EP0000403B1 - Bis-phosphin-Metallkomplexe, Verfahren zu ihrer Herstellung, Hydrierungskatalysatoren aus diesen Komplexen und Hydrierungsverfahren unter Verwendung dieser Katalysatoren - Google Patents

Bis-phosphin-Metallkomplexe, Verfahren zu ihrer Herstellung, Hydrierungskatalysatoren aus diesen Komplexen und Hydrierungsverfahren unter Verwendung dieser Katalysatoren Download PDF

Info

Publication number
EP0000403B1
EP0000403B1 EP19780100422 EP78100422A EP0000403B1 EP 0000403 B1 EP0000403 B1 EP 0000403B1 EP 19780100422 EP19780100422 EP 19780100422 EP 78100422 A EP78100422 A EP 78100422A EP 0000403 B1 EP0000403 B1 EP 0000403B1
Authority
EP
European Patent Office
Prior art keywords
formula
compound
hydrogenation
metal
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780100422
Other languages
English (en)
French (fr)
Other versions
EP0000403A1 (de
Inventor
John Melvin Townsend
Donald Herman Valentine, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/816,235 external-priority patent/US4120870A/en
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of EP0000403A1 publication Critical patent/EP0000403A1/de
Application granted granted Critical
Publication of EP0000403B1 publication Critical patent/EP0000403B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • B01J31/2414Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5027Polyphosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/17Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the invention relates to complexes of Group Ib and Ilb metals of chiral chelating bis-phosphines, a process for their preparation and their use. It also relates to soluble catalyst systems which are useful for the enantioselective hydrogenation of prochiral olefins and which are accessible by reacting the complexes with a salt or complex of a Group VIII metal and asymmetric hydrogenations carried out using these catalyst systems.
  • the catalyst components made in accordance with the present invention are solid and have the advantage of obviating the need for lengthy cleaning techniques to obtain a highly purified chiral chelating bis-phosphine.
  • compounds of the formula wherein R 3 and R 4 , C 1 ⁇ C 20 alkyl, or mononuclear or polynuclear aryl, namely phenyl, naphthyl, anthryl, phenanthryl or azulyl, Y 'carbon, Q 1 and Q 2 are methylene or oxygen, P phosphorus, Ar substituted or unsubstituted aryl, namely phenyl, naphthyl, anthryl, phenanthryl or azulyl, M is a metal from group Ib or IIb, X halide, perchlorate, tetra (fluoro or chloro) borate, hexa (fluoro or chloro) phosphate or hexa (fluoro or chloro ) antimonate or tetraphenylborate, n is 0 or 1, with the proviso that if n 0, Q 1 and Q 2 are methylene and the dashed line
  • Preferred compounds of the formula I are those in which Q 1 and Q 2 are each oxygen. Further preferred are compounds in which Ar is m-tolyl, phenyl or 3,5-dimethylphenyl, and also those in which M is copper.
  • the compounds of formula I can be made by reacting a compound of formula wherein Q 1 , Q 2 , R 3 , R 4 , Y ', Ar and n have the above meanings, with a compound of the formula MX. wherein M, X, r and s have the above meanings.
  • a process for the preparation of a hydrogenation catalyst composition which is characterized in that a compound of the formula wherein the substituents have the meanings given above, or their dimer or oligomer with a salt or a complex of a metal from group VIIIb as defined.
  • the complex is preferably an olefin complex.
  • Another aspect of the invention relates to asymmetric hydrogenation.
  • the invention relates to homogeneous hydrogenations, catalyzed by the complexes of salts of metals from groups Ib and IIb with chiral tertiary phosphines of the formula I in combination with complexes from metals from group VIIIb, the hydrogenation proceeding enantioselectively and leading to optically active compounds.
  • the invention also relates to a process for the preparation of compounds of the formula provided, wherein R is alkyl, alkenyl, aryl, substituted or unsubstituted indolyl with substituents from the group lower alkyl and halogen, S substituted amino and T lower alkyl, aryl, carboxy, lower alkoxycarbonyl or carboxamido, by enantioselective hydrogenation of compounds of the formula wherein R, S and T are as defined above, the hydrogenation taking place in a solvent medium in the presence of the hydrogenation catalyst according to the invention.
  • the optically active compounds produced by the process according to the invention are in the form of a mixture of enantiomers with an excess shot obtained on either R or S enantiomers. The enantiomer in excess is determined by the chiral phosphine used and the isomeric form of the substrate, ie E or Z.
  • These new chiral phosphines containing Group Ib and Ilb metal is not limited to hydrogenations.
  • These catalyst components can be used to make catalysts to effect other reactions, such as enantioselective hydrosilylations, hydroformylations, and hydroesterifications, when combined with suitable complexes of Group VIII metals.
  • chiral chelating bis-phosphine refers to a compound having two achiral phosphorus centers separated by a 4 carbon chain that is chiral.
  • lower alkyl refers to an alkyl group with a straight or branched chain of 1 to 6 carbon atoms. Examples of such groups are methyl, ethyl, propyl, isopropyl and 3-methylbutyl.
  • alkyl refers to an alkyl group having 1 to 20 carbon atoms.
  • aryl includes mononuclear aryl groups such as phenyl and multinuclear aryl groups such as naphthyl, anthryl, phenanthryl and azulyl.
  • substituted aryl includes those "aryl” groups which are substituted in one or more positions by lower alkyl, nitro, halogen or an electron-donating group such as lower alkoxy, amino or mono- or di-lower alkylamino .
  • lower alkenyl refers to an alkenyl group with a straight or branched chain with 2 to 6 carbon atoms. Examples of such hydrocarbon groups are vinyl, propenyl, butenyl, hexenyl and 3-methylbut-2-enyl.
  • alkenyl refers to an alkenyl group having 2 to 20 carbon atoms.
  • lower alkanol refers to an alkanol with a straight or a branched chain with 1 to 7 carbon atoms. Examples of such alkanols are methanol, ethanol, propanol and isopropanol.
  • lower acyl refers to acyl groups having 1 to 6 carbon atoms, such as formyl, acetyl and butyryl.
  • halo include chlorine, fluorine, bromine and iodine.
  • acylamido refers to amido groups having 1 to 6 carbon atoms, such as formamido, acetamido and propionamido.
  • lower alkoxycarbonyl refers to carbonyl groups with attached lower alkoxy radicals having 1 to -6 carbon atoms.
  • lower carboxylate refers to carboxyl groups having 2 to 7 carbon atoms, e.g. Acetate, propionate and benzoate.
  • enantiomeric excess refers to a numerical value, expressed as a percentage, that indicates the predominance of one enantiomer relative to the other, e.g. Excess of the R enantiomer expressed as a percent of the R enantiomer minus percent of the S enantiomer.
  • R and S enantiomer refer to the configuration of the substituents on the asymmetric carbon atom in optically active organic compounds, as prescribed in the usual IUPAC nomenclature.
  • the wedges (A) indicate that the substituent is above the molecular level
  • the dashed lines (---) indicate that the substituents are below the molecular level
  • the wavy lines ( ⁇ ) indicate that the Substituents can be either above or below the molecular level.
  • metal from group VIIIb means rhodium, ruthenium, osmium, palladium, platinum, iridium, iron, cobalt and nickel.
  • the metal salts or metal complexes of rhodium are particularly preferred.
  • metal of group Ib and llb means copper, silver, gold, zinc, cadmium and mercury.
  • Suitable rhodium salts or complexes are, for example, RhCl 3 .nH 2 0, Rh (acetylacetonate 3 , [RhZ (olefin) 2 ] 2 and [RhZ (diolefin)] 2 ' where Z is halogen, lower alkoxycarboxylate or lower alkyl derivatives of Acetylacetone, preferably acetylacetone itself, means "olefin” as used herein means an olefinic compound such as ethylene, propylene and "diolefin” as used herein means a diolefinic compound such as 1,5-hexadiene, 1,5-cyclooctadiene
  • Preferred rhodium salts or complexes are, for example, ⁇ , ⁇ '- dichloro - bis - [bis (olefin) rhodium (l)], for example, ⁇ , ⁇ ' - dichloro - bis - [1,5
  • the invention also relates to a process for the preparation of a compound of the formula which consists in having a compound of formula wherein R 5 and R 8 are methyl or ethyl, preferably both ethyl, reduced with NaBH 4 .
  • a preferred starting material is the tosylate of compound VII.
  • the ditosylate in the scheme above. which can be prepared by known methods is treated with a halogenating agent to form the corresponding halide.
  • the resulting halide is then treated with an alkali metal diaryl phosphide, preferably di-m-tolyl phosphide, to form the crude chiral chelating bisphosphine.
  • the chelating bis-phosphine is then treated with a salt of a Group Ib or IIb metal to form the compound of the formula.
  • the ditosylate can be halogenated by treatment with an alkali metal halide. This reaction is generally carried out in a polar solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF) or acetone.
  • a polar solvent such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF) or acetone.
  • the resulting dihalide is then treated with an alkali metal diaryl phosphide, e.g. Di-m-tolylphosphide treated to give the chiral chelating bis-diarylphosphine of Formula II.
  • This reaction generally takes place in a solvent, preferably liquid ammonia or an ethereal solvent, such as diethyl ether or tetrahydrofuran. This reaction generally takes place at a temperature of -33 ° C to + 50 ° C.
  • the resulting chiral chelating bisphosphine II is then reacted with a salt of a metal from group Ib or Ilb, preferably with copper (I) chloride, preferably in a lower alkanol as solvent, preferably ethanol.
  • a salt of a metal from group Ib or Ilb preferably with copper (I) chloride, preferably in a lower alkanol as solvent, preferably ethanol.
  • solvent preferably ethanol
  • the ditosylate as the starting material, its alcohol precursor can be used, a compound of formula VI, which can be converted directly into the dihalide by treatment with conventional halogenating agents such as thionyl chloride, phosphorus trihalide or phosphorus pentanalogenide. The dihalide can then be further reacted to compound I as described above.
  • conventional halogenating agents such as thionyl chloride, phosphorus trihalide or phosphorus pentanalogenide.
  • the dihalide can then be further reacted to compound I as described above.
  • Compound VI in which Q 1 and Q 2 are oxygen, can be prepared from the methyl or ethyl ester of tartaric acid.
  • the methyl or ethyl ester of tartaric acid is produced in a conventional manner.
  • the aforementioned esters are then converted to a compound of formula V, wherein R 1 and R 2 are methyl or ethyl, in which the esters are treated with acetone dimethyl or diethyl acetal.
  • Compound VI is then made by reducing a compound V.
  • the reducing agents which can be used for the conversion of the compound V into the compound VI include LiAIH 4 , NaBH 4 and NaAlH 2 [OCH 2 CH 2 ⁇ O ⁇ CH 3 l 2 (vitrides).
  • Preferred reducing agents are LiAIH 4 and NaBH 4 .
  • the latter is the reducing agent of choice when R 1 and R 2 in formula V are ethyl. This is particularly the case when Q 1 and Q 2 are oxygen and R 3 and R 4 are methyl.
  • the alcohol of compound VI then obtained can be further reacted to form compound I as described above.
  • the compound of formula I is then reacted with one of the complexes of a Group VIII metal, preferably with rhodium complexes as mentioned above, to form the new asymmetrically hydrogenating catalyst according to the invention.
  • This hydrogenation catalyst is generally formed in situ and not isolated, although, if desired, it can be isolated and stored for later use.
  • the molar ratio of the compound of formula I to the source of a Group VIII metal salt, which is reacted to form the complex catalysts used herein, is generally adjusted to provide the optimal Group VIII III phosphine: metal ratio.
  • this preferred ratio is 2: 1 (i.e. one mole of chiral chelating diphosphine per g-atom of rhodium).
  • ratios from 2: 1 to 10: 1 can be used. Higher ratios can be used, but this does not result in any particular advantages.
  • the phosphine: metal Group VIIIb ratio may vary from 1: 1 to about 10: 1.
  • the molar ratio of the substrate of formula IV to catalyst can preferably vary from about 1: 1 to about 5000: 1, although ratios> 5000: 1 can also be used.
  • the preferred solvents used in the asymmetric hydrogenation process disclosed herein can be selected from lower alkanols alone or lower alkanols in combination with aromatic hydrocarbons or saturated alkanes or cycloalkanes or lower alkanols in combination with water.
  • the lower alkanols have already been defined.
  • aromatic hydrocarbons refers to benzene, toluene, xylene and the like, although any inert aromatic hydrocarbon can be used.
  • saturated alkanes or cycloalkanes refers to pentane, hexane, heptane, cyclohexane and the like, although any inert saturated alkane or cycloalkane having 5 to 20 hydrocarbon atoms can be used.
  • the temperature can be between about -30 ° C and about 150 ° C, preferably about 0 ° C and about 50 ° C.
  • the pressure can be between about 0.14 and about 35 kg / cm 2 , preferably about 0.14 and 7.0 kg / cm 2 (2-500, preferably 2-100 psi).
  • the process according to the invention is particularly useful for the formation of tryptophans of the formula adapt, wherein R 7 is hydrogen, lower alkyl, especially methyl or halogen, which are useful as nutritional sweeteners.
  • R 7 is hydrogen, lower alkyl, especially methyl or halogen, which are useful as nutritional sweeteners.
  • the above tryptophans are obtained by asymmetric hydrogenation on a compound of the formula wherein R 7 is as defined above.
  • This process can also be applied to the asymmetric hydrogenation of the substrates disclosed in DE-OS 2 727 671.
  • the enantiomeric excess was calculated according to the following equation: Enantiomeric excess of R enantiomers (in percent) wherein the parameter (R / S) was determined by quantitative liquid chromatographic analysis of diastereometric dipeptide derivatives of the amino acid obtained from the hydrogenation product by hydrolysis.
  • DIOP refers to (-) - 4R, 5R - trans - 4,5 - bis - (diphenylphosphinomethyl) - 2,2-dimethyl-1,3-dioxolane.
  • (3 - CH 3 ) DIOP refers to (-) - 4R, 5R - trans - 4,5 - bis - [di - (m - tolyl) - phosphinomethyl] - 2,2 - dimethyl - 1 , 3 - dioxolane and the term "(3,5diCH 3 ) DIOP” refers to (+) - 4R, 5R - trans - 4,5 - bis - ([di - 3,5 - dimethylphenyl] phosphinomethyl) - 2 , 2-dimethyl-1,3-dioxolane.
  • BuDIOP refers to (-) - 1 R, 2R - trans - 1,2 - bis - (diphenylphosphinomethyl) cyclobutane.
  • Example 5 Using the general procedure of Example 5, 1.0 g of DIOP and 0.198 g of copper (I) chloride were refluxed in 20 ml of absolute ethanol, but in this case the mixture was refluxed for 15 minutes until the product crystals began to separate from the hot solution . The solid obtained by filtration was dissolved in chloroform and filtered again to remove traces of unreacted copper (I) chloride. The chloroform was removed and the remaining powder (0.763 g, 63%, mp. 21 1 ⁇ 212.5 °) was crystallized twice from 1: 1 benzene / methanol to give 0.15 g of pure "high-melting" DlOP-CuCl complex , Mp. 211-212 °, [ ⁇ ] 25 D 36.5 ° (1.0%, chloroform).
  • Zinc perchlorate hexahydrate (0.324 g) and (3-CH 3 ) -DIOP (0.527 g, 10% excess) were refluxed under argon in 5 ml of oxygen-free absolute methanol for 18 h. After cooling, the solution was evaporated to dryness and the residue (0.714 g) was successively triturated with ether, benzene, water and ether / petroleum ether.
  • the colorless (3-CH 3 ) -DlOP-Zn (Cl0 4 ) 2-complex residue (0.58 g, 69%) apparently had a minor after micro analysis and the appearance of a moderate -OH stretching vibration absorption in the IR spectrum Experience hydrolysis.
  • a slurry of 2.0 g ZaN-acetylamino-6-methylindole-3-acrylic acid and 8.5 ml oxygen-free methanol was treated under anaerobic conditions with 1.49 ml of a catalyst solution consisting of 14.7 x 10- 3 g (3-CH 3 ) -DlOP-CuCl-ethanolate complex prepared as in Example 1.5.2 x 10- 3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadiene rhodium (l) ] and 25 ml of methanol had been prepared.
  • This catalyst solution contains 0.78 x 10- 3 g of catalyst per ml of solution; the use of 1.49 ml corresponds to a substrate / catalyst weight ratio of 1720/1.
  • the R / S enantiomer ratio was determined for the crude amino acid obtained by hydrolysis of the hydrogenation product. An enantiomeric excess of the R-enantiomer of 84.4% was found, ie 92.2 parts of R-enantiomer and 7.8 parts of S-enantiomer, after a quantitative analytical separation of diastereomeric dipeptide derivatives of the amino acid.
  • Example 9 Using the general method of Example 9, 2.0 g Zan-acetylamino-3-acrylic acid in a pressure vessel with 9.0 ml of methanol and combined total of 2.4 ml of catalyst solution prepared from 20.5 x 10- 3 g CuCI- (3-CH 3 ) -DIOP complex, prepared as in Example 2, 7.0 ⁇ 10 -3 g, ⁇ , ⁇ ′-dichlorobis [1,5-cyclooctadiene rhodium (I)] and 25 ml methanol.
  • the substrate / catalyst weight ratio was thus 755/1.
  • the catalyst solution was added in 3 portions in the course of the hydrogenation.
  • Example 9 A hydrogenation reaction was carried out using the general procedure of Example 9 was conducted except that the catalyst consists of 3.1 ml of a solution was composed of 2.5 x 10- 3 g ( ⁇ ) -1R, 2R-trans-1, 2-bis (diphenylphosphinomethyl) cyclobutane-CuCI complex, 1.1 x 10- 3 g, ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadienrhodium (l) and 10 ml methanol was prepared. This corresponds to a substrate / catalyst weight ratio of 1790/1.
  • Example 9 Using the general method of Example 9 was carried out, a hydrogenation catalyst wherein 1.0 ml as a solution was used, the g of 7.6 x 10- 3 DIOP CuCl complex prepared as in Example 6, 3.1 x 10 -3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadienrhodium (l)] and 10 ml methanol had been prepared. This results in a substrate / catalyst weight ratio of approximately 2000/1.
  • the product derived from the hydrogenation, R - (-) - N-acetyl-6-methyltryptophan, with [ ⁇ ] 25 D - 19.8 ° showed an enantiomeric excess of the R-entantiomer of 75.4% according to the amino acid analysis .
  • Example 9 Hydrogenation was carried out using the general method of Example 9, 1.8 ml of a solution consisting of 16.9 ⁇ 10 -3 g of solid complex, prepared from Zn (CIO I ) 2 and (3-CH 3 ) -DIOP, as described in Example 8, 5.1 ⁇ 10 -3 g ⁇ , ⁇ '-dichlorobis [1,5-cyclooctadiene rhodium (1)] and 10 ml methanol had been prepared. This gives a substrate / catalyst weight ratio of approximately 500/1.
  • the filter cake was rinsed with 200 ml of chloroform: after combining, the filtrate and rinsing solution were dried over MgSO 4 , filtered and concentrated to 64.4 g (100 +%) of crude diol of the formula XIII as a colorless oil.
  • the crude diol was dissolved in 400 ml dry pyridine, cooled to -20 ° C and treated with 165 g p-toluenesulfonyl chloride. When the mixture was left at 0 ° C for several days, crystallization of the ditosylate of the formula XI occurred.
  • the mixture was cooled in an ice bath and treated dropwise with 625 ml of water.
  • the product was then collected by filtration, rinsed with a total of 500 ml of water and air dried to give 190 g (approx. 100%) of crude ditosylate of the formula XI, mp 87-89 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Die Erfindung bezieht sich auf Komplexe von Metallen der Gruppe lb und Ilb chiraler chelatbildender Bis-phosphine, ein Verfahren zu ihrer Herstellung und ihre Verwendung. Sie bezieht sich ferner auf lösliche Katalysatorsysteme, die für die enantioselektive Hydrierung prochiraler Olefine brauchbar sind und die durch Umsetzen der Komplexe mit einem Salz oder Komplex eines Metalls der Gruppe Vlllb zugänglich sind sowie unter Verwendung dieser Katalysatorsysteme durchgeführte asymmetrische Hydrierungen. Die erfindungsgemäß hergestellten Katalysatorkomponenten sind fest und haben den Vorteil, daß die Notwendigkeit der Anwendung langwieriger Reinigungstechniken, um ein hochgereinigtes chirales chelatbildendes Bis-phosphin zu erhalten, umgangen wird.
  • In JACS (94) S. 6430, 1972, der US-PS 3,978,101 sowie der US-PS 4,010,181 sind Rhodium Bis-phosphin Liganden als Hydrierungskatalysatoren beschrieben, jedoch nicht die Komplexe von chiralen, chelatbildenden Bis-Phosphinen mit Metallen der Gruppen Ib oder Ilb.
  • Erfindungsgemäss werden Verbindungen der Formel
    Figure imgb0001
    worin R3 und R4, C1―C20 Alkyl, oder einkerniges oder mehrkerniges Aryl, nämlich Phenyl, Naphthyl, Anthryl, Phenanthryl oder Azulyl sind, Y' Kohlenstoff, Q1 und Q2 Methylen oder Sauerstoff, P Phosphor, Ar substitutiertes oder unsubstituiertes Aryl, nämlich Phenyl, Naphthyl, Anthryl, Phenanthryl oder Azulyl, M ein Metall der Gruppe Ib oder IIb, X Halogenid, Perchlorat, Tetra(fluoro oder chloro)borat, Hexa(fluoro oder chloro)phosphat oder Hexa(fluoro oder chloro)antimonat oder Tetraphenylborat, n 0 oder 1 ist, mit der Maßgabe, daß, wenn n = 0, Q1 und Q2 Methylen sind und die gestrichelte Linie eine Kohlenstoff-Kohlenstoff-Bindung ist, und wenn n = 1, Q1 und Q2 Sauerstoff sind, wobei jedes Sauerstoff an Y' gebunden ist, u eine ganze Zahl von 1 bis 3, r und s 1 oder 2 in Abhängigkeit von der Wertigkeit von M und dem Wert von u sind, oder deren Dimere oder Oligomere zur Verfügung gestellt.
  • Bevorzugte Verbindungen der Formel I sind solche, bei denen Q1 und Q2 jeweils Sauerstoff bedeuten. Weiter bevorzugt sind Verbindungen, bei denen Ar m-Tolyl, Phenyl oder 3,5-Dimethylphenyl bedeutet, und auch solche, bei denen M Kupfer bedeutet.
  • Beispiele einzelner bevorzugter Verbindungen der Formel I sind folgende:
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
  • Die Verbindungen der Formel I können durch Umsetzen eines Verbindung der Formel
    Figure imgb0009
    worin Q1, Q2, R3, R4, Y', Ar und n die obigen Bedeutungen haben, mit einer Verbindung der Formel MX., worin M, X, r und s die obigen Bedeutungen haben, hergestellt werden.
  • Erfindungsgemäß wird auch ein Verfahren zur Herstellung einer Hydrierkatalysatormasse zur Verfügung gestellt, das sich dadurch auszeichnet, daß man eine Verbindung der Formel
    Figure imgb0010
    worin die Substituenten die obigen Bedeutungen haben, oder deren Dimer oder Oligomer mit einem Salz oder einem Komplex eines Metalls der Gruppe Vlllb, wie definiert, umsetzt. Der Komplex ist vorzugsweise ein Olefinkomplex.
  • Ein weiterer Aspekt der Erfindung betrifft die asymmetrische Hydrierung. Im einzelnen betrifft die Erfindung homogene Hydrierungen, katalysiert durch die Komplexe von Salzen von Metallen der Gruppe Ib und Ilb mit chiralen tertiären Phosphinen der Formel I in Kombination mit Komplexen von Metallen der Gruppe Vlllb, wobei die Hydrierung enantioselektiv verläuft und zu optisch aktiven Verbindungen führt.
  • Erfindungsgemäß wird ferner auch ein Verfahren zur Herstellung von Verbindungen der Formel
    Figure imgb0011
    zur Verfügung gestellt, worin R Alkyl, Alkenyl, Aryl, substituiertes oder unsubstituiertes Indolyl mit Substituenten aus der Gruppe nieder-Alkyl und Halogen, S substituiertes Amino und T nieder-Alkyl, Aryl, Carboxy, nieder-Alkoxycarbonyl oder Carboxamido ist, durch enantioselektive Hydrierung von Verbindungen der Formel
    Figure imgb0012
    worin R, S und T wie oben definiert sind, wobei die Hydrierung in einem Lösungsmittelmedium in Gegenwart des Hydrierkatalysators gemäß der Erfindung erfolgt. Die nach dem erfindungsgemäßen Verfahren hergestellten optisch aktiven Verbindungen werden als Enantiomeren-Gemisch mit einem Überschuß entweder an R- oder S-Enantiomeren erhalten. Das Enantiomer im Überschuß wird durch das verwendete chirale Phosphin und die isomere Form des Substrats, d.h. E oder Z, bestimmt.
  • Die Brauchbarkeit dieser neuen, Metall der Gruppe Ib und Ilb enthaltenden chiralen Phosphine ist nicht auf Hydrierungen beschränkt. Diese Katalysatorkomponenten können zur Herstellung von Katalysatoren eingesetzt werden, um andere Reaktionen zu bewirken, wie enantioselektive Hydrosilylierungen, Hydroformylierangen und Hydroveresterungen, wenn sie mit geeigneten Komplexen von Metallen der Gruppe Vlllb kombiniert werden.
  • Der Ausdruck "chirales chelatbildendes Bis-phosphin", wie er hier verwendet wird, bezeichnet eine Verbindung mit zwei achiralen Phosphorzentren, die durch eine Kette mit 4 Kohlenstoffen, die chiral ist, getrennt sind.
  • Der Ausdruck "nieder-Alkyl" bezieht sich auf eine Alkylgruppe mit einer geraden oder verzweigten Kette mit 1 bis 6 Kohlenstoffatomen. Beispiele für solche Gruppen sind Methyl, Äthyl, Propyl, Isopropyl und 3-Methylbutyl. Der Ausdruck "Alkyl" bezieht sich auf eine Alkylgruppe mit 1 bis 20 Kohlenstoffatomen.
  • Der Ausdruck "Aryl" umfasst einkernige Arylgruppen, wie Phenyl und mehrkernige Arylgruppen, wie Naphthyl, Anthryl, Phenanthryl und Azulyl. Der Ausdruck "substituiertes Aryl" umfasst solche "Aryl"-Gruppen, die in einer oder mehreren Stellungen durch nieder-Alkyl, Nitro, Halogen oder eine elektronenabgebende Gruppe, wie nieder-Alkoxy, Amino oder Mono- oder Di-nieder-alkylamino substituiert sind.
  • Der Ausdruck "nieder-Alkenyl" bezieht sich auf eine Alkenyl-gruppe mit einer geraden oder verzweigten Kette mit 2 bis 6 Kohlenstoffatomen. Beispiele für solche Kohlenwasserstoffgruppen sind Vinyl, Propenyl, Butenyl, Hexenyl und 3-Methylbut-2-enyl. Der Ausdruck "Alkenyl" bezieht sich auf eine Alkenylgruppe mit 2 bis 20 Kohlenstoffatomen.
  • Der Ausdruck "nieder-Alkanol" bezieht sich auf ein Alkanol mit einer geraden oder einer verzweigten Kette mit 1 bis 7 Kohlenstoffatomen. Beispiele für solche Alkanole sind Methanol, Äthanol, Propanol und Isopropanol.
  • Der Ausdruck "nieder-Acyl" bezieht sich auf Acylgruppen mit 1 bis 6 Kohlenstoffatomen, wie Formyl, Acetyl und Butyryl.
  • Die Ausdrücke "Halo", "Halogen" oder "Halogenid" umfassen Chlor, Fluor, Brom und Jod.
  • Der Ausdruck "Acylamido" bezieht sich auf Amidogruppen mit 1 bis 6 Kohlenstoffatomen, wie Formamido, Acetamido und Propionamido.
  • Der Ausdruck "nieder-Alkoxycarbonyl" bezieht sich auf Carbonylgruppen mit daranhängenden nieder-Alkoxy-Resten mit 1 bis -6 Kohlenstoffatomen.
  • Der Ausdruck "nieder-Carboxylat" bezieht sich auf Carboxylgruppen mit 2 bis 7 Kohlenstoffatomen, wie z.B. Acetat, Propionat und Benzoat.
  • Der Ausdruck "enantiomerer Überschuß", wie er hier versendet wird, bezieht sich auf einen Zahlenwert, ausgedrückt in Prozent, der das Überwiegen eines Enantiomeren relativ zum anderen angibt, z.B. Überschuß des R-Enantiomeren, ausgedrückt als Prozent des R-Enantiomeren minus Prozent des S-Enantiomeren.
  • Die Ausdrücke "R- und S-Enantiomer" beziehen sich auf die Konfiguration der Substituenten am asymmetrischen Kohlenstoffatom in optisch aktiven organischen Verbindungen, wie in der üblichen IUPAC-Nomenklatur vorgeschrieben.
  • Die Ausdrücke "entgegen" (E) und "zusammen" (Z) beziehen sich auf die Anordnung von Substituenten an Kohlenstoff-Kohlenstoff-Doppelbindungen, wie in der Standard-IUPAC-Nomenklatur vorgeschrieben.
  • In schematischen Darstellungen der Molekülstrukturen bedeuten die Keile ( A ), daß der Substituent über der Molekülebene liegt, die gestrichelten Linien (---) geben an, daß die Substituenten unter der Molekülebene liegen, und die Wellenlinien (~) geben an, daß die Substituenten entweder über oder unter der Molekülebene liegen können.
  • Erfindungsgemäß umfassen die Substrate für die Hydrierung Verbindungen der Formel IV mit Alkyl-, Alkenyl, Aryl-, Indolyl- (oder substituierten Indolyl-) Substituenten. Die Substituenten am Indolylrest können die gleichen sein, wie sie zuvor für Aryl angegeben wurden. Typische Verbindungen, die unter diese hier betrachteten Substrate fallen, sind z.B., ohne hierauf beschränkt zu sein, folgende:
    • a-N-Acetylaminoacrylsäure;
    • a-N-Acetylaminozimtsäure;
    • Methyl-a-N-acetylaminocinnamat;
    • a-N-Benzoylamino-(3-methoxy-4-hydroxyphenyl)-3-acrylsäure;
    • a-N-Acetylamino-(3-methoxy-4-acetoxyphenyl)-3-acrylsäure;
    • Z-a-N-Acetylamino-6-methylindol-3-acrylsäure;
    • ÄthyI-Z-α-N-acetylamino-(6-methylindol)-3-acrylat;
    • a-N-Acetylamino-(4-hydroxyphenyl)-3-acrylsäure;
    • ce-N-Acetylamino-(3,4-methylendioxy)-3-acrylsäure und
    • a-N-Acetylaminozimtsäureamid.
  • Das hier beschriebene Verfahren kann auf E- oder Z-Isomere der Verbindungen der Formel II oder deren Gemische angewandt werden. Um Produkte mit höherem Gehalt an Enantiomerenüberschuß zu erhalten, werden jedoch gewöhnlich bevorzugt ein reines Isomeres oder Gemische, in denen ein Isomeres überwiegt, verwendet. Die Verwendung des Z-Isomeren ist besonders bevorzugt.
  • Mit dem Ausdruck "Metalle der Gruppe Vlllb" sind Rhodium, Ruthen, Osmium, Palladium, Platin, Iridium, Eisen, Kobalt und Nickel gemeint. Die Metallsalze oder Metallkomplexe des Rhodiums sind besonders bevorzugt.
  • Mit dem Ausdruck "Metalle der Gruppe Ib und llb" sind Kupfer, Silber, Gold, Zink, Cadmium und Quecksilber gemeint.
  • Geeignete Rhodiumsalze oder -komplexe sind z.B. RhCl3.nH20, Rh(Acetylacetonatl3, [RhZ(Olefin)2]2 und [RhZ(Diolefin)]2' wobei Z Halogen-, nieder-Alkoxycarboxylat- oder nieder-Alkylderivate von Acetylaceton, vorzugsweise Acetylaceton selbst, bedeutet. Der hier verwendete Ausdruck "Olefin" bedeutet eine olefinische Verbindung, wie Äthylen, Propylen, und eine hier verwendete Ausdruck "Diolefin" bedeutet eine diolefinische Verbindung, wie 1,5-Hexadien, 1,5-Cyclooctadien oder Norbornadien. Bevorzugte Rhodiumsalze oder -komplexe sind z.B. µ,µ' - Dichlor - bis - [bis(olefin)rhodium(l)], z.B., µ,µ' - Dichlor - bis - [1,5-cyclooctadien - rhodium(l)] oder µ,µ' - Dichlor - bis - [bis - (äthylen)rhodium(I)].
  • Bezüglich der Zwischenprodukte bezieht sich die Erfindung auch auf ein Verfahren zur Herstellung einer Verbindung der Formel
    Figure imgb0013
    welches darin besteht, daß man eine Verbindung der Formel
    Figure imgb0014
    worin R5 und R8 Methyl oder Äthyl, vorzugsweise beide Äthyl, sind, mit NaBH4 reduziert.
  • Eine Arbeitsweise zur Herstellung der Verbindungen der Formel I über alles ist wie folgt:
    Figure imgb0015
  • Ein bevorzugtes Ausgangsmaterial ist das Tosylat der Verbindung VII. Das Ditosylat im obigen Schema,. das nach bekannten Verfahren hergestellt werden kann, wird mit einem Halogenierungsmittel behandelt, um das entsprechende Halogenid zu bilden. Das erhaltene Halogenid wird dann mit einem Alkalimetalldiarylphosphid, vorzugsweise Di-m-tolylphosphid, behandelt, um das rohe chirale chelatbildende Bis-phosphin zu bilden. Das chelatbildende Bis-Phosphin wird dann mit einem Salz eines Metalls der Gruppe Ib oder llb behandelt, um die Verbindung der Formel zu bilden.
  • Die Halogenierung des Ditosylats kann durch Behandeln mit einen Alkalimetallhalogenid erfolgen. Diese Reaktion wird im allgemeinen in einem polaren Lösungsmittel, wie Dimethylsulfoxid (DMSO), Dimethylformamid (DMF) oder Aceton durchgeführt.
  • Das anfallende Dihalogenid wird dann mit einem Alkalimetalldiarylphosphid, z.B. Di-m-tolylphosphid, behandelt, um das chirale chelatbildende Bis-diarylphosphin der Formel II zu ergeben. Diese Reaktion erfolgt im allgemeinen in einem Lösungsmittel, vorzugsweise flüssigem Ammoniak oder einem ätherischen Lösungsmittel, wie Diäthyläther oder Tetrahydrofuran. Diese Reaktion erfolgt im allgemeinen bei einer Temperatur von -33°C bis +50°C.
  • Das anfallende chirale chelatbildene Bis-phosphin II wird dann mit einem Salz eines Metalls der Gruppe Ib oder Ilb umgesetzt, vorzugsweise mit Kupfer(I)chlorid, bevorzugt in einem niederen Alkanol als Lösungsmittel, vorzugsweise Äthanol. Wenngleich Temperatur und Druck unkritisch sind, wird die Reaktion im allgemeinen bei Atmosphärendruck und Rückflußtemperatur des Lösungsmittels durchgeführt.
  • Anstatt das Ditosylat als Ausgangsmaterial zu verwenden, kann dessen Alkoholvorstufe verwendet werden, eine Verbindung der Formel VI, die direkt in das Dihalogenid durch Behandeln mit herkömmlichen Halogenierungsmitteln, wie Thionylchlorid, Phosphortrihalogenid oder Phosphorpentanalogenid, überführt werden kann. Das Dihalogenid kann dann, wie oben beschrieben, zur Verbindung I weiter umgesetzt werden.
  • Verbindung VI, in der Q1 und Q2 Sauerstoff sind, kann aus dem Methyl- oder Äthylester der Weinsäure hergestellt werden. Der Methyl- oder Äthylester der Weinsäure wird in herkömmlicher Weise hergestellt. Die vorgenannten Ester werden dann in eine Verbindung der Formel V überführt, worin R1 und R2 Methyl oder Äthyl sind, in dem die Ester mit Acetondimethyl- oder -diäthylacetal behandelt werden.
  • Verbindungen der Formel VI, in denen Q1 und Q2 Methylen bedeuten, können aus den Methyl-oder Äthylestern der trans-1,2-Cyclobutandicarbonsäure hergestellt werden. Diese Ester der Formel V können in herkömmlicher Weise hergestellt werden.
  • Verbindung VI wird dann durch Reduktion einer Verbindung V hergestellt. Zu den für die Umwandlung der Verbindung V in die Verbindung VI verwendbaren Reduktionsmitteln gehören LiAIH4, NaBH4 und NaAlH2[OCH2CH2―O―CH3l2 (Vitride). Bevorzugte Reduktionsmittel sind LiAIH4 und NaBH4. Letzteres ist das Reduktionsmittel der Wahl, wenn R1 und R2 in formel V Äthyl sind. Dies ist insbesondere der Fall, wenn Q1 und Q2 Sauerstoff und R3 und R4 Methyl bedeuten. Der dann erhaltene Alkohol der Verbindung VI kann weiter umgesetzt werden, um Verbindung I, wie oben beschrieben, zu bilden.
  • Die Verbindung der Formel I wird dann mit einem der Komplexe eines Metalls der Gruppe Vlllb umgesetzt, vorzugsweise mit Rhodiumkomplexen, wie sie oben erwähnt sind, um den neuen, asymmetrisch hydrierenden Katalysator gemäß der Erfindung zu bilden. Dieser Hydrierkatalysator wird im allgemeinen in situ gebildet und nicht isoliert, obgleich er, wenn gewünscht, isoliert und für spätere Verwendung gelagert werden kann.
  • Das Molverhältnis der Verbindung der Formel I zu der Quelle des Salzes eines Metalls der Gruppe Vlllb, die zur Bildung der hier verwendeten komplexen Katalysatoren umgesetzt wird, wird im allgemeinen so eingestellt, daß das Optimalverhältnis von Phosphin: Metall der Gruppe Vlllb erhalten wird. Im Falle des Rhodiums beträgt dieses bevorzugte Verhältnis 2 : 1 (d.h. ein Mol chirales chelatbildendes Diphosphin pro g-Atom Rhodium). Allgemein können Verhältnisse von 2 : 1 bis 10 : 1 angewandt werden. Höhere Verhältnisse können angewandt werden, dadurch werden aber keine besonderen Vorteile erzielt. Im Falle anderer Metalle der Gruppe Vlllb als Rhodium kann das Verhältnis Phosphin: Metall der Gruppe Vlllb von 1 : 1 bis etwa 10 : 1 variieren.
  • Das Molverhältnis des Substrats der Formel IV zum Katalysator kann vorzugsweise von etwa 1 : 1 bis etwa 5000 : 1 variieren, obgleich Verhältnisse > 5000 : 1 auch angewandt werden können.
  • Die bei dem hier offenbarten asymmetrischen Hydrierverfahren verwendeten bevorzugten Lösungsmittel können unter niederen Alkanolen alleine oder niederen Alkanolen in Kombination mit aromatischen Kohlenwasserstoffen oder gesättigten Alkanen oder Cycloalkanen oder niederen Alkanolen in Kombination mit Wasser gewählt werden. Die niederen Alkanole wurden zuvor bereits definiert. Der Ausdruck "aromatische Kohlenwasserstoffe" bezieht sich auf Benzol, Toluol, Xylol und dergleichen, wenngleich jeder inert aromatische Kohlenwasserstoff verwendet werden kann. Der Ausdruck "gesättigte Alkane oder Cycloalkane" bezieht sich auf Pentan, Hexan, Heptan, Cyclohexan und dergleichen, wenngleich jedes inerte gesättigte Alkan oder Cycloalkan mit 5 bis 20 Kohlenwasserstoffatomen verwendet werden kann.
  • Bei der Durchführung dieser Hydrierung sind Temperatur und Druck nicht kritisch. Die Temperatur kann zwischen etwa -30°C und etwa 150°C, vorzugsweise etwa 0°C und etwa 50°C liegen.
  • Der Druck kann zwischen etwa 0,14 und etwa 35 kg/cm2, vvorzugsweise etwa 0,14 und 7,0 kg/cm2 liegen (2-500, vorzugsweise 2-100 psi).
  • Das erfindungsgemäße Verfahren ist besonders an die Bildung von Tryptophanen der Formel
    Figure imgb0016
    anzupassen, worin R7 Wasserstoff, nieder-Alkyl, insbesondere Methyl oder Halogen bedeutet, die als nährwertfreie Süßstoffe brauchbar sind. Die obigen Tryptophane werden durch asymmetrische Hydrierung bei einer Verbindung der Formel
    Figure imgb0017
    worin R7 wie oben definiert ist, erhalten. Dieses Verfahren kann auch auf die asymmetrische Hydrierung der in der DE-OS 2 727 671 offenbarten Substrate angewandt werden.
  • Die Erfindung wird nun unter Bezugnahme auf die folgenden Beispiele weiter veranschaulicht. Alle Verhältnisse beziehen sich auf das Gewicht, sofern nicht anders angegeben. Die Keile und unterbrochenen Linien haben die zuvor beschriebene Bedeutung.
  • Der Enantiomerenüberschuß wurde gemäß folgender Gleichung berechnet:
    Enantiomeren-Überschuß an R-Enantiomeren (in Prozent)
    Figure imgb0018
    worin der Parameter (R/S) durch quantitative flüssigkeitschromatographische Analyse diastereometrischer Dipeptidderivate der aus dem Hydrierungsprodukt durch Hydrolyse erhaltenen Aminosäure bestimmt wurde.
  • In den Beispielen Bezieht sich der Ausdruck "DIOP" auf (-) - 4R,5R - trans - 4,5 - Bis - (diphenylphosphinomethyl) - 2,2 - dimethyl - 1,3 - dioxolan. Ähnlich bezieht sich der Ausdruck "(3 - CH3)DIOP" auf (-) - 4R,5R - trans - 4,5 - Bis - [di - (m - tolyl) - phosphinomethyl] - 2,2 - dimethyl - 1,3 - dioxolan und der Ausdruck "(3,5diCH3)DIOP" bezieht sich auf (+) - 4R,5R - trans - 4,5 - Bis - ([di - 3,5 - dimethylphenyl] - phosphinomethyl) - 2,2 - dimethyl - 1,3 - dioxolan. BuDIOP bezieht sich auf (-) - 1 R,2R - trans - 1,2 - Bis - (diphenylphosphinomethyl)cyclobutan.
  • Beispiel 1
  • Teilweise gereinigtes (-) - 4R,5R - trans - 4,5 - Bis(di - (m - tolyl) - phosphinomethyl - 2,2 - dimethyl - 1,3 - dioxolan("(3 - CH3) - DIOP") wurde durch Säulenchromatographie eines Produkts, erhalten durch Kombinieren von Natriumdi - (m - tolyl)phosphid mit dem Ditosylat der Formel XI, erhalten. Diese Chromatographie wandte 130 g Silicagel/g rohem Phosphin an.
    Figure imgb0019
  • Etwa 600 mg dieses teilweise gereinigten (3-CH3)DIOP wurde mit 100 mg Kupfer(I)chlorid und 10 ml absolutem Athanol zusammengebracht. Nach 5 min Rückfluß auf dem Dampfbad wurde die warme Lösung von Spuren nicht-umgesetztem Kupfer(I)chlorid dekantiert. Beim Abkühlen fiel das Produkt aus, und es wurden 530 mg farbloser Feststoff gewonnen. Umkristallisieren aus 8 ml siedendem ab solutem Athanol lieferte 500 mg (ca. 66%) farbloser Kristalle des (3-CH3)DIOP-CuCI-Komplexes, Schmp. 108° (Zers.) [α]D25 + 94,3° (3,0% Benzol).
    Figure imgb0020
  • Beispiel 2
  • 2,8 g rohes (3-CH3)DIOP (Reinheit dünnschichtchromatographisch zu 70-80% ermittelt), erhalten durch Zusammenbringen von Lithiumdi(m-tolyl)phosphid (erhalten aus Di(m-tolyl)phosphin und n-BuLi) mit dem Dichlorid der Formel XII
    Figure imgb0021
    wurde in 43 ml von Sauerstoff befreiten absoluten Äthanols gelöst und mit 0,5 g Kupfer(I)chlorid behandelt. Das Gemisch wurde auf dem Dampfbad 5 min rückflußgekocht, heiß filtriert und auf Raumtemperaur und schließlich auf 0° gekühlt. Eine kleine Menge harzartigen Feststoffs wurde abfiltriert und das Filtrat dann auf 10 ml eingeengt und wieder auf 0° gekühlt. Nach 2 Tagen bei 0° lieferte eine Filtration 1,6 g (ca. 54%, bezogen auf XII) eines nahezu weißen, rohen Feststoffs, (3-CH3)DIOP-CuCI-Komplex, Schmp. 8692° (Zers.).
  • Beispiel 3
  • 0,452 g (―) - 1 R,2R - trans - 1,2 - Bis - (diphenylphosphinomethyl) - cyclobutan und 0,1 g Kupfer(I)chlorid wurden mit absolutem Äthanol zusammengebracht und auf dem Dampfbad 5-10 min erwärmt. 0,3 g des rohen kristallinen (-) - 1 R,2R - trans - 1,2 - Bis - (diphenylphosphinomethyl)-cyclobutan - Kupfer(I)chlorid - Komplexes wurden nach dem Kühlen erhalten. Umkristallisieren aus Äthanol ergab 0,15 g reinen Komplex, Schmp. 197-199,5°, [α] D25 + 67,6° (1,0%, Chloroform).
    Figure imgb0022
  • Beispiel 4
  • 0,328 g (+) - 4R,5R - trans - 4,5 - Bis([di - 3,5 - dimethylphenyl] - phosphinomethyl) - 2,2 -.dimethyl - 1,3 - dioxolan ("(3,5-di-CH3) DIOP") und 0,053 g Kupfer(l)chlorid wurden mit 4 ml absolutem Äthanol zusammengebracht und 5 min rückflußgekocht. Die Lösung-wurde heiß filtriert, um Spuren nichtumgesetzten Kupfer(I)chlorids zu entfernen und gekühlt, um 0,324 g (85%) Rohprodukt zu ergeben. Umkristallisieren aus Äthanol ergab 0,238 g (+) - 4R,5R - trans - 4,5 - Bis([di - 3,5 - dimethylphenyl] - phosphinomethyl) - 2,2 - dimethyl - 1,3 - dioxolan - Kupfer(I)chlorid - Komplex, der etwa 0,67 Mol Äthanol enthielt, Ausbeute 62%, Schmp. 129―131°, [α]25 D 42,5° (1,0% Chloroform).
    Figure imgb0023
  • Beispiel 5
  • 0,5 g (-) - 4R,5R - trans - 4,5 - Bis(diphenylphosphinomethyl) - 2,2 - dimethyl - 1,3 - dioxolan, ("DIOP) und 0,099 g Kupfer(I)chlorid wurden in 8 ml absolutem Äthanol 5 min rückflußgekocht, filtriert und auf Raumtemperatur gekühlt. Fiel kein Komplex aus, wurde das Äthanol bei vermindertem Druck entfernt und der Rückstand (0,34 g) aus Cyclohexan kristallisiert. Es wurden 0,273 g (45%) farblose Kristalle erhalten, Schmp. 116-118° des "tieferschmelzenden" DIOP-CuCI-Kompfexes. Die Mikroanalyse dieses Materials ließ die Bildung von (CuCl)2(DlOP)3. 1,5 Cyclohexan vermuten.
    Figure imgb0024
  • Beispiel 6
  • Unter Anwendung des allgemeinen Verfahrens des Beispiels 5 wurden 1,0 g DIOP und 0,198 g Kupfer(I)chlorid in 20 ml absolutem Äthanol rückflußgekocht, in diesem Falle aber wurde das Gemisch 15 min rückflußgekocht, bis die Produktkristalle sich aus der heißen Lösung abzuscheiden begannen. Der durch Filtrieren erhaltene Feststoff wurde in Chloroform gelöst und wieder filtriert, um Spuren nicht-umgesetzten Kupfer(l)chlorids zu entfernen. Das Chloroform wurde entfernt und das zurückgebliebene Pulver (0,763 g, 63%, Schmp. 21 1212,5°) wurde zweimal aus 1 : 1 Benzol/Methanol kristallisiert, um 0,15 g reinen "hochschmelzenden" DlOP-CuCl-Komplex, Schmp. 211―212°, [α]25 D36,5° (1,0%, Chloroform) zu ergeben.
    Figure imgb0025
  • Beispiel 7
  • Äquivalente Mengen (3-CH3)-DlOP (0,393 g) und Silberperchlorat (0,147 g) wurden zusammengebracht und in 4 ml absolutem Äthanol rückflußgekocht. Das Produkt begann sich innerhalb Sekunden abzuscheiden. Nach 5 min wurde das Gemisch gekühlt und filtriert und ergab 0,354 g (65%) analytisch reinen (3-CH3)-DlOP-AgCl04 Komplex, Schmp. 231-2331 (Zers.), [α]25 D-30,4° (1,0%, Chloroform).
    Figure imgb0026
  • Beispiel 8
  • Zinkperchlorat-Hexahydrat (0,324 g) und (3-CH3)-DIOP (0,527 g, 10% Überschuß) wurden unter Argon in 5 ml von Sauerstoff befreitem absolutem Methanol 18 h rückflußgekocht. Nach dem Kühlen wurde die Lösung zur Trockne eingeengt und der Rückstand (0,714 g) wurde nacheinander mit Äther, Benzol, Wasser und Äther/Petroläther verrieben. Der farblose (3-CH3)-DlOP-Zn(Cl04)2- Komplex-Rückstand (0,58 g, 69%) hatte nach der Mikroanalyse und dem Auftreten einer mäßigen -OH-Streckschwingungsabsorption im IR-Spektrum offenbar eine geringfügige Hydrolyse erfahren.
    Figure imgb0027
  • Beispiel 9
  • Eine Aufschlämmung von 2,0 g Z-a-N-Acetylamino-6-methylindol-3-acrylsäure und 8,5 ml von Sauerstoff befreitem Methanol wurde unter anaeroben Bedingungen mit 1,49 ml einer Katalysator- lösung behandelt, die aus 14,7 x 10-3 g (3-CH3)-DlOP-CuCl-Äthanolat-Komplex hergestellt wie in Beispiel 1,5,2 x 10-3 g µ,µ'-Dichlor-bis-[1,5-cyclooctadien-rhodium(l)] und 25 ml Methanol hergestellt worden war. Diese Katalysatorlösung enthält 0,78 x 10-3 g Katalysator pro ml Lösung; so entspricht die Verwendung von 1,49 ml einem Substrat/Katalysator-Gewichtsverhältnis von 1720/1. Das Reaktionsgemisch wurde in einen Druckbehälter gebracht und unter anfänglichem Wasserstoffdruck von 2,80 kg/cm2 Manometer (40 psig) bei 23°C gerührt. Nach 1 h 50 min waren etwa 86% des endgültigen Druckabfalls erfolgt, und das Gemisch wurde homogen. Nach 14 h wurde keine weitere Druckänderung beobachtet. Entfernen des Lösungsmittels hinterließ 2,0 g (100%) R-(-)-N-Acetyl-6-methyltryptophan mit [α]25 D - 22,09° (c = 1,0%, CH30H). Das R/S-Enantiomeren-Verhältnis wurde für die durch Hydrolyse des Hydrierungsprodukts erhaltene rohe Aminosäure bestimmt. Es wurde ein Enantiomerenüberschuß des R-Enantiomeren von 84,4% festgestellt, d.H. 92,2 Teile R-Enantiomer und 7,8 Teile S-Enantiomer, und zwar nach einer quantitativen analytischen Abtrennung diastereomerer Dipeptidderivate der Aminosäure.
  • Beispiel 10
  • Unter Anwendung der allgemeinen Methode des Beispiels 9 wurden 2,0 g Z-a-N-Acetylamino-3-acrylsäure in einem Druckbehälter mit 9,0 ml Methanol und insgesamt 2,4 ml Katalysatorlösung vereinigt, hergestellt aus 20,5 x 10-3 g CuCI-(3-CH3)-DIOP-Komplex, hergestellt wie in Beispiel 2, 7,0 x 10-3 g,µ,µ'-Dichlor-bis-[1,5-cyclooctadienrhodium(I)] und 25 ml Methanol. Das Substrat/Katalysator-Gewichtsverhältnis war somit 755/1. Die Katalysatorlösung wurde in 3 Anteilen im Verlauf der Hydrierung zugegeben. Hörte die Druckänderung auf, wurde das Lösungsmittel entfernt, um R-(-)-N-Acetyl-6-methyl-tryptophan zu ergeben, [α]25 D-21,3°.. Das Produkt zeigte einen Enantiomeren- Überschuß des R-Enantiomeren von 82% nach der Aminosäure-Analyse.
  • Beispiel 11 1
  • Eine Hydrierreaktion wurde unter Anwendung des allgemeinen Verfahrens des Beispiels 9 durchgeführt mit der Ausnahme, daß der Katalysator aus 3,1 ml einer Lösung bestand, die aus 2,5 x 10-3 g ()-1R,2R-trans-1,2-Bis(diphenylphosphinomethyl)cyclobutan-CuCI-Komplex, 1,1 x 10-3 g ,µ,µ'-Dichlor-bis-[ 1 ,5-cyclooctadienrhodium(l) und 10 ml Methanol hergestellt wurde. Dies entspricht einem Substrat/Katalysator-Gewichtverhältnis von 1790/1. Das nach der Hydrierung erhaltene R-(-)-N-Acetyl-6-methyltryptophan mit [α]25 D - 17,57° zeigte einen Enantiomeren-Überschuß des R-Enantiomeren von 60,4% nach der Aminosäureanalyse.
  • Beispiel 12
  • Unter Anwendung der allgemeinen Methode des Beispiels 9 wurde eine Hydrierung durchgeführt, wobei als Katalysator 2,3 ml einer Lösung verwendet wurden, die aus 8,1 x 10-3 g CuCl-(3,5-di-CH3)-DIOP-Komplex, 2,8 x 10-3 g ,µ,µ'-Dichlor-bis-[1,5-cyclooctadienrhodium(l)] und 25 ml Methanol hergestellt worden war. Dies ergibt ein Substat/Katalysator-Gewichtsverhältnis von 2000/1. Das Produkt R-(-)-N-Acetyl-6-methyltryptophan aus der Hydrierung mit [α]25 D - 22,88° zeigte einen Enantiomeren-Überschuß des R-Enantiomeren von 87% nach der Aminosäureanalyse.
  • Beispiel 13
  • Unter Anwendung des allgemeinen Verfahrens des Beispiels 9 erfolgte eine Hydrierung, wobei als Katalysator 1,14 ml einer Lösung verwendet wurden, die aus 17,2 x 10-3 g CuCI-DIOP-Komplex, hergestellt wie in Beispiel 5, 6,4 x 10-3 g µ,µ'-Dichlor-bis-[1,5-cyclooctadienrhodium(I)] und 25 ml Methanol hergestellt worden war. Dies ergibt ein Substrat/Katalysator-Gewichtsverhältnis von ca. 2000/1. Das bei der Hydrierung anfallende Produkt R-(-)-N-Acetyl-6-methyltryptophan mit [α]25 D-20,85° zeigte einen Enantiomerenüberschuß des R-Enantiomeren von 73% nach der Aminosäure-Analyse.
  • Beispiel 14
  • Unter Anwendung der allgemeinen Methode des Beispiels 9 wurde eine Hydrierung durchgeführt, wobei als Katalysator 1,0 ml einer Lösung verwendet wurde, die aus 7,6 x 10-3 g DIOP-CuCI-Komplex, hergestellt wie in Beispiel 6, 3,1 x 10-3 g µ,µ'-Dichlor-bis[1,5-cyclooctadienrhodium(l)] und 10 ml Methanol hergestellt worden war. Dies ergibt ein Substrat/Katalysator-Gewichtsverhältnis von ca. 2000/1. Das aus der Hydrierung stammende Produkt, R-(-)-N-Acetyl-6-methyltryptophan, mit [α]25 D - 19,8° zeigte einen Enantiomeren-Überschuß des R-Entantiomeren von 75,4% nach der , Aminosäureanalyse.
  • Beispiel 15
  • Unter Anwendung der allgemeinen Methode des Beispiels 9 erfolgte eine Hydrierung, wobei als Katalysator 2,35 ml einer trüben Lösung verwendet wurden, die frisch aus 12,4 x 10-3 g AgCl04 -(3-CH3)-DIOP-Komplex, hergestellt wie in Beispiel 7 beschrieben, 4,6 x 10-3 g µ,µ'-Dichlor-bis-[1,5-cyclooctadienrhodium(l)] und 10 ml Methanol hergestellt worden war. Dies ergibt ein Substrat/Katalysator-Gewichtsverhältnis von 500/1. Das bei der Hydrierung anfallende Produkt, R-(-)-N-acetyl-6-methyltryptophan mit [α]25 D - 22,87° zeigte einen Enantiomeren-Überschuß des R-Enantiomeren von 81,4% nach der Aminosäure-Analyse.
  • Beispiel 16
  • Unter Anwendung der allgemeinen Methode des Beispiels 9 erfolgte eine Hydrierung, wobei als Katalysator 1,8 ml einer Lösung verwendet wurden, die aus 16,9 x 10-3 g festem Komplex, hergestellt aus Zn(CIOI)2 und (3-CH3)-DIOP, wie in Beispiel 8 beschrieben, 5,1 x 10-3 g µ,µ'-Dichlor-bis-[1,5-cyclooctadienrhodium(l)] und 10 ml Methanol hergestellt worden war. Dies gibt ein Substrat/Katalysator-Gewichtsverhältnis von ca. 500/1. Das bei der Hydrierung anfallende Produkte, R-(-)-N-acetyl-6-methyltryptophan mit [α]25 D - 22,92° zeigte einen Enantiomeren-Überschuß des R-Enantiomeren von 81,6% nach der Aminosäure-Analyse.
  • Beispiel 17
  • Eine Aufschlämmung von 0,5 g Z-α-N-Acetylaminoindol-3-acrylsäure und 1,5 ml von Sauerstoff befreitem Methanol wurde mit 1,0 ml einer Katalysator-Lösung, hergestellt aus 8,0 x 10-3 g CUCI. BUDIOP-Komplex (hergestellt wie in Beispiel 3), 3,5 x 10-3 g µ,µ'-Dichloro-bis-[1,5-cyclo- octadienrhodium(i)] und 10 ml Methanol, behandelt. Dies ergab ein Substrat/Katalysator-Gewichtsverhältnis von 435/1. Das Reaktionsgemisch wurde bei 23°C unter einem Wasserstoffdruck von 1 kg/cm2 gerührt. Nach 20 min wurde das Gemisch homogen. Nach 18 h wurde die Lösung eingeengt, um 0,5 g (100%) R-(-)-N-Acetyltryptophan, [α]25 D -20,0°, 80% optische Reinheit entsprechend zu ergeben. Das R/S-Enantiomeren-Verhältnis wurde für das rohe Tryptophan, erhalten durch Hydrolyse des Hydrierungsprodukts, unter Anwendung einer analytischen Chromatographietechnik ähnlich der des Beispiels 9, bestimmt. Bei diesem Ansatz wurde ein Enantiomeren-Überschuß an R-(-)-N-Acetyl- tryptophan von 81,2% gefunden.
  • Beispiel 18
  • Unter Anwendung der allgemeinen Methode des Beispiels 17 wurde eine Hydrierung durchgeführt, wobei als Katalysator 1,0 ml einer Lösung verwendet wurde, hergestellt aus 22,3 x 10-3 g CuCl. (3-CH3)DIOP-Komplex (hergestellt wie in Beispiel 1),7,7 x 10-3 g µ,µ'-Dichloro-bis-1,5-cyclo- octadienrhodium(l)] und 25 ml Methanol. Das bei der Hydrierung anfallende Produkt R-(-)-N-Acetyl- tryptophan, mit [α]25 D -20,5° (82% optische Reinheit) hatte einen Enantiomeren-Überschuß des R Enantiomeren von 83% nach der Aminosäure-Analyse.
  • Beispiel 19
  • Unter Anwendung der allgemeinen Methode des Beispiels 17 wurde eine Hydrierung durchgeführt, wobei als Katalysator 1,0 ml einer Lösung verwendet wurde, hergestellt aus 10,8 x 10-3 g CuCl . (3,5-diCH3)DIOP-Komplex (hergestellt wie in Beispiel 4), 3,7 x 10-3 g µ,µ'-Dichloro-bis-1,5-cyclooctadienrhodium(l)] und 10 ml Methanol. Das bei der Hydrierung anfallende Produkte, R-(-)-N-Acetyltryptophan, [α]25 D _ 21,8° (87% optische Reinheit), zeigte einen Enantiomeren-Überschuß des R-Enanatiomeren von 90,3% nach der Aminosäure-Analyse.
  • Beispiel 20
  • Ein 2 1-Kolben wurde mit 46,4 g Natriumboranat und 700 ml wasserfreiem Äthanol beschickt. Dieses Gemisch wurde tropfenweise mit einer Lösung von 100 g 4R,5R-trans-4,5-Bis(carbäthoxy)-2,2-dimethyl-1,3-dioxolan in 200 ml wasserfreiem Äthanol mit solcher Geschwindigkeit behandelt, daß mässiger Rückfluß und Gasentwicklung erhalten blieben. Klang die Reaktion ab, wurde das Gemisch rückflußgekocht, bis die Gasentwicklung aufhörte. Das Gemisch wurde zu einem dicken Brei eingeengt, in einem Eisbad gekühlt und mit 500 ml Chloroform behandelt. Unter kräftigem Rühren wurden 150 ml Wasser zugetropft. Die Aufschlämmung wurde 1 h gerührt und dann filtriert. Der Filterkuchen wurde mit 200 ml Chloroform gespült: Filtrat und Spüllösung wurden nach ihrer Vereinigung über MgS04 getrocknet, filtriert und zu 64,4 g (100 + %) rohen Diols der Formel XIII als farbloses 01 eingeengt. Das rohe Diol wurde in 400 ml trockenem Pyridin gelöst, auf -20°C gekühlt und mit 165 g p-Toluolsulfonylchlorid behandelt. Beim Stehenlassen des Gemischs bei 0°C für mehrere Tage trat Kristallisation des Ditosylats der Formel XI ein. Das Gemisch wurde in einem Eisbad gekühlt und tropfenweise mit 625 ml Wasser behandelt. Das Produkt wurde dann durch Filtrieren gesammelt, mit insgesamt 500 ml Wasser gespült und luftgetrocknet, um 190 g (ca. 100%) rohes Ditosylat der Formel XI zui ergeben, Schmp. 87-89°C.
  • Auf diese Weise aus 0,861 Mol Diäthylester der allgemeinen Formel V erhaltenes rohes Ditosylat wurde aus 1500 ml Äthanol umkristallisiert und ergab 313,3 g (77%) reines Ditosylat, Schmp. 89-91 °C, [α]25 D=- 1 1,6°C (c = 1,0, Chloroform).

Claims (23)

1. Verbindung der Forme'
Figure imgb0028
worin R3 und R4, C1―C20 Alkyl, oder Aryl, nämlich Phenyl, Naphthyl, Anthryl, Phenanthryl oder Azulyl sind, Y' Kohlenstoff, Q1 und Q2 Methylen oder Sauerstoff, P Phosphor, Ar substituiertes oder unsubstituiertes Aryl, nämlich Phenyl, Naphthyl, Anthryl, Phenanthryl oder Azulyl, M ein Metall der Gruppe Ib oder IIb, X Halogenid, Perchlorat, Tetra(fluoro oder chloro)borat, Hexa(fluoro oder chloro)phosphat oder Hexa(fluoro oder chloro)antimonat oder Tetraphenylborat, n 0 oder 1 ist, mit der Maßgabe, daß, wenn n = 0, Q1 und Q2 Methylen sind und die gestrichelte Linie eine Kohlenstoff-Kohlenstoff-Bindung ist, und wenn n = 1, Q1 und Q2 Sauerstoff sind, wobei jedes Sauerstoff an Y' gebunden ist, u eine ganze Zahl von 1 bis 3, r und s 1 oder 2 in Abhängigkeit von der Wertigkeit von M und dem Wert von u sind, oder deren Dimere oder Oligomere.
2. Verbindung nach Anspruch 1, worin Q1 und Q2 jeweils Sauerstoff bedeuten.
3. Verbindung nach Anspruch 1 oder 2, worin Ar m-Tolyl, Phenyl oder 3,5-Dimethylphenyl bedeutet.
4. Verbindung nach einem der Ansprüche 1-3, worin M Kupfer bedeutet.
5. Verbindung der Formel
Figure imgb0029
6. Verbindung der Formel
Figure imgb0030
7. Verbindung der Formel
Figure imgb0031
8. Verbindung der Formel
Figure imgb0032
9. Verbindung der Formel
Figure imgb0033
10. Verbindung der Formel
Figure imgb0034
11. Verbindung der Formel
Figure imgb0035
12. Verfahren zur Herstellung einer Verbindung der Formel
Figure imgb0036
worin die Substituenten die in einem der Ansprüche 1-11 gegebene Bedeutung haben oder deren Dimere oder Oligomere, dadurch gekennzeichnet, daß eine Verbindung der Formel
Figure imgb0037
worin Q1, Q2, R3, R4, Y', Ar und n die obigen Bedeutungen haben, mit einer Verbindung der Formel
Figure imgb0038
worin X die obige Bedeutung hat, M ein Metall der Gruppe Ib oder Ilb ist und r und s 1 oder 2 in Abhängigkeit von der Wertigkeit von M sind, umgesetzt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Reaktion in Lösung in einem niederen Alkanol durchgeführt wird.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß es in Äthanol als Lösungsmittel durchgeführt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Verbindung der Formel II durch Behandeln einer Verbindung der Formel
Figure imgb0039
worin Q1, Q2, R3, R4, Y' und n die obigen Bedeutungen haben und W Halogen ist, mit einem Alkalimetalldiarylphosphid hergestellt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Verbindung der Formel VIII durch Behandeln einer Verbindung der Formel
Figure imgb0040
worin Ts Tosylat ist und Q1, Q2, R3, R4, Y' und n die obigen Bedeutungen haben, mit einem Halogenierungsmittel hergestellt wird.
17. Verwendung einer Verbindung der Formel
Figure imgb0041
worin die Substituenten eine der in den Ansprüchen 1-11 gegebenen Bedeutungen haben oder deren Dimer oder Oligomer zur Herstellung eines Hydrierkatalysators durch Umsetzung mit einem Salz oder einem Komplex eines Metalls der Gruppe Vlllb, wie definiert.
18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, daß als Metall der Gruppe Vlllb Rhodium eingesetzt wird.
19. Verwendung nach Anspruch 17, dadurch gekennzeichnet, daß als Metall der Gruppe Vlllb. Palladium, Platin oder Ruthen verwendet wird.
20. Verwendung nach Anspruch 17, dadurch gekennzeichnet, daß als Salz oder Komplex eines Me-. talls der Gruppe Vlllb µ,µ'-Dich)or-bis-(1,5-cyclooctadienrhodium) oder µ,µ'-Dichtor-bis-[bis-(äthyien)-rhodium(l)] verwendet wird.
21. Verfahren zur Herstellung einer Verbindung der Formel
Figure imgb0042
worin R Alkyl, Alkenyl, Aryl, substituiertes oder unsubstituiertes Indolyl, wobei die Substituenten nieder-Alkyl oder Halogen sind, S substituiertes Amino und T nieder-Alkyl, Aryl, Carboxy, nieder-Alkoxycarbonyl oder Carboxamido ist, dadurch gekennzeichnet, daß man ein Substrat der Formel
Figure imgb0043
worin R, S und T die oben angegebenen Bedeutungen haben, in einem Lösungsmittelmedium unter Verwendung eines Katalysators nach Anspruch 17 hydriert.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Verbindung der Formel IV die Formel
Figure imgb0044
hat, worin R7 Wasserstoff, nieder-Alkyl oder Halogen bedeutet, und in eine Verbindung der Formel
Figure imgb0045
worin R7 die obige Bedeutung hat, überführt wird.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß es mit R7 = Methyl durchgeführt wird.
EP19780100422 1977-07-18 1978-07-18 Bis-phosphin-Metallkomplexe, Verfahren zu ihrer Herstellung, Hydrierungskatalysatoren aus diesen Komplexen und Hydrierungsverfahren unter Verwendung dieser Katalysatoren Expired EP0000403B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US05/816,235 US4120870A (en) 1977-07-18 1977-07-18 Metal phosphine complex
GB7828154A GB2001073A (en) 1977-07-18 1978-06-28 Metal phosphine complex catalysts
GB2815478 1978-06-28
US816235 1986-01-06

Publications (2)

Publication Number Publication Date
EP0000403A1 EP0000403A1 (de) 1979-01-24
EP0000403B1 true EP0000403B1 (de) 1981-06-17

Family

ID=26268074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780100422 Expired EP0000403B1 (de) 1977-07-18 1978-07-18 Bis-phosphin-Metallkomplexe, Verfahren zu ihrer Herstellung, Hydrierungskatalysatoren aus diesen Komplexen und Hydrierungsverfahren unter Verwendung dieser Katalysatoren

Country Status (5)

Country Link
EP (1) EP0000403B1 (de)
JP (1) JPS5439052A (de)
DE (2) DE2831525A1 (de)
FR (1) FR2422676A1 (de)
NL (1) NL7807603A (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1140319B (it) * 1981-12-04 1986-09-24 Consiglio Nazionale Ricerche Catalizzatori contenenti fosfine steroidali chirale precessi catalitici asimmetrici che li impiegano
DK350383A (da) * 1982-08-27 1984-02-28 Hoffmann La Roche Phosphorforbindelser
PH21350A (en) * 1984-06-04 1987-10-13 Smithkline Beckman Corp Tumor cell growth imhibiting pharmaceutical compositions containing phosphino-hydrocarbon-gold, silver or copper complexes
ATE66666T1 (de) * 1986-08-04 1991-09-15 Ciba Geigy Ag Verfahren zur herstellung von optisch aktiven sekundaeren arylaminen.
CA1331201C (en) * 1987-04-08 1994-08-02 Johannes Adrianus Van Doorn Preparation of substituted diaryl phosphides
DE19725643A1 (de) * 1997-06-18 1998-12-24 Basf Ag Optisch aktive Diphosphinliganden
JP3318294B2 (ja) * 1999-11-02 2002-08-26 タキゲン製造株式会社 クレモンロック装置
US7902110B2 (en) 2005-07-07 2011-03-08 Takasago International Corporation Homogeneous asymmetric hydrogenation catalyst
JP6250029B2 (ja) * 2012-03-30 2017-12-20 ジボダン エス エー 食品フレーバー付与化合物としてのn−アシル−アミノ酸誘導体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345392A (en) * 1964-03-24 1967-10-03 American Cyanamid Co Organophosphorus-copper complex compounds
FR2116905A5 (fr) * 1970-12-10 1972-07-21 Inst Francais Du Petrole Nouveaux coordinats bidentes,leur fabrication et leurs applications
FR2230654B1 (de) * 1973-05-21 1975-11-21 Rhone Poulenc Ind
JPS51101956A (ja) * 1975-03-04 1976-09-08 Kogyo Gijutsuin Kogakukatsuseihosufuinno seizohoho

Also Published As

Publication number Publication date
DE2860769D1 (en) 1981-09-24
DE2831525A1 (de) 1979-02-01
FR2422676A1 (fr) 1979-11-09
NL7807603A (nl) 1979-01-22
EP0000403A1 (de) 1979-01-24
JPS5439052A (en) 1979-03-24

Similar Documents

Publication Publication Date Title
EP0104375B1 (de) Neue, phosphorhaltige Biphenylderivate und deren Verwendung für asymmetrische Hydrierungen und enantioselektive Wasserstoffverschiebungen
EP0564406B1 (de) Ferrocenyldiphosphine als Liganden für homogene Katalysatoren
DE2463010C2 (de) Optisch aktive Katalysatoren und deren Verwendung
DE2424543C2 (de) Chlor-Rhodium-Komplexe mit einem stereoisomeren Diphosphin-Liganden, ihre Herstellung und ihre Verwendung bei der asymmetrischen Hydrierung
EP0647648B1 (de) Optisch aktive phosphorverbindungen
EP0398132B1 (de) Phosphorverbindungen
EP0612758B1 (de) Ferrocenyldiphosphine als Liganden für homogene Katalysatoren
EP0646590B1 (de) Mit Fluoralkyl substituierte Ferrocenyldiphosphine als Liganden für homogene Katalysatoren
EP0582692B1 (de) Diphosphinliganden
EP0579797B1 (de) Diphosphinliganden
EP0530336B1 (de) Chirale phosphine
EP0000403B1 (de) Bis-phosphin-Metallkomplexe, Verfahren zu ihrer Herstellung, Hydrierungskatalysatoren aus diesen Komplexen und Hydrierungsverfahren unter Verwendung dieser Katalysatoren
DE69921588T2 (de) Aminophosphin-Metallkomplex für asymmetrische Reaktionen
DE19548399A1 (de) Rutheniumkomplexe mit einem chiralen, zweizähnigen Phosphinoxazolin-Liganden zur enantioselektiven Transferhydrierung von prochiralen Ketonen
DE602004008478T2 (de) Biphosphinrutheniumkomplexe mit chiralen diaminliganden als katalysatoren
EP0031877B1 (de) Optisch aktive 1,2-Bis(diphenylphosphino)-verbindungen, diese als chirale Liganden enthaltende Metallkomplexe und deren Verwendung
EP1499625B1 (de) Ferrocenylliganden und ein verfahren zur herstellung solcher liganden
US4120870A (en) Metal phosphine complex
EP1483276B1 (de) Ferrocenylliganden und ihre verwendung in der katalyse
EP1119574B1 (de) Substituierte isophosphindoline und ihre verwendung
DE2123063C3 (de) Katalytische asymmetrische Hydrierung
DE60307724T2 (de) Neue Diphosphinverbindung, Zwischenprodukte für deren Herstellung, Übergangsmetallkomplex enthaltend die Verbindung als Ligand und Katalysator für asymmetrische Hydrierungen, welcher den Komplex enthält
EP1885732A2 (de) CHIRALE DIPHOLPHONITE ALS LIGANDEN IN DER RUTHENIUM-KATALYSIERTEN ENANTIOSELEKTIVEN REDUKTION VON KETONEN, ß-KETOESTERN UND KETIMINEN
DE69913003T2 (de) 1,2-bis(methyl(1,1,3,3-tetramethylbutyl)-phosphino)ethan, verfahren zur herstellung davon, übergangsmetall-komplexe, die dieses als liganden enthalten und ihre verwendung
WO2004111063A2 (de) Chirale liganden zur anwendung in asymmetrischen synthesen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19810617

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19810617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19810731

REF Corresponds to:

Ref document number: 2860769

Country of ref document: DE

Date of ref document: 19810924

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19830301

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT