amino acid obtained from the hydrogenation product by hydrolysis.
  • DIOP refers to (-) - 4R, 5R - trans - 4,5 - bis - (diphenylphosphinomethyl) - 2,2-dimethyl-1,3-dioxolane.
  • (3 - CH 3 ) DIOP refers to (-) - 4R, 5R - trans - 4,5 - bis - [di - (m - tolyl) - phosphinomethyl] - 2,2 - dimethyl - 1 , 3 - dioxolane and the term "(3,5diCH 3 ) DIOP” refers to (+) - 4R, 5R - trans - 4,5 - bis - ([di - 3,5 - dimethylphenyl] phosphinomethyl) - 2 , 2-dimethyl-1,3-dioxolane.
  • BuDIOP refers to (-) - 1 R, 2R - trans - 1,2 - bis - (diphenylphosphinomethyl) cyclobutane.
  • Example 5 Using the general procedure of Example 5, 1.0 g of DIOP and 0.198 g of copper (I) chloride were refluxed in 20 ml of absolute ethanol, but in this case the mixture was refluxed for 15 minutes until the product crystals began to separate from the hot solution . The solid obtained by filtration was dissolved in chloroform and filtered again to remove traces of unreacted copper (I) chloride. The chloroform was removed and the remaining powder (0.763 g, 63%, mp. 21 1 ⁇ 212.5 °) was crystallized twice from 1: 1 benzene / methanol to give 0.15 g of pure "high-melting" DlOP-CuCl complex , Mp. 211-212 °, [ ⁇ ] 25 D 36.5 ° (1.0%, chloroform).
  • Zinc perchlorate hexahydrate (0.324 g) and (3-CH 3 ) -DIOP (0.527 g, 10% excess) were refluxed under argon in 5 ml of oxygen-free absolute methanol for 18 h. After cooling, the solution was evaporated to dryness and the residue (0.714 g) was successively triturated with ether, benzene, water and ether / petroleum ether.
  • the colorless (3-CH 3 ) -DlOP-Zn (Cl0 4 ) 2-complex residue (0.58 g, 69%) apparently had a minor after micro analysis and the appearance of a moderate -OH stretching vibration absorption in the IR spectrum Experience hydrolysis.
  • a slurry of 2.0 g ZaN-acetylamino-6-methylindole-3-acrylic acid and 8.5 ml oxygen-free methanol was treated under anaerobic conditions with 1.49 ml of a catalyst solution consisting of 14.7 x 10- 3 g (3-CH 3 ) -DlOP-CuCl-ethanolate complex prepared as in Example 1.5.2 x 10- 3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadiene rhodium (l) ] and 25 ml of methanol had been prepared.
  • This catalyst solution contains 0.78 x 10- 3 g of catalyst per ml of solution; the use of 1.49 ml corresponds to a substrate / catalyst weight ratio of 1720/1.
  • the R / S enantiomer ratio was determined for the crude amino acid obtained by hydrolysis of the hydrogenation product. An enantiomeric excess of the R-enantiomer of 84.4% was found, ie 92.2 parts of R-enantiomer and 7.8 parts of S-enantiomer, after a quantitative analytical separation of diastereomeric dipeptide derivatives of the amino acid.
  • Example 9 Using the general method of Example 9, 2.0 g Zan-acetylamino-3-acrylic acid in a pressure vessel with 9.0 ml of methanol and combined total of 2.4 ml of catalyst solution prepared from 20.5 x 10- 3 g CuCI- (3-CH 3 ) -DIOP complex, prepared as in Example 2, 7.0 ⁇ 10 -3 g, ⁇ , ⁇ ′-dichlorobis [1,5-cyclooctadiene rhodium (I)] and 25 ml methanol.
  • the substrate / catalyst weight ratio was thus 755/1.
  • the catalyst solution was added in 3 portions in the course of the hydrogenation.
  • Example 9 A hydrogenation reaction was carried out using the general procedure of Example 9 was conducted except that the catalyst consists of 3.1 ml of a solution was composed of 2.5 x 10- 3 g ( ⁇ ) -1R, 2R-trans-1, 2-bis (diphenylphosphinomethyl) cyclobutane-CuCI complex, 1.1 x 10- 3 g, ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadienrhodium (l) and 10 ml methanol was prepared. This corresponds to a substrate / catalyst weight ratio of 1790/1.
  • Example 9 Using the general method of Example 9 was carried out, a hydrogenation catalyst wherein 1.0 ml as a solution was used, the g of 7.6 x 10- 3 DIOP CuCl complex prepared as in Example 6, 3.1 x 10 -3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadienrhodium (l)] and 10 ml methanol had been prepared. This results in a substrate / catalyst weight ratio of approximately 2000/1.
  • the product derived from the hydrogenation, R - (-) - N-acetyl-6-methyltryptophan, with [ ⁇ ] 25 D - 19.8 ° showed an enantiomeric excess of the R-entantiomer of 75.4% according to the amino acid analysis .
  • Example 9 Hydrogenation was carried out using the general method of Example 9, 1.8 ml of a solution consisting of 16.9 ⁇ 10 -3 g of solid complex, prepared from Zn (CIO I ) 2 and (3-CH 3 ) -DIOP, as described in Example 8, 5.1 ⁇ 10 -3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadiene rhodium (1)] and 10 ml methanol had been prepared. This gives a substrate / catalyst weight ratio of approximately 500/1.
  • the filter cake was rinsed with 200 ml of chloroform: after combining, the filtrate and rinsing solution were dried over MgSO 4 , filtered and concentrated to 64.4 g (100 +%) of crude diol of the formula XIII as a colorless oil.
  • the crude diol was dissolved in 400 ml dry pyridine, cooled to -20 ° C and treated with 165 g p-toluenesulfonyl chloride. When the mixture was left at 0 ° C for several days, crystallization of the ditosylate of the formula XI occurred.
  • the mixture was cooled in an ice bath and treated dropwise with 625 ml of water.
  • the product was then collected by filtration, rinsed with a total of 500 ml of water and air dried to give 190 g (approx. 100%) of crude ditosylate of the formula XI, mp 87-89 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (23)

1. Composé de formule
Figure imgb0046
où R3 et R4 sont un groupe alcoyle en C1 à C20 ou un groupe aryle, à savoir phényle, naphtyle, anthryle, phénanthryle ou azulyle, Y' est un carbone; Q1 et Q2 sont le groupe méthylène ou l'oxygène; P est le phosphore; Ar est un groupe aryle substitué ou non-substitué, à savoir phényle, naphtyle, anthryle, phénanthryle ou azulyle, M est un métal du groupe Ib ou llb, X est un halogénure, perchlorate, tétra(fluoro ou chloro)borate, hexa(fluoro ou chloro)phosphate, ou hexa(fluoro ou chloro)antimonate, ou le tétraphénylborate, n vaut 0 ou 1, avec la condition que, lorsque n = 0, Q1 et Q2 représentent le groupe méthylène et la ligne pointillée est une liaison carbone-carbone et que, lorsque n = 1, Q1 et Q2 sont des oxygènes, chaque oxygène étant lié à Y', u est un nombre entier allant de 1 à 3, r et s valent 1 ou 2 selon la valence de M et la valeur de u, ou ses dimères ou ologomères.
2. Composé selon la revendication 1, où Q1 et Q2 représentent tous les deux un oxygène.
3. Composé selon la revendication 1 ou 2, où Ar représente un groupe m-tolyle, phényle ou 3,5-diméthylphényle.
4. Composé selon l'une des revendications 1 à 3, où M représente le cuivre.
5. Composé de formule
Figure imgb0047
6. Composé de formule
Figure imgb0048
7. Composé de formule
Figure imgb0049
8. Composé de formule
Figure imgb0050
9. Composé de formule
Figure imgb0051
10. Composé de formule
Figure imgb0052
11. Composé de formule
Figure imgb0053
12. Procédé de préparation d'un composé de formule
Figure imgb0054
où les substituants ont les significations données dans l'une des revendications 1 à 11, ou de ses dimères ou oligomères, caractérisé en ce que l'on fait réagir un composé de formule
Figure imgb0055
où 01, Q2, R3, R4, Y', Ar et n ont les significations données ci-dessus, avec un composé de formule
MrXs

où X a la signification donnée ci-dessus, M est un métal du groupe Ib ou Ilb; r et s valent 1 ou 2 selon la valence de M.
13. Procédé selon la revendication 12, caractérisé en ce que la réaction s'effectue en solution dans un alcanol inférieur.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce que le solvant utilisé est l'éthanol.
15. Procédé selon la revendication 14, caractérisé en ce que le composé de formule Il est préparé en traitant un composé de formule
Figure imgb0056
où Q1, Q2, R3, R4, Y' et n ont les significations données ci-dessus et W est un halogène, avec un diaryl- phosphure de métal alcalin.
16. Procédé selon la revendication 15, caractérisé en ce que l'on prépare le composé de formule VIII en traitant un composé de formule
Figure imgb0057
où Ts est le tosylate et Q1, Q2, R3, R4, Y' et n ont les significations données ci-dessus, avec un agent d'halogénation.
17. Utilisation d'un composé de formule
Figure imgb0058
où les substituants ont les significations données dans l'une des revendications 1 à 11 ou de ses dimères ou oligomères pour la préparation d'un catalyseur d'hydrogénation par réaction avec un sel ou complexe d'un métal du groupe Vlllb tel que défini.
18. Utilisation selon la revendication 17, caractérisée en ce que le métal du groupe Vlllb utilisé est le rhodium.
19. Utilisation selon la revendication 17, caractérisée en ce que le métal du groupe Vlllb utilisé est le palladium, le platine ou le ruthénium.
20. Utilisation selon la revendication 17, caractérisé en ce que le sel ou complexe d'un métal du groupe Vlllb utilisé est le µ,µ'-dichloro-bis-(1,5-cyclooctadiènerhodium) ou le µ,µ'-dichloro-bis-[bis-(éthylène)rhodium(l)].
21. Procédé de préparation d'un composé de formule
Figure imgb0059
où R est un groupe alcoyle, alcényle, aryle, indolyle substitué ou non-substitué, lesdits substituants étant choisis parmi les groupes alcoyles inférieurs et les halogènes; S est un amino substitué et T est un groupe alcoyle inférieur, aryle, carboxy, alcoxycarbonyle inférieur ou carboxamido, caractérisé en ce que l'on hydrogène un substrat de formule
Figure imgb0060
où R, S et T ont les significations données ci-dessus, dans un milieu solvant en utilisant un catalyseur selon la revendication 17.
22. Procédé selon la revendication 21, caractérisé en ce que le composé de formule IV répond à la formule
Figure imgb0061
où R7 représente un hydrogène, un groupe alcoyle inférieur ou un halogène, et est transformé en un composé de formule
Figure imgb0062
où R7 a la signification donnée ci-dessus.
23. Procédé selon la revendication 22, caractérisé en ce que R7 représente le groupe méthyle.
EP19780100422 1977-07-18 1978-07-18 Complexes métalliques de diphosphines, procédé pour leur préparation, les catalyseurs d'hydrogénation obtenus à partir de ces complexes et un procédé d'hydrogénation utilisant ces catalyseurs Expired EP0000403B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US816235 1977-07-18
US05/816,235 US4120870A (en) 1977-07-18 1977-07-18 Metal phosphine complex
GB7828154A GB2001073A (en) 1977-07-18 1978-06-28 Metal phosphine complex catalysts
GB2815478 1978-06-28

Publications (2)

Publication Number Publication Date
EP0000403A1 EP0000403A1 (fr) 1979-01-24
EP0000403B1 true EP0000403B1 (fr) 1981-06-17

Family

ID=26268074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780100422 Expired EP0000403B1 (fr) 1977-07-18 1978-07-18 Complexes métalliques de diphosphines, procédé pour leur préparation, les catalyseurs d'hydrogénation obtenus à partir de ces complexes et un procédé d'hydrogénation utilisant ces catalyseurs

Country Status (5)

Country Link
EP (1) EP0000403B1 (fr)
JP (1) JPS5439052A (fr)
DE (2) DE2831525A1 (fr)
FR (1) FR2422676A1 (fr)
NL (1) NL7807603A (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1140319B (it) * 1981-12-04 1986-09-24 Consiglio Nazionale Ricerche Catalizzatori contenenti fosfine steroidali chirale precessi catalitici asimmetrici che li impiegano
DK350383A (da) * 1982-08-27 1984-02-28 Hoffmann La Roche Phosphorforbindelser
CA1244764A (fr) * 1984-06-04 1988-11-15 Randall K. Johnson Composes pharmaceutiques inhibant la croissance des cellules tumorales et contenant des complexes phosphino-hydrocarbure-or, argent ou cuivre
US4994615A (en) * 1986-08-04 1991-02-19 Ciba-Geigy Corporation Process for the preparation of optically active secondary arylamines
CA1331201C (fr) * 1987-04-08 1994-08-02 Johannes Adrianus Van Doorn Preparation de phosphides de diaryle substitues
DE19725643A1 (de) * 1997-06-18 1998-12-24 Basf Ag Optisch aktive Diphosphinliganden
JP3318294B2 (ja) * 1999-11-02 2002-08-26 タキゲン製造株式会社 クレモンロック装置
JP5166029B2 (ja) * 2005-07-07 2013-03-21 高砂香料工業株式会社 均一系不斉水素化反応用触媒
BR112014023016B1 (pt) * 2012-03-30 2020-10-27 Givaudan Sa composição de sabor e composição comestível

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345392A (en) * 1964-03-24 1967-10-03 American Cyanamid Co Organophosphorus-copper complex compounds
FR2116905A5 (fr) * 1970-12-10 1972-07-21 Inst Francais Du Petrole Nouveaux coordinats bidentes,leur fabrication et leurs applications
FR2230654B1 (fr) * 1973-05-21 1975-11-21 Rhone Poulenc Ind
JPS51101956A (ja) * 1975-03-04 1976-09-08 Kogyo Gijutsuin Kogakukatsuseihosufuinno seizohoho

Also Published As

Publication number Publication date
DE2831525A1 (de) 1979-02-01
DE2860769D1 (en) 1981-09-24
NL7807603A (nl) 1979-01-22
JPS5439052A (en) 1979-03-24
FR2422676A1 (fr) 1979-11-09
EP0000403A1 (fr) 1979-01-24

Similar Documents

Publication Publication Date Title
EP0104375B1 (fr) Dérivés biphényliques contenant du phosphore et leur utilisation pour l'hydrogénation asymétrique et la migration énantiosélective d'hydrogène
EP0564406B1 (fr) Ferrocenyldiphosphine comme ligandes de catalyseurs homogènes
DE2463010C2 (de) Optisch aktive Katalysatoren und deren Verwendung
DE2424543C2 (de) Chlor-Rhodium-Komplexe mit einem stereoisomeren Diphosphin-Liganden, ihre Herstellung und ihre Verwendung bei der asymmetrischen Hydrierung
EP0647648B1 (fr) Composés de phosphore optiquement actifs
EP0398132B1 (fr) Composés du phosphore
EP0646590B1 (fr) Ferrocényldiphosphines substituées par un groupe fluoroalkyle comme ligands pour des catalyseurs homogènes
EP0582692B1 (fr) Ligands diphosphiniques
EP0579797B1 (fr) Ligands diphosphiniques
EP0530336B1 (fr) Phosphines chirales
EP0000403B1 (fr) Complexes métalliques de diphosphines, procédé pour leur préparation, les catalyseurs d'hydrogénation obtenus à partir de ces complexes et un procédé d'hydrogénation utilisant ces catalyseurs
DE69921588T2 (de) Aminophosphin-Metallkomplex für asymmetrische Reaktionen
DE19548399A1 (de) Rutheniumkomplexe mit einem chiralen, zweizähnigen Phosphinoxazolin-Liganden zur enantioselektiven Transferhydrierung von prochiralen Ketonen
DE602004008478T2 (de) Biphosphinrutheniumkomplexe mit chiralen diaminliganden als katalysatoren
EP0031877B1 (fr) Composés bis(diphénylphosphino)-1,2, complexes métalliques les contenant comme ligands chiraux, et leur utilisation
EP1499625B1 (fr) Ligands de ferrocenyle et procede de production associe
US4120870A (en) Metal phosphine complex
EP1483276B1 (fr) Ligands ferrocenyles et leur utilisation en catalyse
EP1119574B1 (fr) Isophosphindolines substituees et leur utilisation
DE2123063C3 (de) Katalytische asymmetrische Hydrierung
DE60307724T2 (de) Neue Diphosphinverbindung, Zwischenprodukte für deren Herstellung, Übergangsmetallkomplex enthaltend die Verbindung als Ligand und Katalysator für asymmetrische Hydrierungen, welcher den Komplex enthält
WO2006128434A2 (fr) DIPHOSPHONITES CHIRAUX UTILISES EN TANT QUE LIGANDS DANS LA REDUCTION ENANTIOSELECTIVE DE CETONES, DE ß-CETO-ESTERS, DE ET CETIMINES, CATALYSEE PAR DU RUTHENIUM
DE69913003T2 (de) 1,2-bis(methyl(1,1,3,3-tetramethylbutyl)-phosphino)ethan, verfahren zur herstellung davon, übergangsmetall-komplexe, die dieses als liganden enthalten und ihre verwendung
WO2004111063A2 (fr) Ligands chiraux a utiliser dans des syntheses asymetriques
DE2638071A1 (de) Katalytische asymmetrische hydrierverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19810617

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19810617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19810731

REF Corresponds to:

Ref document number: 2860769

Country of ref document: DE

Date of ref document: 19810924

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19830301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT