EP0000068B1 - Vorrichtung zur Ultraschalldarstellung mittels dynamischer Fokussierung - Google Patents

Vorrichtung zur Ultraschalldarstellung mittels dynamischer Fokussierung Download PDF

Info

Publication number
EP0000068B1
EP0000068B1 EP78100126A EP78100126A EP0000068B1 EP 0000068 B1 EP0000068 B1 EP 0000068B1 EP 78100126 A EP78100126 A EP 78100126A EP 78100126 A EP78100126 A EP 78100126A EP 0000068 B1 EP0000068 B1 EP 0000068B1
Authority
EP
European Patent Office
Prior art keywords
memory registers
clock
memory
clock generators
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100126A
Other languages
English (en)
French (fr)
Other versions
EP0000068A1 (de
Inventor
William E. Dr. Glenn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New York Institute of Technology
Original Assignee
New York Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New York Institute of Technology filed Critical New York Institute of Technology
Publication of EP0000068A1 publication Critical patent/EP0000068A1/de
Application granted granted Critical
Publication of EP0000068B1 publication Critical patent/EP0000068B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8922Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being concentric or annular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8931Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration co-operating with moving reflectors

Definitions

  • the invention relates to a device for the pictorial representation of a body with a transmitting device for emitting energy into the body, a converter for converting energy reflected from the body into electrical signals, which is divided into a plurality of separate elements, a plurality of memory registers Input of each memory register is connected to an associated converter element and a summing circuit for combining the information read from the memory registers in order to obtain an image signal.
  • Ultrasound technology has become increasingly important in clinical diagnostics.
  • Ultrasound technology has already been used in the fields of gynecology, neurology and cardiology, among other things, e.g. successfully used to visualize sabcutaneous blood vessels (including smaller ones).
  • Ultrasound differs from other types of radiation due to its harmless effect on living systems because it is purely mechanical wave nature.
  • the ultrasound technology makes it possible to obtain information that cannot be achieved by other methods, for example by examining with y and x-rays. Above all, the risk of injury when using ultrasound is much less than e.g. when using ionizing rays (y or x-rays).
  • Ultrasound is mainly used as a pulse echo method in diagnostic technology, for which pulses of ultrasound energy are periodically emitted by a piezoelectric transmitter, e.g. based on lead-zirconate-titanate ceramic.
  • Each small pulse of ultrasound energy is directed as a sound wave onto the patient's body, penetrating through various surface structures. If an interface of the body has an irregularity at which the phase of the ultrasound wave changes, part of the ultrasound energy is reflected back.
  • the ultrasound device is usually placed on reception in order to be able to convert reflected (or echo) signals from the body back into electrical signals.
  • the time after which these echo signals return to the receiver is directly dependent on the distance between the reflection source and the speed of sound.
  • the strength of the sound echo is also interesting because it provides information about the type of fault.
  • the echo of sound waves can be represented in different ways.
  • the output of a time generator is due to the horizontal deflection of the cathode ray tube.
  • a constant repetition of the pulse / echo process, synchronized with the time generator, then leads to a still picture, so-called "A-scan", in which the time is proportional to the depth of penetration and vertical deflections signal existing disorder.
  • the intensity of these vertical deflections is a measure of the intensity of the echo.
  • Another common type of pictorial representation of ultrasound waves is the so-called B-scan, in which the echo information corresponds to the usual television picture.
  • the received sound echo signals are used to modulate the brightness of the screen per sampling point.
  • This screen display is used specifically for devices in which the ultrasound beam is swung in the body, each intensity information occupying a scanning line on the screen and the successive positions in succession are used to display successive lines on the screen.
  • a transmitted light image is scanned in one plane and the resulting image can be viewed directly or stored by a photograph or magnetic storage tape.
  • the sound transducer of the devices described has a finite extent, on which the limited resolution of the image obtained from the ultrasound waves depends. It is also known that ultrasonic waves can be directed with suitable lenses as described in U.S. Patent No. 3,598,559 and / or by dividing the ultrasonic transducer into various small parts that are connected by different delay lines. One type of focusing can be achieved, for example, in that sound-absorbing components are formed with a multiplicity of rings of transmission elements lying concentrically one inside the other, which are connected via different delay lines.
  • the path difference that the sound waves cross from the center of a transmitter to its edge zone on the way there and back via a theoretical focal point and back plays a major role if beam bundling is provided analogously to electromagnetic waves.
  • the path difference between the short path from the focal point to the center of the transmitter to the path from the focal point to Transmitter edge must be compensated with delay means according to a double pass of the ultrasonic waves. Electrical delay lines on the way from the electrical exciter to the sound transducer have proven their worth.
  • Non-changeable distortion lines only allow an ultrasound measurement with a fixed focal point, which can be adapted to different problems for examination by varying the delay lines.
  • ultrasound waves stay longer in the body for deeper examination. An examination requires observation of the body at different depths. In the case of a more in-depth examination, the path difference between the central receiving point and peripheral zones is somewhat equalized, which must be taken into account by setting the delay lines accordingly. Because of the large number of delay lines, each of which must be controlled accordingly, the technical scope and use of such devices is very complicated.
  • the invention has for its object to provide an ultrasonic echo meter that enables dynamic focusing and is as simple as possible and consequently economically constructed and works trouble-free.
  • An object of the invention is therefore seen primarily in significantly improving known devices.
  • a first clock generator which is assigned to each of the memory registers, a plurality of second clock generators, each of the memory registers being assigned a second clock generator with a different characteristic clock frequency, a time control circuit for controlling the Reading the signals from the elements into the assigned memory registers with the clock of the second clock generator and then reading out the stored information from each of the memory registers with the clock of the first clock generator.
  • An ultrasound imaging device with which an ultrasound beam is emitted in a body for diagnosis, which is partially reflected back as an echo, often has an electroacoustic transducer with a multiplicity of elements which are arranged in concentric rings one inside the other in an area.
  • Such an electroacoustic transducer is advantageously used simultaneously for emitting the ultrasonic waves and for receiving the reflected ultrasonic waves.
  • the device according to the invention also has a multiplicity of register units, preferably memory registers of the so-called "CCD" type (charge transport storage register) which operate in an analog manner. Each register is coupled to a converter element.
  • a clock generator is connected to each register and generates signals with a first clock frequency.
  • a large number of further clock generators are also provided, which are likewise connected to the analog memories.
  • the second type of clock generator delivers clocks with different predetermined clock frequency.
  • time-dependent clocks are provided which control the operation of the first and second clocks, so that the memories are alternately loaded with the frequency of the second clocks and then read out with the frequency of the first clocks.
  • an electrical connection is provided for transporting the read signals to an imaging system.
  • the delay line required for each converter element is replaced by a predetermined frequency of the second clock generator. With the respective clock frequency, a line is read into a memory with a corresponding delay. The signals thus read in with a delayed clock frequency can be read out from the memory with a common frequency for all segments.
  • the memories are loaded with a common frequency and the delay required for each segment is only taken into account when reading out with a different frequency.
  • the clock frequency can be matched to the respective segment when reading in and reading out.
  • Fig. 1 the external dimensions of a scanning device according to the invention are shown in comparison with an object.
  • the control panel 10 contains a screen 11, for example a cathode ray tube, or a suitable front panel.
  • a video tape recorder or other storage e.g. based on photographic signals (screen copier), contained in the control panel 10 to provide the signals for displaying an image.
  • the control panel 10 also contains a power supply and parts of the circuit for generating timing signals and for driving the scanning sound level in the measuring head 50.
  • the measuring head 50 (or probe) is connected to the control panel 10 with an electrical line 48.
  • the measuring head 50 of the present exemplary embodiment is essentially cylindrical / shaped and has, in the vicinity of one end, a scanning window 50 which, for example, consists of an elastically flexible material such as silicone rubber.
  • a scanning window 50 which, for example, consists of an elastically flexible material such as silicone rubber.
  • the measuring head 50 is brought into a position to be held in the hand of the operator, so that the scanning window 50 on the object to be scanned resiliently flexible material, such as silicone object, is to be scanned, for example, the area around a person's heart.
  • the measuring head can also be used to measure other parts of the body or other objects to which it should be directed with a handle.
  • the measuring head 50 is shown in cross-section, to which associated parts of the evaluation electronics are connected, which can be arranged partly in the measuring head 50 and partly in the control panel 10.
  • the housing of the measuring head 50 includes a front sound guiding chamber 52, which contains a liquid, and a rear sound measuring chamber 53, which contains part of the electronics. Both chambers 52 and 53 have a cylindrical shape with the same diameter, so that they can be assembled into a cylinder with the aid of a tube 54 which has an annular extension 55 on its outside.
  • the (inner) tube 54 carries a flat sound transducer 80 and a sound collecting lens 90, from which the two housing parts are separated from one another (cf. US Pat. No. 3,958,559).
  • the scanning window 51 is located at the end of the chamber 52.
  • An attachment is provided around the window opening, on which an elastically flexible membrane 56, for example silicone rubber membrane, is fitted.
  • the front sound chamber 52 is filled with a liquid 57, for example water.
  • the membrane 56 should be so elastic that it lies smoothly with the measuring head on the surface of the body to be measured in order to keep disturbing reflections of sound waves at the transition point between the liquid of the device and the object as low as possible.
  • a flat, e.g. Metallic, sound-reflecting scanning device 70 is arranged in the liquid 57 between the sound lens 90 and the scanning window 51.
  • the surface of the non-curved scanning device can be curved and focus or scatter even reflected sound waves.
  • the scanning device 70 which is referred to below as a scanning sound mirror or simply a scanning mirror, is fastened to an axis 71 lying perpendicular to the plane of the drawing, which can be passed through the housing wall of the front sound guide chamber 52, in order to be connected from the outside with a small electric motor 72, which Hind float generated to be operated.
  • the electroacoustic transducer 80 is divided into a plurality of elements which lie in concentric rings around a central element in one plane. In the illustration, only three elements, labeled 81, 82 and 83, are shown instead of a confusing variety. Of course, the electroacoustic transducer has many more elements.
  • the elements of the electroacoustic transducer 81 to 83 are connected to an electrical pulse generator 120, from which they can be excited in a known manner to emit ultrasound.
  • the sound transducer elements are also connected to the new circuit for dynamically adjusting the focus according to the invention.
  • the circuit designated 130 preferably works only when receiving sound waves and forwards electrical signals in accordance with the reflected echo signals from the ultrasound for imaging on a screen. Pre-amplifications and amplifiers, which are not shown in detail in the figure, may also be present in this circuit.
  • the output of the circuit 130 for dynamically focusing the focal point is connected to a screen 11 and a further receiver 16), which is used for storing the television picture by video equipment.
  • a particularly advantageous circuit for amplifier control is described in more detail in US Pat. No. 4,043,181. With such an amplifier control, later arriving echo signals are amplified in accordance with their weakening experienced during passage through the body tissue.
  • the timing circuit 170 is provided to generate pulses at equal intervals with which the system is synchronized; the pulses of the timing circuit 170 are alternately fed to the pulse generator 120 and the dynamically focusing pulse receiver 130 and furthermore from the scanning mirror drive and the circuit for deflecting the electron beam 180, so that ultrasonic pulses are alternately emitted and received and that the movement of the mirror drive and the vertical and horizontal deflection of the electron beam of the cathode ray tube 11 can be coordinated.
  • the circuit works as follows: a trigger signal from the timing circuit 170, conducted via the connection 178, stimulates the pulse generator 120 to generate pulses which are transmitted to the elements of the electroacoustic transducer 80, concentric ring elements of ultrasonic transducers become Alignment of an ultrasound beam on a focal point, as is known, excited via delay lines. A further beam alignment is possible through the lens 90.
  • the ultrasound beam introduced into the body to be examined via the scanning mirror 70, the area of which is represented by dotted lines in the figure, is received again as an echo after the sound has been released by the subsequent switchover of the device to reception.
  • the electroacoustic transducer 80 now converts the echo signals reflected back via the scanning mirror into electrical impulses in the opposite direction.
  • the electrical signals are made visible on a screen 11.
  • the screen shows a section in the direction of the ultrasound wave sent through the object, the so-called B-scan image.
  • the second dimension of the image is the swivel range of the ultrasonic wave, which is obtained by moving the scanning mirror 70 back and forth relatively slowly in the direction of the double-sided arrow 7.
  • FIG. 3 shows a block diagram of the electrical circuit for dynamic focusing for the circuit 130, which is connected to the elements of the ultrasound transducer 80.
  • a memory 131 to 133 is connected to each element 81 to 83.
  • the memories are preferably components that operate analogously as so-called CCD components.
  • the output of this memory is applied to an adder 147, the output of which is at the input of gate 148.
  • the output of the gate 148 is connected to the screen 11 via a filter 149, through which impressed clock pulses are filtered out.
  • Clock generators 141, 142 and 143 are each assigned to a sound converter 81-83, on which they generate clocks with which information is fed into the registers 131-133.
  • the clock generator 141 generates a predetermined frequency F o
  • the clock generator 142 a predetermined frequency Y Fa + LlF1
  • the clock generator 143 a predetermined frequency F 0 + ⁇ F 2 .
  • the outputs of the clock generators 141-143 are connected to the corresponding register inputs via AND gates 151, 152 and 153, through which the reading into the memories is controlled.
  • the second input of each AND gate 151-153 is at the output of the switch 154.
  • the output of the AND gate 151 is connected, in addition to the input of the memory 131, to the counter 155, which counts pulses with a frequency F o .
  • each register 131-133 has n memory locations, and accordingly the counter 155 counts up to the number n at a maximum Timing circuit 170 is turned on.
  • the counting signal described in this way can advantageously be used to switch the device from transmission to reception.
  • the clock frequency of the timing circuit 170 is also set such that only echo waves are received in the intended measuring range of the measuring depth in the body.
  • a pulse generator 135 supplies pulses of frequency F c , which are connected to each memory 131 to 133, and after which the information is read from the memories.
  • the output of generator 135 is connected to the memories via gate 139.
  • the gate 139 is also connected to a counter 136 which counts a maximum of m digits. Its output signal sets the counter 136 to 0 when the maximum permissible pulses m are reached and switches the switch 137 off, which is switched on in response to a signal from the counter 155.
  • the output signal of switch 137 is present at AND gate 139 and at gate 148.
  • a delay in the ultrasound pulses is therefore only simulated after they have been received by the fact that the signals supplied by the ultrasound transducer are read in with a higher clock frequency rising towards the edge of the transducer. As a result, the path difference to the edge visible from FIGS. 4A and B is compensated.
  • the delay is thus set directly by the clock generators 141-143.
  • the difference in the delay depends on the penetration depth (cf. FIGS. 4A and B, in which measurement at different focal points Z a to Z c is shown), the difference in the delay of the adjacent transducer elements has to be set inversely to the penetration depth Focusing lens 90 (FIG. 2), the delay effect of which, however, should not be greater than the minimum delay at the maximum penetration depth. If measuring devices with an arbitrarily large penetration depth are to be developed, then the focusing lens 90 would have to be omitted.
  • FIGS. 4A and 4B exemplarily show the path and resulting transit time differences for two different focal points Za and Zb. It can be seen from this figure that sound waves from the intended focal point Za to the first ring take 2.5 ⁇ sec and to the second receiver ring 5.0 ⁇ sec longer than to the center. With a greater depth of penetration, the difference that ultrasonic waves require from the focal point to the outer receiver zones is correspondingly smaller (FIG. 4B).
  • clock generators 141-143 deliver pulses with a frequency of 20 megahertz, 21.05 megahertz and 22.22 megahertz.
  • the read-in process is ended by the switch 154 when the counter 155 has counted a thousand pulses from the clock generator 141, that is to say after 50 ⁇ sec in the example.
  • the memories 132 and 133 are read in longer than is necessary to occupy the memory locations. Since the storage process ends at the same time as in the memory 131, the additional information from the initial phase of the storage process is deleted after the storage space on the output side (leftmost in the figure) is occupied.
  • a simple consideration shows that after the memory is finished process, the information coming from the focal point Za is also stored in the memories 132 and 133 in the memory location closest to the memory output. The deleted information corresponds exactly to the difference in the transit time of the sound wave from the focal points Za to the outer rings 82 and 83 of the sound converter 80.
  • FIG. 4B shows a focal point Zb which is further away from the sound converter 80 and whose distance from Za corresponds to a transit time of 40 microseconds.
  • the signal impinging on the converter element 81 from this focal point is accordingly stored 40 p.sec after the start of the reading process in the memory 131, specifically, counted by the memory output, in the 800th memory location, that is to say 200 locations from the memory input.
  • the corresponding memory space in memories 132 and 133 contains signals due to the increased clock frequencies when reading in, which are 0.5 ⁇ sec (200x0.0025) or 1.0 ⁇ sec (200x0.005 j usec) later the associated converter rings 82 and 83 have arrived. This difference corresponds, as shown in FIG.
  • the electrical shift of the focal point predetermined by the different clocking of course only takes effect when the memories are read out again at the same frequency. Since the memory location first read out, which is closest to the memory output, as the above considerations show, contains the signal corresponding to the focal point Za in all memories 131 to 133 and the last memory location contains the signal corresponding to the focal point Zc, the signals also arrive at the adder 147 at the same time and accordingly to the screen 11. That is, the image is dynamically focused for the entire area between the focal points Za and Zc. An even greater shift can be achieved if reading is carried out with clock frequencies that change in reverse order. This is relatively simple in terms of circuitry, because the control required for this is already provided for recording and storing the signals. A corresponding circuit is shown in Fig. 7 and will be described below.
  • a particularly advantageous device of the invention is seen in the fact that components for setting the number of cycles of each register are operably connected by a common drive shaft in such a way that they simultaneously determine the number of cycles in proportion to the distance between the focal point and in relation to the change in the number of cycles of the adjacent memories.
  • FIG. 5 an electrical circuit with corresponding block symbols is shown in FIG. 5, in which the corresponding components are provided with reference symbols which differ from the reference symbols in FIG. 3 by a 2 in the hundreds if they fulfill corresponding tasks .
  • the clock 241 is connected to the memory 233, which is assigned to the outermost ring 83 of the sound transducer, ie the reading takes place in this embodiment with frequencies increasing from the outermost sound transducer ring 83 to the innermost sound transducer ring 81.
  • the reading takes place with the aid of a clock 235 connected to all memories 231 to 233, ie with the same frequency for all memories.
  • fixed delay elements 201 and 202 are connected to the read-in lines of the memories 231 and 232 located further inside. These delay the reading in of the signals from the transducer rings 82, 81 located further inwards by fixed amounts increasing from the outside in.
  • FIG. 6A shows the imaging relationships at a relatively obvious focal point Zq, FIG. 6B at a farther away focal point Zr.
  • the delay D 1 in the middle transducer element 81 corresponds to the transit time difference t 2 of the ultrasound from the focal point Zq to the middle transducer element 81 compared to the transit time from the focal point Zq to the outermost transducer element 83.
  • the fixed delay D 1 in the read-in line of the transducer element 82 corresponds to the difference of the corresponding runtime differences between the runtimes t 2 and t assigned to the elements 83 and 82.
  • a focal point Zq is fixed, which is now dynamically adapted for different focal points further away by reading out the signals from the memories 231 to 233 with different frequencies.
  • the processes are basically the same as described above, the difference essentially being that by reading out at different frequencies, the signals of the innermost transducer element are accelerated the further the focal point is.
  • the fixed delay D 1 is compensated to the extent necessary so that dynamic focusing is achieved here as well.
  • Fig. 7 an embodiment is shown in which the clock frequency of the memories 331 to 333 differs progressively both when reading in and when reading out, the highest frequency F, + AF, of the clock generator 343, the outermost transducer element 83 with the associated memory 333 is assigned, while the lowest clock frequency F 0 - ⁇ F 1 of the clock generator 341 is assigned to the central converter element 81 during reading.
  • the clock 342 has the corresponding average frequency F o .
  • the assignment is reversed when reading out, i.e. the highest frequency of the clock generator 343 controls the reading out from the memory 331 assigned to the central converter element 81.
  • the circuit shown with the gates 351 to 353 and 361 to 363 in connection with the switch 354 makes the reading and with the switch 337 the reading out controlled.
  • the flip-flop 355 controls the switching process with the aid of the counter 336, which counts the signals of the clock generator 341 when reading in and those of the clock generator 343 when reading out.
  • the gates 358 and 359 together with the inverter 357 also serve to control the reading and reading process in an easily recognizable manner.
  • the switch 354 is turned on by a signal from the timing circuit 170, as in the other embodiments, the flip-flop 355 is simultaneously set to logic 1 and the AND gate 358 is thus opened. If the counter 336 has reached its highest counter reading N when it is read in, it outputs an output signal and resets itself.
  • the AND gate 358 Since the AND gate 358 is open, the counter output signal goes to the switch 337, thereby turning on the readout operation by opening the AND gates 361 to 363 and the gate 348. At the same time, the read-in switch 354 is closed and the flip-fop 355 is reset. A logic 0 is thus present at the output of the flip-flop 355, so that the AND gate 359 is opened via the inverter 357. If, when reading the counter 336 when counting the signals of the clock generator 343, the counter reading N is reached again, it in turn generates an output signal which switches the switch 337 off via the opened AND gate 359 and thus ends the reading.
  • fixed delay elements with delays D, and D 2 are provided, which on their own bring about focusing on a central focal point.
  • both of the forms of deceleration described in connection with Figs. 3 and 5 are applied on opposite sides of the center focus.
  • the signals are more and more delayed from sound transducer elements located to the center, because they are read in at an increasingly lower frequency, so that, for example, the information which comes to rest in the last stage of the allocated memory comes from the dynamic focusing device has been delayed to a maximum.
  • the relative delay due to the read-in process decreases increasingly for the earlier stages (similar to the situation in the embodiment according to FIG. 3), as is shown by the dashed line "A" in FIG. 8.
  • the reverse situation applies to the reading process (similar to the embodiment according to FIG. 5). This is in Fig. 8 represented by the dashed line "B".
  • the total delay by the dynamic focusing system is shown in FIG. 8 by line "C" (equal to AB). Approximately in the middle of the memory (which corresponds approximately to the center of the depth range of the ultrasound device), the delay is 0 and only the fixed delay devices mentioned are effective.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur bildlichen Darstellung eines Körpers mit einer Sendeeinrichtung zum Austrahlen von Energie in den Körper, einem Wandler zur Umwandlung von aus dem Körper reflektierter Energie in elektrische Signale, der in eine Mehrzahl getrennter Elemente unterteilt ist, einer Mehrzahl von Speicherregistern wobei der Eingang jedes Speicherregisters mit einem zugeordneten Wandlerelement verbunden ist und einer Summierungsschaltung zum Zusammenfassen der aus den Speicherregistern ausgelesenen Information, um ein Bildsignal zu erhalten.
  • Während der letzten zwei Jahrzehnte ist die Ultraschalltechnik in der klinischen Diagnostik stets bedeutungsvoller geworden. Die Ultraschalltechnik wurde unter anderem bereits im Bereich der Gynäkologie, der Neurologie und der Kardiologie verwendet, wobei sie z.B. bei der Sichtbarmachung sabkutaner Blutgefäße (einschließlich kleinerer Gefäße) erfolgreich angewandt wurde.
  • Für die Anwendung der Ultraschalltechnik in der Medizin sprechen bedeutende Gründe: Ultraschall unterscheidet sich von anderer Art von Bestrahlung durch die damit verbundene harmlose Auswirkung auf lebende Systeme, weil sie rein mechanischer Wellennatur ist. Durch die Ultraschalltechnik ist Information erreichbar, die von anderen Methoden, beispielsweise durch Untersuchung mit y- und Röntgenstrahlen, nicht erreichbar ist. Vor allem ist das Risiko einer Verletzung bei der Verwendung von Ultraschall viel geringer als z.B. bei der Verwendung ionisierender Strahlen (y-oder Röntgenstrahlen). Ultraschall wird in der Hauptsache als Pulsechomethode in der diagnostischen Technik verwendet, wozu Impulse von Ultraschallenergie periodisch von einem piezoelektrischen Geber, z.B. auf Blei-Zirkonat-Titanat Keramik-Basis, erzeugt werden. Jeder kleine Impuls Ultraschallenergie wird als Schallwelle gebündelt auf den Körper des Patienten gerichtet, wobei er über gegebenenfalls verschiedene Strukturen der Oberfläche eindringt. Hat eine Grenzfläche des Körpers eine Unregelmäßigkeit, an der sich die Phase der Ultraschallwelle ändert, so wird ein Teil der Ultraschallenergie wieder zurückgeworfen. Nach Abgabe eines Ultraschall-Impulses wird das Ultraschallgerät gewöhnlich auf Empfang gestellt, um reflektierte (oder Echo-)Signale vom Körper zurück in elektrische Signale wandeln zu können. Die Zeit, nach der diese Echosignale an dem Empfänger zurückkommen, ist direkt vom Abstand der Reflexionsquelle und von der Schallgeschwindigkeit abhängig. Auch die Stärke des Schallechos ist interessant, weil sie Informationen über die Art einer Störstelle liefert.
  • Das Echo von Schallwellen kann auf verschiedene Weise dargestellt werden. Einerseits gibt es Geräte mit Verstärker, mit denen die dem empfangenen Ultraschallecho entsprechenden elektrischen Signale verstärkt an den vertikal ablenkenden ,Platten einer Kathodenstrahlröhre angelegt werden. Der Ausgang eines Zeitgenerators liegt dabei an der horizontalen Ablenkung der Kathodenstrahlröhre. Eine stetige Wiederholung des Impuls/Echo-Vorganges, synchronisiert mit dem Zeitgenerator führt dann zu einem stehenden Bild, sogenannte "A-Ab-tastung", bei der die Zeit der Eindringtiefe proportional ist und vertikale Ablenkungen vorhandene Fehlordnungen signalisieren. Die Intensität dieser vertikalen Ablenkungen ist ein Maß für die Intensität des Echos.
  • Eine andere übliche Art bildlicher Darstellung von Ultraschallwellen ist die sogenannte B-Abtastung, bei der die Echoinformation dem üblichen Fernsehbild entspricht. d. h. die empfangen Schall-echosignale werden zur Modulierung der Helligkeit des Schirmes je Abtaststelle verwendet. Diese Bildschirmdarstellung wird speiziell für Geräte verwendet, bei denen der Ultraschallstrahl im Körper geschwenkt wird, wobei jede Intensitätsinformation eine Abtastlinie des Bildschirmes beansprucht und die aufeinanderfolgenden Positionen hintereinander werden zur Darstellung von aufeinanderfolgenden Linien auf dem Bildschirm verwendet. Mit dieser Technik wird ein Durchlichtbild in einer Ebene abgetastet und das resultierende Bild kann direkt betrachtet werden oder durch eine Photographie oder magnetisches Speicherband gelagert werden.
  • Der Schallwandler der beschriebenen Geräte hat eine endliche Ausdehnung, wovon die begrenzte Auflösung des aus den Ultraschallwellen gewonnenen Bildes abhängt. Es ist darüberhinaus bekannt, daß Ultraschallwellen mit geeigneten Linsen gerichtet werden können, wie sie im US-Patent Nr. 3,598,559 beschrieben sind und/oder durch Unterteilung des Ultraschallwandlers in verschiedene kleine Teile, die über unterschiedliche Verzögerungsleitungen verbunden sind. Eine Art von Fokussierung kann beispielsweise dadurch erreicht werden, daß schallaufnehmende Bauelemente mit einer Vielzahl von konzentrisch ineinanderliegenden Ringen von Übertragungselementen ausgebildet sind, die über verschiedene Verzögerungsleitungen verbunden sind. Wegen der relativ geringen Schallgeschwindigkeit spielt der Wegunterschied, den die Schallwellen von der Mitte eines Senders zu seiner Randzone beim Hin- und Rückweg über einen theoretischen Brennpunkt hin und zurück überschreiten, eine große Rolle, wenn analog zu elektromagnetischen Wellen eine Strahlbündelung vorgesehen ist. Der Wegunterschied zwischen dem kurzen Weg von Brennpunkt zu Sendermitte zum Weg vom Brennpunkt zum Senderrand muß gemäß eines doppelten Durchlaufes der Ultraschallwellen mit Verzögerungsmitteln ausgeglichen werden. Dabei haben sich elektrische Verzögerungsleitungen auf dem Weg vom elektrischen Erreger zum Schallwandler bewährt.
  • Es ist femer bekannt, die Ultraschallmeßtiefe durch Variation der Verzögerungsleitungen zu verändern (dynamische Fokussierung). Nicht veränderbare Verzörungsleitungen gestatten lediglich eine Ultraschallmessung mit einem fest vorgegebenen Brennpunkt, der bei Variation der Verzögerungsleitungen auf unterschiedliche Problemstellungen zur Untersuchung angepaßt werden kann. Schließlich muß noch beachtet werden, daß Ultraschallwellen für tiefergehende Untersuchung länger im Körper verweilen. Bei einer Untersuchung wird die Beobachtung des Körpers in verschiedenen Tiefen verlangt. Bei tiefergehender Untersuchung gleicht sich der Wegunterschied zwischen zentraler Empfangsstelle und Randzonen etwas aus, der durch entsprechende Einstellung der Verzögerungsleitungen zu berücksichtigen ist. Wegen der großen Zahl von Verzögerungsleitungen, die jeweils entsprechend zu steuern sind, ist der technische Umfang und der Gebrauch solcher Geräte sehr kompliziert.
  • Ein Beispiel einer Einrichtung zur dynamischen Fokussierung bei einem Ultraschall-Darstellungssystem ist in der Publikation "CCD dynamically focussed lenses for ultrasonic systems" aus "CCD 75 proceedings of CCD applications conference naval electronics laboratory center, San Diego, California 1975 (29.-31. Oktober)" zu entnehmen. In dieser Vorpublikation wird vorgeschlagen, einen aus mehreren ringförmigen Elementen bestehenden Ultraschallwandler zu verwenden, wobei jedes Element an einen CCD-Speicher angeschlossen ist. Die Ultraschallinformation wird in diesen Speicher seriell ein- und seriell wieder ausgegeben und auf einem Bildschirm zur Darstellung gebracht. Zur Erreichung einer dynamischen Fokussierung wird die Taktfrequenz jedes einzelnen Speichers während der Eingabe und/oder Ausgabe der Signale in/aus den einzelnen Speichern jeweils dergestalt variiert, daß eine dynamische Fokussierung durch diese Variation erreicht wird. Zu diesem Zweck ist für jeden Speicher ein getrennter Spannungskontrollierter Oszillator und ein Frequenzvervielfacher notwendig. Dies bedingt, wie auch in dieser Publikation ausdrücklich eingeräumt wird, einen sehr großen technischen Aufwand, mit den daraus resultierenden Kosten und einem entsprechenden Raumbedarf.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Ultraschallechomeßerät zu schaffen, das eine dynamische Fokussierung ermöglicht und dabei möglichst einfach und folglich wirtschaftlich aufgebaut ist und störungsfrei arbeitet. Eine Aufgabe der Erfindung wird also vor allem darin gesehen, bekannte Geräte erheblich zu verbessern.
  • Diese Aufgabe wird bei einer Vorrichtung der eingangs bezeichneten Art gelöst durch einen ersten Taktgeber, der jedem der Speicherregister zugeordnet ist, eine Mehrzahl von zweiten Taktgebern, wobei jedem der Speicherregister jeweils ein zweiter Taktgeber mit einer verschiedenen charakteristischen Taktfrequenz zugeordnet ist, eine Zeitsteurschaltung zur Steuerung des Einlesens der Signale von den Elementen in die zugeordneten Speicherregister mit dem Takt der zweiten Taktgeber und des anschließenden Auslesens der gespeicherten Information aus jedem der Speicherregister mit dem Takt des ersten Taktgebers.
  • Vorteilhafte Ausgestaltungen der Erfindung sind durch die in den Unteransprüchen aufgeführten Merkmale charakterisiert.
  • Ein Gerät zur Abbildung von Ultraschall, mit dem in einem Körper zur Diagnose ein Ultraschallstrahl ausgesandt wird, welcher teilweise als Echo wieder zurückgeworfen wird, hat häufig einen elektroakustischen Wandler mit einer Vielzahl von Elementen, die in konzentrischen Ringen ineinander in einer Abene angeordnet sind. Vorteilhaft wird ein solcher elektroakustischer Wandler gleichzeitig zur Abgabe der Ultraschallwellen und zum Empfang der reflektierten Ultraschallwellen verwandt. Das erfindungsgemäße Gerät weist ferner eine Vielzahl von Registereinheiten auf, vorzugsweise analog arbeitende Speicherregister des sogenannten "CCD"-Types (Ladungstransportspeicherregister). Jedes Register ist an ein Wandlerelement gekoppelt. An jedes Register ist ein Taktgeber angeschlossen, der Signale mit einer ersten Taktfrequenz erzeugt. Ferner ist eine Vielzahl weiterer Taktgeber vorgesehen, die ebenfalls mit den Analogspeichern verbunden sind. Die zweite Art von Taktgebern liefert Takte mit unterschiedlicher vorgegebener Taktfrequenz. Außerdem sind zeitabhängige Taktgeber vorgesehen, die die Arbeitsweise der ersten und zweiten Taktgeber steuern, so daß wechselweise die Speicher mit der Frequenz der zweiten Taktgeber beladen und anschließend mit der Frequenz der ersten Taktgeber ausgelesen werden. Schließlich ist eine elektrische Verbindung zum Transport der ausgelesenen Signale zu einem Abbildungssystem vorgesehen.
  • Bei vorliegender Erfindung wird die je Wandlerelement erforderliche Verzögerungsleitung durch eine vorgegebene Frequenz der zweiten Taktgeber ersetzt. Mit der jeweiligen Taktfrequenz wird je eine Zeile entsprechend verzögert in einen Speicher eingelesen. Die solchermaßen mit verzögerter Taktfrequenz eingelesenen Signale können aus dem Speicher mit einer gemeinsamen Frequenz für alle Segmente ausgelesen werden.
  • Eine andere Ausführungsform der Erfindung wird darin gesehen, daß entgegengesetzt zu dem bisher beschriebenen Einleseverfahren die Speicher mit einer gemeinsamen Frequenz beladen und erst beim Herauslesen mit unterschiedlicher Frequenz die für jedes Segment erforderliche Verzögerung berücksichtigt wird. Außerdem kann beim Ein- und beim Auslesen die Taktfrequenz auf das jeweilige Segment abgestimmt sein.
  • Weitere vorteilhafte Ausgestaltungen der Erfindungen sind anhand der schematisch dargestellten Zeichnung im folgenden beschrieben. Es zeigen
    • Fig. 1 ein Gerät der Erfindung im Einsatz,
    • Fig. 2 im Querschnitt einen Meßkopf des Gerätes mit einem Blockschaltbild der zugehörigen Auswertelektronik,
    • Fig. 3 einen Teil der elektrischen Schaltung in Blockform, die zur dynamischen Fokussierung vorgesehen ist,
    • Fig. 4A und B Darstellungen, die hilfreich sind, um die Funktion der Schaltung aus Fig. 3 zu erläutern,
    • Fig. 5 ein Blockschaltbild einer anderen Schaltung für die Erfindung,
    • Fig. 6A und B die zugehörigen Darstellungen zur Erklärung der Funktion der Schaltung nach Fig. 5,
    • Fig. 7 eine weitere Ausführung der erfindungsgemäßen Schaltung in Blockform,
    • Fig. 8 eine zum Verständis von Fig. 7 geeignete graphische Darstellung.
  • In Fig. 1 werden die äußeren Maße eines Abtastgerätes gemäß der Erfindung im Vergleich mit einem Objekt gezeigt. Das Kontrollpult 10 enthält einen Bildschirm 11, beispielsweise eine Kathodenstrahlröhre, ein einer geeigneten Frontplatte. Außerdem können ein Videobandrecorder oder ein anderer Speicher z.B. auf der Basis photographischer Signale (Bildschirmkopierer), im Kontrollpult 10 enthalten sein, um die Signale zur Anzeige eines Bildes zu liefern. Ferner enthält das Kontrollpult 10 eine Energieversorgung und Teile der Schaltung für die Erzeugung von Zeitsteuersignalen und zum Antrieb des Abtastschallspiegels in dem Meßkopf 50. Der Meßkopf 50 (oder Sonde) ist mit dem Kontrollpult 10 mit einer elektrischen Leitung 48 verbunden. Der Meßkopf 50 des vorliegenden Ausführungsbeispieles ist im wesentlichen zylindrisch/ geformt und hat in der Nähe eines Endes ein Abtastfenster 50, das beispielsweise aus elastisch anchgiebigem Material, wie Silicongummi, besteht. Zur Handhabe des Gerätes wird der Meßkopf 50 in eine vom Bedienenden in der Hand zu haltende Position gebracht, so daß das Abtastfenster 50 auf das abzutastende Objekt elastisch nachgiebigem Material, wie Silicon-Objekt soll beispielsweise der Bereich um das Herz eines Menschen abgetastet werden. Selbstverständlich kann der Meßkopf auch zur Messung anderer Körperstellen oder anderer Objekte verwendet werden, auf die sie mit Handgriff zu richten wäre.
  • Gemäß Fig. 2 wird der Meßkopf 50 im Querschnitt dargestellt, an den zugehörige Teile der Auswerteelektronick angeschlossen sind, die teils in dem Meßkopf 50 und teils im Kontrollpult 10 angeordnet sein können. Das Gehäuse des Meßkopfes 50 schließt eine vordere Schalleitkammer 52, die ein Flüssigkeit enthält, und eine hintere Schallmeßkammer 53, die einen Teil der Elektronik enthält, ein. Beide Kammern 52 und 53 haben Zylinderform mit gleichgroßem Durchmesser, so daß sie mit Hilfe eines Rohres 54, das an seiner Außenseite einen ringförmigen Ansatz 55 besitzt, zu einem Zylinder zusammengesetzt werden können. Das (Innen-)Rohr 54 trägt einen flachen Schallwandler 80 und eine Schallsammellinse 90, von dem die beiden Gehäuseteile voneinander getrennt werden (vgl. US-Patent 3,958,559). Das Abtastfenster 51 befindet sich am Ende der Kammer 52. Rings um die Fensteröffnung ist ein Ansatz vorgesehen, auf dem eine elastisch nachgiebige Membran 56, beispielsweise Silicongummi-Membran, aufgezogen ist. Die vordere Schallkammer 52 ist mit einer Flüssigkeit 57, beispielsweise Wasser, ausgefüllt. Die Membran 56 soll so elastisch sein, daß sie sich mit dem Meßkopf an die Oberfläche des zu messenden Körpers glatt anlegt, um störende Reflektionen von Schallwellen an der Übergangsstelle zwischen der Flüssigkeit des Gerätes und dem Objekt möglichst gering zu halten.
  • Eine flache, z.B. metallische, schallreflektierende Abtasteinrichtung 70 ist in der Flüssigkeit 57 zwischen der Schalllinse 90 und dem Abtastfenster 51 angeordnet..Natürlich kann die Oberfläche der nicht gewölbt gezeichneten Abtasteinrichtung gebogen sein und selbst reflektierte Schallwellen fokussieren oder zerstreuen. Die Abtasteinrichtung 70, die im folgenden als Abtastschallspiegel oder einfach Abtastspiegel bezeichnet wird, ist an einer senkrecht zur Zeichenebene liegenden Achse 71 befestigt, die durch die Gehäusewand der vorderen Schalleitkammer 52 hindurchgeführt sein kann, um von außen mit einem kleinen elektrischen Motor 72, der die Hindund Herbewegung erzeugt, betrieben zu werden.
  • Der elektroakustische Wandler 80 ist in eine Vielzahl von Elementen unterteilt, die in konzentrischen Ringen um ein zentrales Element in einer Ebene liegen. In der Darstellung sind nur drei Elemente, bezeichnet mit 81, 82 und 83, anstelle einer unübersichtlichen Vielfalt dargestellt. Selbstverständlich hat der elektroakustische Wandler sehr viel mehr Elemente. Die Elemente des elektroakustischen Wandlers 81 bis 83 sind mit einem elektrischen Impulsgenerator 120 verbunden, von dem sie in bekannter Weise zur Abgabe von Ultraschall angeregt werden können. Die Schallwandlerelemente sind ferner mit der neuen Schaltung zur dynamischen Einstellung des Brennpunktes gemäß der Erfindung verbunden.
  • Die mit 130 bezeichnete Schaltung arbeitet bevorzugt nur beim Empfang von Schallwellen und leitet elektrische Signale entsprechend den reflektierten Echosignalen des Ultraschalls zwecks Abbildung auf einem Bildschirm weiter. In diesem Schaltkreis können noch Vorverstärkungen und Verstärker vorhanden sein, die im einzelnen in der Figur nicht dargestellt sind. Der Ausgang der Schaltung 130 zur dynamischen Fokussierung des Brennpunktes ist mit einem Bildschirm 11 und einem weiteren Empfänger 16) verbunden, der zur Speicherung des Fernsehbildes durch Videoeinrichtung dient. Eine besonders vorteilhafte Schaltung zur Verstärkerregelung ist in der US-Patentschrift 4,043,181 näher beschrieben. Mit einer solchen Verstärkerregelung werden später eintreffende Echosignale entsprechend ihrer beim Durchgang durch das Körpergewebe erfahrenen Abschwächung verstärkt.
  • Die Zeittaktschaltung 170 ist vorgesehen, um Pulse mit zeitgleichen Abständen zu erzeugen, mit denen das System synchronisiert wird; die Impulse der Zeittaktschaltung 170 werden dem Impulserzeuger 120 und dem dynamisch fokussierenden Impulsempfänger 130 wechselweise und darüberhinaus dem Abtastspiegelantrieb sowie der Schaltung für die Ablenkung des Elektronenstrahles 180 zuegeleitet, so daß taktgleicht abwechselnd Ultraschallimpulse abgegeben und empfangen werden und daß die Bewegung des Spiegelantriebes sowie die vertikale und horizontale Ablenkung des Elektronenstrahles der Kathodenstrahlröhre 11 aufeinander abgestimmt werden.
  • Im großen und ganzen funktioniert die Schaltung wie folgt: Durch ein Triggersignal der Zeittaktschaltung 170, geleitet über die Verbindung 178, wird der Impulsgenerator 120 zur Erzeugung von Impulsen angeregt, die auf die Elemente des elektroakustischen Wandlers 80 übertragen werden, Konzentrische Ringelemente von Ultraschallwandlern werden zur Ausrichtung eines Ultraschallstrahles auf einen Brennpunkt wie bekannt über Verzögerungsleitungen angeregt. Eine weitere Strahlausrichtung ist durch die Linse 90 möglich. Der über den Abtastspiegel 70 in den zu untersuchenden Körper eingebrachte Ultraschallstrahl, dessen, Bereich in der Figur durch gepunktete Linien dargestellt ist, wird nach Shallabgabe durch darauf folgende Umstellung des Gerätes auf Empfang als Echo wieder empfangen. Der elektroakustische Wandler 80 formt nun in umgekehrter Richtung die über den Abtastspiegel zurückgeworfenen Echosignale in elektrische Impulse um.
  • Die elektrischen Signale werden nach Verarbeitung durch die Schaltung 130 auf einem Bildschirm 11 sichtbar gemacht. Der Bildschirm zeigt einen Schnitt in Richtung der eingesandten Ultraschallwelle durch das Objekt, das sogenannte B-Abtastungsbild. Die zweite Dimension des Bildes ist der Schwenkbereich der Ultraschallwelle, die durch relativ langsames Hin- und Her-bewegen des Abtastspiegels 70 in Richtung des Doppelseitig gerichteten Pfeiles 7 erhalten wird.
  • Fig. 3 zeigt ein Blockdiagram der elektrischen Schaltung zur dynamischen Fokussierung für die Schaltung 130, die an die Elemente des Ultraschallwandlers 80 angeschlossen ist. Je Element 81 bis 83 ist ein Speicher 131 bis 133 angeschlossen. Die Speicher sind vorzugsweise Bauelemente, die analog als sogenannte CCD-Bausteine arbeiten. Der Ausgang dieser Speicher ist an einem Additionsglied 147 angelegt, dessen Ausgang am Eingang des Gatters 148 liegt. Der Ausgang des Gatters 148 ist über ein Filter 149, durch das aufgeprägte Taktimpulse ausgefiltert werden, mit dem Bildschirm 11 verbunden.
  • Taktgeneratoren 141, 142 und 143 sind je einem Schallwandler 81-83 zugeordnet, an dem sie Takte erzeugen, mit denen Information in die Register 131-133 eingespeist wird. Der Taktgenerator 141 erzeugt eine vorgegebene Frequenz Fo, der Taktgenerator 142 eine vorgegebene Frequenzy Fa+LlF1 und der Taktgenerator 143 eine vorgegebene Frequenz F0+ΔF2. Die Ausgänge der Taktgeneratoren 141-143 sind mit den entsprechenden Registereingängen über UND-Gatter 151, 152 und 153 verbunden, durch die das Einlesen in die Speicher gesteuert wird. Der zweite Eingang jedes UND-Gatters 151-153 liegt am Ausgang des Schalters 154. Der Ausgang des UND-Gatters 151 ist außer mit dem Eingang des Speichers 131 mit dem Zähler 155 verbunden, der Impulse mit einer Frequenz Fo zählt.
  • Im Beispiel der vorliegenden Erfindung hat jedes Register 131-133 n Speicherplätze, demgemäß zählt der Zähler 155 maximal bis zur Zahl n. Wenn der Zähler 155 n Impulse gezählt hat, setzt er sein Zählwerk wieder auf 0 und Schließt den Schalter 154, der von der Zeittaktschaltung 170 eingeschaltet wird. Das in dieser Weise beschriebene Zählsignal kann vorteilhaft dazu verwendet werden, das Gerät von Senden auf Empfang umzustellen. Die Taktfrequenz der Zeittaktschaltung 170 ist ferner so eingestellt, daß nur Echowellen im vorgesehenen Meßbereich der Meßtiefe im Körper empfangen werden.
  • Ein Impulsgenerator 135 liefert Impulse der Frequenz Fc, die mit jedem Speicher 131 bis 133 verbunden sind, und nach denen die Information aus den Speichern ausgelesen wird. Der Ausgang des Generators 135 ist über das Gatter 139 mit den Speichern verbunden. Das Gatter 139 ist auch noch mit einem Zähler 136 verbunden, der maximal m Stellen zählet. Dessen Ausgangssignal setzt beim Erreichen der maximal zulässigen Impulse m den Zähler 136 auf 0 und schaltet den Schalter 137 aus, der auf ein Signal vom Zähler 155 eingeschaltet wird. Das Ausgangssignal des Schalters 137 liegt am UND-Gatter 139 und an dem Gatter 148 an.
  • Die in Fig. 3 im einzelnen dargestellte Schaltung 130 arbeitet im großen und ganzen wie folgt:
    • Nach einem Signal der Zeittaktschaltung 170 öffnet sich der Schalter 154, der seinerseits die Gatter 151-153 öffnet. Somit können elektrische Signale von den Elektroakustischen Wandlern 81-83 in den Speichern 131-133 mit der jeweils vorgewählten Taktrate der Taktgeneratoren 141-143 eingelesen werden, bis n Takte, die vom Zähler 155 mitgezählt werden, gespeichert, sind. Der Speicher 131 wird dabei mit der niedrigen Frequenz Fo aufgefüllt, bis der Zähler 155 m Takt gezählt hat, nach denen er sich selbst auf 0 setzt, den Schalter 154 schließt und den Schalter 137 öffnet. Der Schalter 154 schließt auch die Gatter 151-153 und beendet somit den Speichervorgang, dem nun, durch den Schalter 137 ausgelöst, das Auslesen folgt, indem die Gatter 139 und 148 geöffnet werden. Die Information aus den Speichern 131-133 gelangt über Addierer 147 und Gatter 148, sowie Filter 149 auf den Bildschirm 11. Von dem Filter 149 werden aufgeprägte Taktfrequenzen wieder entfernt. Das Auslesen wird mit einem Zähler 136 kontrolliert, der die beim Auszählen aufgeprägten Impulse vom Impulsgenerator 135 bis zu einer Zahl maximal m zählt, wobei im vorliegenden Fall angenommen werden soll, daß n=m ist, wonach der Zähler 136 den Schalter 137 wieder schließt und Gatter 139 und 148 wieder sperrt.
  • Eine Verzögerung der Ultraschallimpulse wird also erst nach deren Empfang dadurch simuliert, daß die vom Ultraschallwandler gelieferten Signale mit zum Rand des Wandlers steigender, höherer Taktfrequenz eingelesen werden. Dadurch wird der aus den Figuren 4A und B sichtbare Wegunterschied zum Rand ausgeglichen.
  • Bei der Verwendung der Frequenzen Fo, F0+ΔF1 und Fo+ßF2 ist der Unterschied zum zentralen Wandlerelement n mal ΔT1 und n mal AT2 (wobei F=1:T). Die Verzögerung wird also direkt von den Taktgeneratoren 141-143 eingestellt.
  • Da der Unterschied der Verzögerung von der Eindringtiefe abhängig ist (vgl. Figuren 4A und B, in denen Messung bei verschiedenen Brennpunkten Z a bis Z c dargestellt ist) ist der Unterschied der Verzögerung der benachbarten Wandlerelemente umgekehrt zur Eindringtiefe einzustellen Einen Teil der Verzögerung übernimmt die Fokussierungslinse 90 (Figur 2), deren Verzögerungswirkung jedoch nicht größer als die Mindestverzögerung bei maximaler Eindringtiefe sein soll. Sollten Meßgeräte mit beliebig großer Eindringtiefe entwickelt werden, dann müßte die Fokussierungslinse 90 entfallen.
  • In Fig. 4A und 4B sind beispielhaft die Weg-und resultierenden Laufzeitunterschiede für zwei verschiedene Brennpunkte Za und Zb dargestellt. Man kann dieser Figur entnehmen, daß Schallwellen vom vorgesehenen Brennpunkt Za zum ersten Ring 2,5 µsec und zum zweiten Empfängerring 5,0 µsec länger als bis zum Zentrum benötigen. Bei größerer Eindringtiefe ist der Unterschied, den Ultraschallwellen von Brennpunkt zu den äußeren Empfängerzonen benötigen, entsprechend geringer (Fig. 4B).
  • Wenn man davon ausgeht, daß die Speicher 131-133 mit 1000 Speicherplätzen ausgelegt sind und daß der Zähler 155 bis zur Zahl 1000 zählt, wenn man weiterhin von einer Taktfrequenz Fo=20 Megahertz mit einer Verschiebung OF, von 1,05 Megahertz und OF2=2,22 Megahertz ausgeht, dann werden von den Taktgeneratoren 141-143 Impulse mit einer Frequenz von 20 Megahertz, 21,05 Megahertz und 22,22 Megahertz geliefert.
  • Bei diesem Beispiel arbeitet das Gerät wie folgt:
    • Die Zeittaktschaltung 170 gibt das Einschaltsignal etwa zu dem Zeitpunkt, wenn das zuerst eintreffende Signal vom Punkt Za in Segment 81 aufgenommen wird. Die taktweise Speicherung der Signale im Speicher 131 dauert bei der Frequenz von 20 Megahertz 0,05 µsec pro Takt des Taktgebers 141. Der gesamte Eintaktvorgang bei 1000 Speicherplätzen dauert dann also 50 µsec. Der Zähler 155 zählt diese 1000 Takte genau mit, bis der Speicher vollständig aufgefüllt ist, so daß auf dem zuletzt aufgefüllten Speicherplatz ein Echoinformation vom Brennpunkt Za vorhanden ist. (Die in dem dargestellten bevorzugten Ausführungsbeispiel zur Anwendung kommenden Ladungstrans- portspeiche.r -arbeiten dergestalt, daß die am einen Ende eingegebene Information während des Speichervorganges durchläuft, in der Darstellung der Fig. 3 beispielsweise von rechts nach links, so daß die am Eingang des Speichers zuerst eingegebene Information nach dem Speichervorgang dem Ausgang des Speichers am nächsten abgespeichert ist und die folgenden Informationen sich daran, in der Darstellung der Figur von links nach rechts anschließen). Der Speichervorgang in den Speichern 132 und 133 wird nun von den Taktgebern 142 bzw. 143 mit den höheren Frequenzen 21,05 Megahertz und 22,22 Megahertz getaktet, so daß das Einspeichern pro Speicherplatz 0,0475 bzw. 0,045 µsec dauert. Das Einlesen der Signale auf die 1000 Speicherplätze dauert demzufolge 47,5 µsec bzw. 45 µsec.
  • Der Einlesevorgang wird, wie erwähnt, durch den Schalter 154 beendet, wenn der Zähler 155 tausend Impulse des Taktgebers 141 gezählt hat, im Beispiel also nach 50 µsec. Demzufolge wird in die Speicher 132 und 133 zeitlich länger eingelesen, als zur Besetzung der Speicherplätze nötig ist. Da der Speichervorgang zum gleichen Zeitpunkt wie beim Speicher 131 beendet wird, wird die zusätzliche Information aus der Anfangsphase des Speichervorganges nach Besetzung des ausgangsseitigen (in der Figur am weitesten links liegenden) Speicherplatzes gelöscht. Eine einfache Überlegung zeigt, daß nach Beendigung des Speichervorganges auch bei den Speichern 132 und 133 genau die vom Brennpunkt Za kommende Information auf dem dem Speicherausgang nächstliegenden Speicherplatz abgespeichert ist. Die gelöschte Information entspricht genau dem Unterschied der Laufzeit der Schallwelle vom Brennpunkte Za zu den äußeren Ringen 82 bzw. 83 des Schallwandlers 80.
  • In Fig. 4B ist ein vom Schallwandler 80 weiter entfernter Brennpunkt Zb dargestellt, dessen Entfernung von Za einer Laufzeit von 40 µsec entspricht. Das von diesem Brennpunkt auf das Wandlerelement 81 auftreffende Signal wird demzufolge 40 p.sec nach Beginn des Einlesevorganges im Speicher 131 abgespeichert, und zwar, vom Speicherausgang gezählt, auf dem 800. Speicherplatz, also 200 Plätze vom Speichereingang. Wie eine einfache Rechnung zeigt, enthält der entsprechende Speicherplatz in den Speichern 132 und 133 aufgrund der erhöhten Taktfrequenzen beim Einlesen Signale, welche um 0,5 µsec (200x0,0025) bzw. 1,0 µsec (200x0,005 jusec) später an den zugeordneten Wandlerringen 82 bzw. 83 eingetroffen sind. Dieser Unterschied entspricht, wie Fig. 4B zeigt, genau dem Laufzeitunterschied der Schallwellen vom Brennpunkt Zb zu den Ringen 82 bzw. 83. Die gleiche Überlegung läßt sich für jeden Brennpunkt anstellen, der zwischen Za und Zc liegt, wobei Zc den Brennpunkt markiert, auf den der Ultraschallstrahl aufgrund der Linse 90 ohne zusätzliche elektronische Verzögerung fokussiert ist.
  • Die durch die verschiedene Eintaktung vorgegebene elektrische Verschiebung des Brennpunktes wirkt sich natürlich erst dann aus, wenn die Speicher mit gleicher Frequenz wieder ausgelesen werden. Da der zuerst ausgelesene, dem Speicherausgang am nächsten liegende Speicherplatz, wie obige Überlegungen zeigen, in sämtlichen Speichern 131 bis 133 das dem Brennpunkt Za entsprechende Signal und der letzte Speicherplatz das dem Brennpunkt Zc entsprechende Signal enthält, kommen die Signale auch gleichzeitig zu dem Additionsglied 147 und dem-zufolge zum Bildschirm 11. Das heißt, das Bild ist für den gesamten Bereich zwischen den Brennpunkten Za und Zc dynamisch fokussiert. Eine noch stärkere Verschiebung kann erreicht werden, wenn mit sich in umgekehrter Reihenfolge ändernden Taktfrequenzen ausgelesen wird. Das ist schaltungstechnisch relativ einfach, weil eine dazu erforderliche Steuerung bereits zur Aufnahme und Speicherung der Signale vorgesehen ist. Eine entsprechende Schaltung ist in Fig. 7 dargestellt und wird weiter unten beschrieben.
  • Eine besonders vorteilhafte Einrichtung der Erfindung wird darin gesehen, daß Bauelemente zur Einstellung der Taktzahl jedes Registers von einer gemeinsamen Antriebswelle betätigbar so verbunden sind, daß sie die Taktzahl proportional zum Abstand des Brennpunktes und in Relation zur Änderung der Taktzahl der benachbarten Speicher gleichzeitig festlegen.
  • Es sollte in diesem Zusammenhang darauf hingewiesen werden, daß die Frequenzen der Taktgeber 141 bis 143 verschieden, aber jede für sich bei der normalen Ausführungsform der Erfindung konstant sind. Eine derartige Ausführungsform ist in aller Regel völlig ausreichend, um eine hinreichend scharfe dynamische Fokussierung zu erhalten. Lediglich unter bestimmten Umständen ist die zusätzliche gemeinsame geringfügige Anderung der Taktfrequenzen sinnvoll, um eine noch bessere Korrektur auch kleinster Fehlfokussierungen zu ermöglichen.
  • In weiterer Ausgestaltung der Erfindung ist in Fig. 5 eine elektrische Schaltung mit entsprechenden Blocksymbolen dargestellt, bei denen die entsprechenden Bauteile mit Bezugszeichen versehen sind, die sich von den Bezugszeichen der Fig. 3 durch eine 2 in der Hunderterstelle unterscheiden, wenn sie entsprechende Aufgaben erfüllen.
  • Die in Fig. 5 im einzelnen dargestellte Schaltung 130 arbeitet im großen und ganzen wie folgt:
    • Nach einem Signal des Zeitgenerators 170 öffnet sich der Schalter 237, der seinerseits das Gatter 239 öffnet. Somit können elektrische Signale von den elektroakustischen Wandlern 81 bis 83 in die Speicher 231 bis 233 mit der Taktrate Fc des Taktgenerators 235 eingelesen werden, bis n Takte, die vom Zähler 236 mitgezählt werden, gespeichert sind. Die Speicher 231 bis 233 werden dabei mit der Frequenz Fc aufgefüllt, bis der Zähler 236 n Takte gezählt hat, nach denen er sich selbst auf 0 setzt, den Schalter 237 schließt und den Schalter 254 öffnet. Der Schalter 237 schließt auch das Gatter 239 und beendet somit den Speichervorgang, dem nun, durch den Schalter 254 ausgelöst, das Auslesen folgt, indem die Gatter 251 bis 253 und 248 geöffnet werden. Die Information aus den Speichern 231 bis 233 gelangt über Addierer 247 und Gatter 248, sowie Filter 249 auf den Bildschirm 11. Von dem Filter 249 werden aufgeprägte Taktfrequenzen wieder entfernt. Das Auslesen wird mit einem Zähler 255 kontrolliert, der die beim Auszählen aufgeprägten Impulse vom Impulsgenerator 235 bis zu einer Zahl maximal m zählt, wobei m gleich n ist, wonach der Zähler 255 den Schalter 254 und die Gatter 239 und 248 wieder schließt.
  • Die elektrische Schaltung gemäß Fig. 5 unterscheidet sich also von der in Fig. 3 beschriebenen dadurch, daß die Taktgeber 241 bis 243 mit ihren verschiedenen Frequenzen, die, wie in der Figur dargestellt, von Fo für den Taktgeber 241 über Fo+L1F, für den Taktgeber 242 auf Fo+OF2 für den Taktgeber 243 ansteigen, zum Auslesen statt zum Einlesen der Information verwendet werden. Der Taktgeber 241 ist mit dem Speicher 233 verbunden, welcher dem äußersten Ring 83 des Schallwandlers zugeordnet ist, d.h. das Auslesen erfolgt bei dieser Ausführungsform mit von dem äußersten Schallwandlerring 83 zu dem innersten Schallwandlerring 81 ansteigenden Frequenzen. Das Einlesen erfolgt bei dieser Ausführungsform dagegen mit Hilfe eines mit allen Speichern 231 bis 233 verbundenen Taktgebers 235, d.h. mit der gleichen Frequenz für alle Speicher.
  • Zusätzlich sind Festverzögerungsglieder 201 und 202 in die Einleseleitungen der weiter innen liegenden Speicher 231 und 232 geschaltet. Diese verzögern das Einlesen der Signale von den Weiter innen liegenden Schallwandlerringen 82, 81, um von außen nach innen zunehmende feste Beträge.
  • Die Arbeitsweise einer Schaltung gemäß Fig. 5 ist anhand der Fig. 6A und 6B näher erläutert. Fig. 6A zeigt die Abbildungsverhältnisse bei einem relativ naheliegenden Brennpunkt Zq, Fig. 6B bei einem weiter entfernten Brennpunkt Zr. Wie in Fig. 6A dargestellt ist, entspricht die Verzögerung D1 beim mittleren Wandlerelement 81 der Laufzeitdiffernz t2 des Ultraschalls vom Brennpunkt Zq zum mittleren Wandlerelement 81 gegenüber der Laufzeit vom Brennpunkt Zq zum äußersten Wandlerelement 83. Die Festverzögerung D1 in der Einleseleitung des Wandlerelementes 82 entspricht der Differnz der entsprechenden Laufzeitunterschiede zwischen den den Elementen 83 und 82 zugeordneten Laufzeiten t2 und t,.
  • Aufgrund dieser festen Verzögerungen ist ein Brennpunkt Zq fest eingestellt, der nun durch das erfindungsgemäß mit verschiedenen Frequenzen erfolgende Auslesen der Signale aus den Speichern 231 bis 233 für verschiedene weiter entfernte Fokuspunkte dynamisch angepaßt wird. Die Vorgänge sind dabei prinzipiell die gleichen wie zuvor beschrieben wobei der Unterschied im wesentlichen darin besteht, daß durch das mit verschiedenen Frequenzen erfolgende Auslesen die Signale des innersten Wandlerelementes umsomehr beschleunigt werden, je weiter der Brennpunkt entfernt liegt. Dadurch wird die Festverzögerung D1 jeweils im notwendigen Umfang kompensiert, so daß auch hier eine dynamische Fokussierung erreicht wird.
  • In Fig. 7 ist eine Ausführungsform dargestellt, bei der die Taktfrequenz der Speicher 331 bis 333 sowohl beim Einlesen, als auch beim Auslesen progressiv verschieden ist, wobei beim Einlesen die höchste Frequenz F,+AF, des Taktgebers 343 dem äußersten Wandlerelement 83 mit dem zugehörigen Speicher 333 zugeordnet ist, während die niedrigste Taktfrequenz F0-ΔF1 des Taktgebers 341 beim Einlesen dem zentralen Wandlerelement 81 zugeordnet ist. Dies ist aus der Figur deutlich zu erkennen. Der Taktgeber 342 hat die entsprechende mittlere Frequenz Fo.
  • Beim Auslesen ist die Zuordnung umgekehrt, d.h. die höchste Frequenz des Taktgebers 343 steuert das Auslesen aus dem dem zentralen Wandlerelement 81 zugeordneten Speicher 331. Durch die dargestellte Schaltung mit den Gattern 351 bis 353 und 361 bis 363 wird in Verbindung mit dem Schalter 354 das Einlesen und mit dem Schalter 337, das Auslesen gesteuert.
  • Das Flip-Flop 355 steuert den Umschaltvorgang mit Hilfe des Zählers 336, der beim Einlesen die Signale des Taktgebers 341 und beim Auslesen die des Taktgebers 343 zählt. Die Gatter 358 und 359 dienen zusammen mit dem Inverter 357 in leicht erkennbarer Weise ebenfalls der Steuerung des Einlese- und Auslesevorganges. Wenn durch ein Signal von der Zeittaktschaltung 170, wie bei den anderen Ausführungsformen, der Schalter 354 eingeschaltet wird, wird gleichzeitig das Flip-Flop 355 auf logisch 1 gesetzt und somit das UND-Gatter 358 geöffnet. Wen der Zähler 336 beim Einlesen seinen höchsten Zählerstand N erreicht hat, gibt er ein Ausgangssignal und setzt sich selbst zurück. Da das UND-Gatter 358 geöffnet ist, gelangt das Zählerausgangssignal an den Schalter 337, wodurch der Auslesevorgang eingeschaltet wird, indem die UND-Gatter-361 bis 363 und das Gatter 348 geöffnet werden. Gleichzeitig wird der Einleseschalter 354 geschlossen und das Flip-Fop 355 zurückgesetzt. Damit steht am Ausgang des Flip-Flops 355 eine Iogische 0 an, so daß über den Inverter 357 das UND-Gatter 359 geöffnet wird. Wenn nun beim Auslesen der Zähler 336 beim Zählen der Signale des Taktgebers 343 wieder den Zählerstand N erreicht hat, erzeugt er wiederum ein Ausgangssignal, welches über des geöffnete UND-Gatter 359 den Schalter 337 ausschaltet und somit das Auslesen beendet.
  • Bei der in Fig. 7 dargestellten Ausführungsform sind Festverzögerungsglieder mit den Verzögerungen D, und D2 vorgesehen welche für sich allein genommen eine Fokussierung auf einen mittleren Brennpunkt bewirken.
  • Bei der Ausführungsform nach Fig. 7 werden beide im Zusammenhang mit den Fig. 3 und 5 beschriebenen Formen der Verzögerung auf entgegengesetzten Seiten des mittleren Brennpunktesangewendet. Beim Einlesen werden die Signale von mehr der Mitte zu gelegenen Schallwandlerelementen zunehmend mehr verzögert, weil sie mit einer zunehmend geringeren Frequenz eingelesen werden, so daß beispielsweise die Information, die in der letzten Stufe des zugeordneten Speichers zur Ruhe kommt, von der Einrichtung zur dynamischen Fokussierung maximal verzögert worden ist. Die relative Verzögerung aufgrund des Einlesevorganges nimmt für die früher liegenden Stufen (ähnlich der Situation bei der Ausführungsform nach Fig. 3) zunehmend ab, wie dies durch die gestrichelte Linie "A" in der Fig. 8 dargestellt ist. Für den Auslesevorgang gilt die umgekehrte Situation (ähnlich der Ausführungsform nach Fig. 5). Dies ist in Fig. 8 durch die gestrichelte Linie "B" dargestellt. Die Gesamtverzögerung durch das System zur dynamischen Fokussierung ist in Fig. 8 durch die Linie "C" (gleich A-B) dargestellt. Etwa in der Mitte der Speicher (die etwa der Mitte des Tiefenbereiches der Ultraschalleinrichtung entspricht) ist die Verzögerung 0 und nur die erwähnten Festferzögerungseinrichtungen sind wirksam.

Claims (10)

1. Vorrichtung zur bildlichen Darstellung eines Körpers mit
-einer Sendeeinrichtung (130, 80) zum Ausstrahlen von Energie in den Körper,
- einem Wandler (80) zur Umwandlung von aus dem Körper reflektierter Energie in elektrische Signale, der in eine Mehrzahl getrennter Elemente (81-83) unterteilt ist,
- einer Mehrzahl von Speicherregistern (131-133), wobei der Eingang jedes Speicherregisters (131-133) mit einem zugeordneten Wandlerelement (81-83) verbunden ist und,
-einer Summierungsschaltung (147) zum Zusammenfassen der aus den Speicherregistern (131-133) ausgelesenen Information, um ein Bildsignal zu erhalten, gekennzeichnet durch,
- einen ersten Taktgeber (135), der jedem der Speicherregister (131-133) zugeordnet ist,
-eine Mehrzahl von zweiten Taktgebern (141-143), wobei jedem der Speicherregister (131-133) jeweils ein zweiter Taktgeber (141-143) mit einer Verschiedenen charakteristischen Taktfrequenz zugeordnet ist,
-eine Zeitsteuerschaltung (170, 136, 137, 154, 155) zur Steuerung des Einlesens der Signale von den Elementen (81-83) in die zugeordneten Speicherregister (131-133) mit dem Takt der zweiten Taktgeber (141-143) und des anschließenden Auslesens der gespeicherten Information aus jedem der Speicherregister (131-133) mit dem Takt des ersten Taktgebers (135).
2. Vorrichtung zur bildlichen Darstellung eines Körpers mit
-einer Sendeeinrichtung (130, 80) zum Ausstrahlen von Energie in den Körper,
-einem Wandler (80) zur Umwandlung von aus dem Körper reflektierter Energie in elektrische Signale, der in eine Mehrzahl getrennter Elemente (81-83) unterteilt ist,
- einer Mehrzahl von Speicherregistern (231-233), wobei der Eingang jedes Speicherregisters (231-233) mit einem zugeordneten Wandlerelement (81-83) verbunden ist und,
-einer Summierungsschaltung (247) zum Zusammenfassen der aus den Speicherregistern (231-233) ausgelesenen Information, um ein Bildsignal zu erhalten gekennzeichnet durch,
- einen ersten Taktgeber (235), der jedem der Speicherregister (231-233) zugeordnet ist,
- eine Mehrzahl von zweiten Taktgebern (241-243), wobei jedem der Speicherregister (231-233) jeweils ein zweiter Taktgeber (241-243) mit einer verschiedenen charakteristischen Taktfrequenz zugeordnet ist,
-eine Zeitsteuerschaltung (170, 236, 237, 254, 255) zur Steuerung des Einlesens der Signale von den Elementen (81-83) in die zugeordneten Speicherregister (231-233) mit dem Takt des ersten Taktgebers (235) und des anschließenden Auslesens der gespeicherten Information aus jedem der Speicherregister (231-233) mit dem Takt der zweiten Taktgeber (241-243).
3. Vorrichtung zur bildlichen Darstellung eines Körpers mit
-einer Sendeeinrichtung (130-80) zum Ausstrahlen von Energie in den Körper,
- einem Wandler (80) zur Umwandlung von aus dem Körper reflektierter Energie in elektrische Signale, der in eine Mehrzahl getrennter Elemente (81-83) unterteilt ist,
- einer Mehrzahl von Speicherregistern (331-333) wobei der Eingang jedes Speicherregisters (331-333) mit einem zugeordneten Wandlerelement (81-83) verbunden ist und,
-einer Summierungsschaltung (347) zum Zusammenfassen der aus den Speicherregistern (331-333) ausgelesenen Signale, um ein Bildsignal zu erhalten gekennzeichnet durch eine Mehrzahl von Taktgebern (341-343) mit verschiedenen charakteristischen Taktfrequenzen,
- eine Zeitsteuereinrichtung (170, 336, 337, 351-355, 357-359, 361-363) zur Steuerung des Einlesens der Signale von den Elementen (81-83) in die zugeordneten Speicherregister (331-333) mit verschiedenen Taktfrequenzen, die von den verschiedenen Taktgebern (341-343) erzeugt werden, wobei eine erste Zuordnung zwischen den Taktgebern (341-343) und den Speicherregister (331-333) besteht und des anschließenden Auslesens der gespeicherten Information aus den Speicherregistern (331-333) mit verschiedenen Taktfrequenzen, die von den verschiedenen Taktgebern (341-343) erzeugt werden, wobei eine von der ersten verschiedene zweite Zuordnung zwischen den Taktgebern (341-343) und den Speicherregistern (331-333) besteht.
4. Vorrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß Ultraschallenergie verwendet wird.
5. Vorrichtung nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß der Energiewandler (80) aus einem zentralen Element (81) und mehreren dieses umgebenden ringförmingen Elementen (82, 83) besteht.
6. Vorrichtung nach Anspruch 5 dadurch gekennzeichnet, daß derjenige von den Taktgebern (141-143; 341-343), der beim Einlesen dem zentralen Element (81) zugeordnet ist, eine niedrigere charakteristische Taktfrequenz hat, als die den ringförmigen Elementen (82, 83) zugeordneten Taktgeber (142, 143; 342, 343).
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die den ringförmigen Wandlerelementen (82, 83) zugeordneten Taktgeber (242, 243; 342, 343) eine zunehmend höhere charakteristische Taktfrequenz haben.
8. Vorrichtung nach Anspruch 5 dadurch gekennzeichnet, daß derjenige von den Taktgebern (241-243; 341-343), der beim Auslesen dem zentralen Element (81) zugeordnet ist, eine höhere Taktfrequenz hat als die den ringförmigen Elementen (82, 83) zugeordneten Taktgeber (242, 243; 342, 341
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die den ringförmigen Wandlerelementen (82, 83) zugeordneten Taktgeber (242, 243; 342, 341) eine zunehmend niedrigere charakteristische Taktfrequenz haben.
10. Vorrichtung nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß die Speicherregister (131-133; 231-233; 331-333) analoge Ladungstransportspeicher (CCD-Speicher) sind.
EP78100126A 1977-06-13 1978-06-12 Vorrichtung zur Ultraschalldarstellung mittels dynamischer Fokussierung Expired EP0000068B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US806005 1977-06-13
US05/806,005 US4227417A (en) 1977-06-13 1977-06-13 Dynamic focusing apparatus and method

Publications (2)

Publication Number Publication Date
EP0000068A1 EP0000068A1 (de) 1978-12-20
EP0000068B1 true EP0000068B1 (de) 1982-04-07

Family

ID=25193080

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100126A Expired EP0000068B1 (de) 1977-06-13 1978-06-12 Vorrichtung zur Ultraschalldarstellung mittels dynamischer Fokussierung

Country Status (11)

Country Link
US (1) US4227417A (de)
EP (1) EP0000068B1 (de)
JP (1) JPS5418180A (de)
AT (1) ATA430478A (de)
AU (1) AU520174B2 (de)
CA (1) CA1116741A (de)
DE (1) DE2861715D1 (de)
DK (1) DK261578A (de)
FI (1) FI781828A (de)
IL (1) IL54883A (de)
IT (1) IT1105498B (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55500006A (de) * 1977-12-12 1980-01-10
US4290310A (en) * 1979-07-09 1981-09-22 Varian Associates, Inc. Ultrasonic imaging system using digital control
FR2477723A1 (fr) * 1980-03-07 1981-09-11 Cgr Ultrasonic Sonde d'echographie ultrasonore a lentille acoustique et echographe comportant une telle sonde
FR2482732A1 (fr) * 1980-05-19 1981-11-20 Commissariat Energie Atomique Dispositif d'echographie a focalisation dynamique et a balayage sectoriel
DE3023386C2 (de) * 1980-06-23 1983-10-27 Koch & Sterzel Gmbh & Co, 4300 Essen Schaltungsanordnung für eine Ultraschall-Untersuchungseinrichtung
US4512196A (en) * 1983-09-30 1985-04-23 North American Philips Corporation Ultrasound imaging with FM detection
US5143073A (en) * 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
US4669314A (en) * 1985-10-31 1987-06-02 General Electric Company Variable focusing in ultrasound imaging using non-uniform sampling
DE3612151A1 (de) * 1986-04-10 1987-12-23 Wolf Gmbh Richard Peilsystem zur positionsbestimmung von reflexionsverursachenden grenzschichten im menschlichen koerper
US4815047A (en) * 1986-06-20 1989-03-21 Hewlett-Packard Company Synthetic focus annular array transducer
JPH01153145A (ja) * 1987-12-11 1989-06-15 Toshiba Corp アニュラアレイ超音波探触子
JPH01280496A (ja) * 1988-05-06 1989-11-10 Watanabe Sewing Mach Shokai:Kk 二重環縫ミシンにおける針受装置
US4974211A (en) * 1989-03-17 1990-11-27 Hewlett-Packard Company Digital ultrasound system with dynamic focus
US5113706A (en) * 1990-07-03 1992-05-19 Hewlett-Packard Company Ultrasound system with dynamic transmit focus
WO1995015521A2 (en) * 1993-11-29 1995-06-08 Perception, Inc. Pc based ultrasound device with virtual control user interface
US5522391A (en) 1994-08-09 1996-06-04 Hewlett-Packard Company Delay generator for phased array ultrasound beamformer
US5535751A (en) * 1994-12-22 1996-07-16 Morphometrix Technologies Inc. Confocal ultrasonic imaging system
US6135994A (en) 1995-04-17 2000-10-24 Chernoff; W. Gregory Surgical method
US5964709A (en) * 1995-06-29 1999-10-12 Teratech Corporation Portable ultrasound imaging system
US5957846A (en) * 1995-06-29 1999-09-28 Teratech Corporation Portable ultrasound imaging system
US5839442A (en) * 1995-06-29 1998-11-24 Teratech Corporation Portable ultrasound imaging system
US7500952B1 (en) 1995-06-29 2009-03-10 Teratech Corporation Portable ultrasound imaging system
US5590658A (en) * 1995-06-29 1997-01-07 Teratech Corporation Portable ultrasound imaging system
US6248073B1 (en) 1995-06-29 2001-06-19 Teratech Corporation Ultrasound scan conversion with spatial dithering
US8241217B2 (en) 1995-06-29 2012-08-14 Teratech Corporation Portable ultrasound imaging data
JPH11508461A (ja) * 1995-06-29 1999-07-27 テラテク・コーポレーシヨン 携帯式超音波撮像システム
US6111816A (en) * 1997-02-03 2000-08-29 Teratech Corporation Multi-dimensional beamforming device
US6292433B1 (en) 1997-02-03 2001-09-18 Teratech Corporation Multi-dimensional beamforming device
US6721235B2 (en) 1997-02-03 2004-04-13 Teratech Corporation Steerable beamforming system
US6842401B2 (en) 2000-04-06 2005-01-11 Teratech Corporation Sonar beamforming system
US20030191396A1 (en) * 2003-03-10 2003-10-09 Sanghvi Narendra T Tissue treatment method and apparatus
US7527592B2 (en) * 2003-11-21 2009-05-05 General Electric Company Ultrasound probe sub-aperture processing
US7527591B2 (en) * 2003-11-21 2009-05-05 General Electric Company Ultrasound probe distributed beamformer
US20050113698A1 (en) * 2003-11-21 2005-05-26 Kjell Kristoffersen Ultrasound probe transceiver circuitry
US7662114B2 (en) * 2004-03-02 2010-02-16 Focus Surgery, Inc. Ultrasound phased arrays
US8038631B1 (en) 2005-06-01 2011-10-18 Sanghvi Narendra T Laparoscopic HIFU probe
US20070038096A1 (en) * 2005-07-06 2007-02-15 Ralf Seip Method of optimizing an ultrasound transducer
US20070010805A1 (en) 2005-07-08 2007-01-11 Fedewa Russell J Method and apparatus for the treatment of tissue
US7559905B2 (en) 2006-09-21 2009-07-14 Focus Surgery, Inc. HIFU probe for treating tissue with in-line degassing of fluid
US8235902B2 (en) 2007-09-11 2012-08-07 Focus Surgery, Inc. System and method for tissue change monitoring during HIFU treatment
US20100092424A1 (en) * 2007-11-21 2010-04-15 Sanghvi Narendra T Method of diagnosis and treatment of tumors using high intensity focused ultrasound
GB2459091B (en) 2008-04-07 2012-05-23 Thales Holdings Uk Plc Method and system for acoustic imaging
US20100228130A1 (en) * 2009-03-09 2010-09-09 Teratech Corporation Portable ultrasound imaging system
US20100242164A1 (en) * 2009-03-31 2010-09-30 Woongjin Coway Co., Ltd. Sterilizing water dispensing apparatus, and bidet and toilet seat having the same
EP2946721B1 (de) * 2014-05-20 2017-12-20 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Vorrichtung und Verfahren zur optoakustischen Abbildung eines Objekts

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE551765A (de) * 1955-10-13
US3090030A (en) * 1957-09-09 1963-05-14 Honeywell Regulator Co Variable focus transducer
US3403247A (en) * 1964-01-29 1968-09-24 Navy Usa Analog beam pattern digital simulator
JPS565536B2 (de) * 1973-05-21 1981-02-05
US4011750A (en) * 1973-06-06 1977-03-15 The Commonwealth Of Australia Care Of The Secretary Department Of Health Method and apparatus for ultrasonic examination of objects
FR2252580B1 (de) * 1973-11-22 1980-02-22 Realisations Ultrasoniques Sa
US3918024A (en) * 1974-06-24 1975-11-04 Albert Macovski Ultrasonic array for reflection imaging
JPS5143879A (de) * 1974-09-30 1976-04-14 Tokyo Shibaura Electric Co
GB1529304A (en) * 1974-10-24 1978-10-18 Brown R Imaging system
DE2558882C3 (de) * 1975-12-27 1979-10-11 Walter 5300 Bonn Schoenball Aufbau eines Rotors, insbesondere für Windkraftmaschinen
US4091342A (en) * 1976-01-02 1978-05-23 General Electric Company Time delay modulator
US4084582A (en) * 1976-03-11 1978-04-18 New York Institute Of Technology Ultrasonic imaging system
US4152678A (en) * 1976-07-01 1979-05-01 Board of Trustees of the Leland Stanford Jr. Unv. Cascade charge coupled delay line device for compound delays
US4058003A (en) * 1976-07-21 1977-11-15 The Board Of Trustees Of The Leland Stanford Junior University Ultrasonic electronic lens with reduced delay range
US4058001A (en) * 1976-08-02 1977-11-15 G. D. Searle & Co. Ultrasound imaging system with improved scan conversion
GB1554349A (en) * 1976-11-01 1979-10-17 Stanford Res Inst Int Variable focus ultrasonic transducer means

Also Published As

Publication number Publication date
IL54883A (en) 1981-06-29
AU3668478A (en) 1979-12-06
AU520174B2 (en) 1982-01-21
CA1116741A (en) 1982-01-19
ATA430478A (de) 1986-04-15
DK261578A (da) 1979-01-16
JPS5418180A (en) 1979-02-09
DE2861715D1 (en) 1982-05-19
IT7849824A0 (it) 1978-06-12
IT1105498B (it) 1985-11-04
US4227417A (en) 1980-10-14
EP0000068A1 (de) 1978-12-20
FI781828A (fi) 1978-12-14
IL54883A0 (en) 1978-08-31

Similar Documents

Publication Publication Date Title
EP0000068B1 (de) Vorrichtung zur Ultraschalldarstellung mittels dynamischer Fokussierung
DE3025628C2 (de)
DE2855888C2 (de) Anlage und Verfahren zur Ultraschall- Abbildung mit verbesserter seitlicher Auflösung
DE2215001B2 (de) Vorrichtung zur untersuchung innerer koerperorgane mittels ultraschall
DE2343721C2 (de) Verfahren zur Erzeugung einer sichtbaren Anzeige eines Objektes und Einrichtung zur Durchführung des Verfahrens
DE3015837A1 (de) Ultraschall-abbildungsvorrichtung
DE3690124C2 (de) Ultraschall-Abbildungseinrichtung und Ultraschall-Abbildungs-Verfahren
DE2413465B2 (de) Verfahren und Vorrichtung zum Beobachten bzw. Abbilden von in undurchsichtigen Medien befindlichen Gegenständen, insbesondere von inneren Organen
DE2543678B2 (de) Ultraschallsende- und -empfangsvorrichtung
DE4209394A1 (de) Ultraschallgeraet, sonde fuer ein solches und ultraschall-diagnoseverfahren
DE2329387C2 (de) Verfahren zur Ultraschall-Untersuchung eines Objektes sowie Einrichtung zum Durchführen des Verfahrens
DE3103825C2 (de) Kombiniertes tomographisches und kardiographisches Ultraschallbilderzeugungsgerät
DE2117090A1 (de) Abtastsystem zur Gewinnung einer dreidimensionalen Darstellung
DE2749442A1 (de) Verfahren und vorrichtung zur untersuchung einer probe mit ultraschall
DE2818915A1 (de) Vorrichtung zur erzeugung von bildern innerer strukturen unter verwendung von ultraschallwellen
DE2752070A1 (de) Vorrichtung zur echtzeitdarstellung eines ultraschallquerschnittsbildes
DE3214887C2 (de)
EP0000067B1 (de) Vorrichtung zur Ultraschalluntersuchung und Darstellung eines Objekts
DE1956377A1 (de) Tomographische Strahlenkamera
DE2911613C2 (de) Abtastmodul für ein Gerät zur Ultraschall-Abbildung
DE3047177C2 (de) "Ultraschallgerät zur Durchführung von Untersuchungen nach dem Schnittbildverfahren"
DE2628568C3 (de)
DE3110739A1 (de) Ultraschallabbildung mit konischen transduktor
DE2451351A1 (de) Sonograph
DE3135053C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19820407

Ref country code: NL

Effective date: 19820407

REF Corresponds to:

Ref document number: 2861715

Country of ref document: DE

Date of ref document: 19820519

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840814

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840821

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19850630

Ref country code: BE

Effective date: 19850630

BERE Be: lapsed

Owner name: NEW YORK INSTITUTE OF TECHNOLOGY

Effective date: 19850612

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT